
University of Padua

Department of Mathematics

Master degree in Computer Science

Can’t you hear me knocking:
Identification of user actions on
Android apps via traffic analysis

Candidate:

Riccardo Spolaor

Supervisor:

Dr. Mauro Conti

University of Padua, Italy

Co-Supervisor:

Dr. Nino Vincenzo Verde

Sapienza University of Rome, Italy

External reviewer:

Dr. Mario Frank

European Patent Office, Germany

April 17th, 2014

http://www.unipd.it
spolaor.riccardo@gmail.com
http://www.math.unipd.it/~conti/
http://www.math.unipd.it/~conti/
http://ricerca.mat.uniroma3.it/users/nverde/
http://ricerca.mat.uniroma3.it/users/nverde/
http://www.mariofrank.net/
http://www.mariofrank.net/


ii

.



“Can’t you hear me knocking.”

Rolling Stones – Can’t you hear me knocking

“This is your here.

This is your now.

Let it be magical.”

Ronnie James Dio – This is your life



.



Abstract

While smartphone usage become more and more pervasive, people start

also asking to which extent such devices can be maliciously exploited

as “tracking devices”. The concern is not only related to an adversary

taking physical or remote control of the device (e.g., via a malicious app),

but also to what a passive adversary (without the above capabilities) can

observe from the device communications. Work in this latter direction

aimed, for example, at inferring the apps a user has installed on his

device, or identifying the presence of a specific user within a network.

In this thesis, we move a step forward: we investigate to which extent

it is feasible to identify the specific actions that a user is doing on his

mobile device, by simply eavesdropping the device’s network traffic. In

particular, we aim at identifying user actions like browsing someone’s

profile on a social network, posting a message on a friend’s wall, or send-

ing an email.

We design a system that achieves this goal starting from encrypted

TCP/IP packets: it works through identification of network flows and

application of machine learning techniques. We did a complete imple-

mentation of this system and run a thorough set of experiments, which

show that it can achieve accuracy and precision higher than 95%, for

most of the considered actions.
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Chapter 1

Introduction

Nowadays smartphones are widely used and pervasive devices. People continuously

carry those devices with them and use them more and more for daily communication

activities, including not only voice calls and SMS but also emails and social network

interaction. In the last years, several concerns have been raised about the capabilities

of those portable devices to invade the privacy of the users and actually becoming

“tracking devices”. One aspect is concerned with the possibility of continuously

localize an individual [1, 2]. Another relevant aspect is related to the fact that

malicious apps can go even a step further in tracing and spying on someone life.

For example, a malicious app that has access to the microphone and networking

capabilities, could in principle continuously eavesdrop the audio and send it over the

Internet to an adversary [3].

Even when the adversary has no actual control of the phone (either physical

control or remote via malicious apps) other attacks in the same directions are possible

to violate the privacy of the communications. If the network traffic is not encrypted,

the task of the eavesdropper is simple, since he can analyze the payload and read

the content of each packet. However, many mobile apps use the Secure Sockets

Layer (SSL)—and its successor Transport Layer Security (TLS)—as a building block

for encrypted communications. In a typical SSL/TLS usage scenario, a server is

configured with a certificate containing a public key as well as a matching private

key. As part of the handshake between an SSL/TLS client and server, the server

proves it has the private key signing its certificate with public-key cryptography.

Unfortunately there is often a gap between theory and practice, e.g., leveraging the

SSL vulnerabilities of smartphone apps [4, 5] one might run a SSL man-in-the-middle

attack to compromise the confidentiality of communications.
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We believe that while people become more familiar with mobile technologies

and their related privacy threats (also thanks to the attention raised by media, e.g.,

see the recent attention on NSA for supposedly eavesdropping foreign governments

leader such as Angela Merkel [2]), users start adopting some good practices that

better adapt to their privacy feeling and understanding. For examples, solutions to

identify and isolate malware running on smartphones [6, 7, 8] as well as to protect

against attacks coming from the network [9, 10] might significantly reduce current

threats to user privacy.

Unfortunately, we believe that even adopting such good practices would not

close the door to malicious adversaries willing to trace people. In fact, the wireless

and pervasive nature of mobile devices would still leave many practical options for

adversarial tracing. In particular, even when such solutions are in place, the adver-

sary can still infer a significant amount of information from the properly encrypted

traffic. For example, work leveraging analysis of encrypted traffic already highlighted

the possibility of understanding the apps a user has installed on his device [11], or

identify the presence of a specific user within a network [12].

This work focuses on understanding whether the user profiling made through

analyzing encrypted traffic can be pushed up to understand exactly what actions

the user is doing on his phone: as concrete examples, we aim at identifying user

actions such as sending an email, receiving an email, browsing someone profile in a

social network, rather than “tagging” someone in a picture. The underlying issue

we leverage in our work is that SSL and TLS protect the content of a packet, while

they do not prevent the detection of networks packets patterns that instead may

reveal some information about the user behavior.

1.1 Contributions

In this thesis, we propose a framework to infer which particular actions the user

executed on some app installed on his mobile-phone, only looking at the network

traffic that the phone generates. In particular, we assume the traffic is encrypted and

the attacker eavesdrops (without modifying them) the messages exchanged between

the user’s device and the web services that he uses.
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Our framework analyzes the network communications and leverages information

available in TCP/IP packets (like IP addresses and ports), together with other infor-

mation like the size, direction (incoming/outgoing), and timing. Using an approach

based on machine learning, each app that is of interest is analyzed independently.

To set up our system, for each app we first pre-process a dataset of network

packets labeled with the user actions that originated them, we cluster them in flow

typologies that represent recurrent network flows, and finally we analyze them in

order to create a training set that will be used to feed a classifier. The trained

classifier will be then able to classify new traffic traces that have never been seen

before.

We fully implemented our system, and we run a thorough set of experiments

to evaluate our solution considering three very popular apps: Facebook, Gmail, and

Twitter. The results shows that it can achieve accuracy and precision higher than

95%, for most of the considered actions done by the user with those apps.

1.2 Organization

The remainder of this thesis is organized as follows. In Chapter 2, we revise the state

of the art around our research topic. We introduce in Chapter 3 some background

knowledge, used in our work, on machine learning and data mining tools. In Chap-

ter 4, we present an overview of our framework and its components. We report in

Chapter 5 the methodology followed for data acquisition and the preliminary stud-

ies carried out on that data. Following, we discuss about implementation details for

clustering and classification algorithms in Chapter 6. In Chapter 7, we present the

evaluation of our solution for identifying user actions. Finally, in Chapter 8 we draw

some conclusions and discuss about possible countermeasures against the attack.





Chapter 2

Related Work

Our main claim in this thesis is that network traffic analysis and machine learning

can be used to infer private information about the user, i.e., the actions that he

executes with his mobile phone, even thought the traffic is encrypted. To position

our contribution with respect to the state of the art, in this chapter we survey the

works that belong to research areas that focus on similar issues: security and privacy

on smartphones, application classification with traffic analysis, privacy attacks via

traffic analysis and traffic analysis of mobile devices.

2.1 Security and privacy on smartphones

Privacy is an important matter perceived by users of smartphones, even more than

using a laptop [13]. Malwares are a serious threat to security on smartphone [14], be-

cause they can cause device malfunctioning and user personal information disclosure,

like user position, contacts, health condition, etc.

Some works propose apps profiling frameworks to detect malicious behavior

or potential privacy-related information exposure [15, 16, 17]. In [15], Eder et al.

show an extendable framework named ANANAS, that analyze static and dynamic

behaviors of Android apps. With dynamic behavior, the authors mean that apps

are subject to the activity of a user, while static behavior stands for inactive status.

Using these distinct analysis approaches, authors are able to evaluate how user

activity can impact on apps behavior, marking a significant difference between static

and dynamic behaviors. From these analysis ANANAS collect apps behavior samples

to compare with Android Malware Genome Project, and identify malicious intents

5
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or personal information leaks. This framework supports an abstraction layer for

simple user interaction and phone event simulation, similar to the scripts we use in

this thesis to collect data. In [17], Yang et al. present a framework to validate new

apps, that helps human analysts to determine if a data transmission is intended by

the user. Indeed, authors consider that sometime users intend to transmit personal

information using their smartphones, and this has not to be considered as a privacy

leak. So it is reasonable to consider as malicious only traffic not related to any user

action (intent). Among these frameworks, Wei et al. [18] propose ProfileDroid.

Differently from previous solutions, app profile is done from four different points of

view (layer): static, user interaction, OS and network.

In Android OS, malicious apps could obtain the access to device resources

through given permissions. But in most cases, users do not understand what these

permissions really mean [19]. Possible countermeasures to this problem consist to

replace sensitive data with a shadowed copy [20] and let apps believe they are work-

ing on real data, or use taint analysis [21] to track and understand how apps use

these data. Another possible approach to this problem is MockDroid [22], a modi-

fied version of Android OS, that gives to apps a fake access to resources. With this

approach, users are able to select a trade off between more privacy and a reduction

of functionality, customizing the permissions given to apps (true or fake).

Another scenario of personal data leak is when an unauthorized user tries to

physically access a device. To mitigate this threat, the device has to be able to

verify the user identity, using measures based on a secret (e.g., PIN, password) or

biometrics (e.g., face recognition, fingerprint). In particular, researchers leverage

machine learning techniques to authenticate a user using biometrics. For example,

Ho et al. in [23] show how it is possible to verify the user identity using biometrics

related to gait. Regarding this topic, Conti et al. propose a measure to authenticate

a user from the way he answers to a phone call [24]. Monitoring accelerometer

and orientation sensors, the authors are able to produce a unique fingerprint of a

user tracing the movement of his hand. More recently, Majdanik et al. in [25] use

these sensors to authenticate a user from his movements while he is typing on device

keyboard.
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2.2 Application classification with traffic analysis

In recent years, researchers put a significant effort in traffic analysis, aiming to

identify which application produces a network flow. In the works we report in this

section, authors mean with the term “application” the last layer in OSI model.

Particular interest focus on P2P traffic recognition (emule, bittorrent), but also in

application level protocols like HTTP, POP3, SSH and so on. Traffic analysis can

be done in several ways exploiting machine learning algorithms on different network

traffic features. About this topic, a very useful work is Internet Traffic Classification

Demystified [26], that help to understand which features of network flows are the

most significant on traffic analysis. In [27], Kim et al. report an overview on best

practices for application classification via traffic analysis. In this work, authors

compare machine learning algorithms, depending from the approaches used: ports-

based, host-behavior-based, and flow-features-based.

Works on traffic analysis can be distinguished from each other according to the

machine learning methods they use:

• Naive Bayes [28, 29];

• Hidden Markov Models (HMM) [12, 30, 31, 32];

• unsupervised clustering and supervised classification [33, 34, 35];

• Support Vector Machines (SVM) [33, 36, 37];

• custom classification algorithms [38, 39, 40].

Many methods proposed in these works can be apply on encrypted TCP/IP traffic,

because they consider only statistics of network flows (without access to packet pay-

loads). An example of custom traffic classifier is proposed by Crotti et al. in [39],

where authors build a fingerprint for a protocol using statistics about packets size,

inter-arrival time and order. So they propose an ad-hoc classification algorithm to

classify these fingerprints. In [38], Karagiannis et al. propose a framework that use

“multi-level” analysis on TCP traffic. This framework, the authors named BLINC,

considers network traffic from three different points of view: hosts popularity (social

level), hosts role in the network (client/server level), and traffic flow features (appli-

cation level). Finally, the authors propose a custom classifier that combines features

from each level.



Chapter 2. Related Work 8

In this thesis, we use a method known as early traffic analysis, that consist in

consider only a limited number of packets of a traffic flow. In [33, 36], Sena et al.

describes two on-line methods to classify encrypted traffic. Starting from a payload

traffic analysis as ground truth, they compare centroid clustering and SVM, apply-

ing them on statistical flow analysis. The authors do not consider a whole flow, but

only the first N packets (early) in both directions. Although in their flow repre-

sentation, information about packets sequence is not take in concern. Early flows

analysis is also used in [30] for application recognition. First studying early TCP

connection features, then evaluating performance of HMM on this domain. Some

others, like [29], do the same classification but timely and continuously, oriented to

QoS management. Their traffic classifier uses C4.5 Decision Tree and Naive Bayes

algorithms on statistics of sub-flows (a limited number of packets taken at any point

on a traffic flow). They are able to identify interactive traffic (on-line gaming and

VOIP) among TCP/IP traffic.

In our framework, we use a classification in two steps: first we regroup flows

in clusters according to their similarities, then we use those clusters as features to

classify user actions. A similar approach, but with a different purpose, is used in

[35] on HTTP traffic and in [34] on TCP traffic.

2.3 Privacy attacks via traffic analysis

In the literature, several works propose to track user activities on the web analyzing

unencrypted HTTP requests and responses [41, 42, 43]. With this analysis it is

possible to understand user actions inferring interests and habits. In particular,

Schneider et al. [42] studied how users interact with Online Social Network (OSN)

analyzing anonymized HTTP header. With their method, It is possible follow user

activity on OSN web pages, inferring user actions. However, in recent years, websites

and social networks started to use SSL/TLS encryption protocol, both for web and

mobile services [44, 45]. This means that communications between endpoints are

encrypted and this type of analysis cannot be performed anymore.

Different works survey possible attacks that can be performed using traffic ana-

lysis assuming a very strong adversary (e.g., a national security agency) which is able

to observe all communication links [46, 47]. In [48], Liberatore et al. evaluate the

effectiveness of two traffic analysis techniques based on naive Bayes and on Jaccard’s

coefficient for identifying encrypted HTTP streams. Such an attack is outperformed
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by Hermann et al. in [49], where they present a method that applies common text

mining techniques to the normalized frequency distribution of observable IP packet

sizes, obtaining a classifier that correctly identifies up to 97% of requests. The tech-

nique is further refined in [50], where Panchenko et al. present a support vector

machine classifier that is able to correctly identify web-pages, even when the victim

use both encryption and anonymization networks such as Tor.

Traffic analysis is applied not only to HTTP but also to other protocols. For

example, Song et al. [32] prove that SSH is not secure. In particular, they show

that even very simple statistical techniques suffice to reveal sensitive information

such as login passwords. More importantly, the authors show that using more ad-

vanced statistical techniques on timing information collected from the network, the

eavesdropper can also learn significant information about what users type in SSH

sessions. Developing a Hidden Markov Model, they are able to predict key sequences

from the inter-keystroke timings. SSH is not the only protocol that has been target

of such attacks. In fact, another example is Voice Over IP (VoIP). In particular, in

[31], Wright et al. show how the lengths of encrypted VoIP packets can be used to

identify spoken phrases of a variable bit rate encoded call. Their work indicates that

a profile Hidden Markov Model trained using speaker- and phrase-independent data

can detect the presence of some phrases within encrypted VoIP calls with recall and

precision exceeding 90%.

Traffic analysis can also be apply on data link layer, analyzing MAC (Media

Access Control) packets exchanged. For example, Zhang et al. [37] profile applica-

tions behavior using traffic analysis, they are able to infer which kind of activity a

user is doing by eavesdropping MAC packets transmissions for a few minutes.

2.4 Traffic analysis of mobile devices

Focusing on mobile devices, traffic analysis is successfully used to detect information

leaks [21], to profile users from their set of installed apps [11], and to produce the

fingerprint of an app from its HTTP traffic [51, 52]. Traffic analysis is also used

to understand network traffic characteristics, with particular attention on energy

saving [53].

Stober et al. [11] show that it is possible to identify the set of apps installed on

an Android device, by eavesdropping the 3G/UMTS traffic that those apps generate.

Similarly, Tongaonkar et al. [51] introduce an automatic app profiler that creates



Chapter 2. Related Work 10

the network fingerprint of an Android app in order to re-identify its HTTP traffic.

To increase the accuracy of the profiler, this work is extended considering in-app

advertisements traffic [52]. Unfortunately, these methods could not be applied on

Android apps, including the ones considered in our work. To prove this statement,

we observe that network traffic produced by Facebook, Gmail and Twitter involves

encrypted connections. In these connections, exchanged packets’ protocol is TLSv1

for over the 95% of them (more details are reported in Section 5.3.1). Furthermore,

these apps do not contain in-app advertisements, regardless they are free. None of

the works we mention in this section aim at inferring the actions performed by the

user over its mobile phone, which is the goal of this thesis.



Chapter 3

Machine learning and data

mining background

In this chapter, we introduce several concepts and tools about machine learning and

data mining used in this thesis.

3.1 Dynamic Time Warping

Dynamic Time Warping (DTW) [54] is a useful method to find alignments between

two time-dependent sequences (also referred as time series) which may vary in time

or speed. This method is also used to measure the distance or similarity between

time series. Let us consider two sequences that represent two discrete signals:

• X = (x1, . . . , xn) of length N ∈ N;

• Y = (y1, . . . , ym) of length M ∈ N.

DTW uses a local distance measure c : R × R → R≥0 to calculate a cost matrix

C ∈ RN×M . The cell Ci,j of this matrix reports the distance between xi and yj .

The goal is to find an alignment between X and Y having minimal overall distance.

Intuitively, such an optimal alignment runs along a “valley” of low cost cells within

the cost matrix C. More formally, a warping path is defined as a sequences p =

(p1, . . . , pL) with pl = (nl,ml) ∈ [1 : N ]× [1 : M ], l ∈ [1 : L] satisfying the following

three conditions:

11
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1. Boundary condition: p1 = (1, 1) and pL = (N,M);

2. Monotonicity condition: n1 ≤ n2 ≤ . . . ≤ nM and m1 ≤ m2 ≤ . . . ≤ mL;

3. Step size condition: pl+1 − pl = {(0, 1), (1, 0), (1, 1)} for l ∈ [1 : L− 1].

The total cost of a warping path is calculated as the sum of all the local distances

of its elements. An optimal warping path is a warping path p∗ having minimal total

cost among all possible working paths. The total cost of an optimal warping path is

also used as a distance measure between two sequences X and Y . In this thesis, we

will indicate the cost of an optimal warping path with DTW (X,Y ).

3.2 Hierarchical Clustering

Hierarchical clustering is a cluster analysis method which seeks to build a hierarchy

of clusters. This clustering method has the distinct advantage that any valid measure

of distance can be used. In fact, the observations themselves are not required: all

that is used is a matrix of distances.

In the following, we will use a type of hierarchical clustering that is called ag-

glomerative: each observation starts in its own cluster, and pairs of clusters are

merged as one moves up the hierarchy. In order to decide which clusters should

be combined, a metric (a measure of distance between pairs of observations) and

a linkage criterion are required. Since we apply clustering to time-dependent se-

quences, we use the total cost of an optimal warping path as distance metric. As for

the linkage criterion, that determines the distance between sets of observations as a

function of the pairwise distances between observations, we use the average distance,

that is defined as:

d(u, v) =
∑

1≤i≤n
1≤j≤m

d(u[i], v[j])

|u| ∗ |v|
,

where d() is a distance function, and u and v are two clusters of n and m elements,

respectively. More details about hierarchical clustering can be found in [55].

3.3 Supervised Learning

Supervised machine learning algorithms learns from labeled instances or examples,

which are collected in the past and represent past experiences in some real-world
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applications. They produce an inferred model, which can be then used for mapping

or classifying new instances. An optimal scenario will allow for the algorithm to

correctly determine the class labels for unseen instances.

In this thesis, we use a naive Bayes classifier [56] and an ensemble classifier that

is called Random forest [57].

3.3.1 Naive Bayes

Naive Bayes classifies are supervised learning algorithms based on theorem of Bayes,

with the assumption of independence between every pair of features. Given a class

y and a vector of features x, theorem of Bayes with the “naive” assumption states

the following relationship:

P (y | x1, . . . , xn) =
P (y)

∏n
i=1 P (xi | y)

P (x1, . . . , xn)
.

Naive Bayes classifiers differ mainly by the assumptions they make regarding the

distribution of P (xi | y).

In our analysis we use the Gaussian distribution, where the likelihood of the

features is assumed to be Gaussian:

P (xi | y) =
1√

2πσ2y

exp

(
−(xi − µy)2

2πσ2y

)
.

Where the parameters σy and µy are estimated using maximum likelihood. More

details about naive Bayes classifiers can be found in [56].

3.3.2 Random forest

The main principle behind ensemble methods is that a group of “weak learners”

can be combined together to form a “strong learner”. Random forest leverages

a standard machine learning technique called “decision tree”, which, in ensemble

terms, corresponds to the weak learner. In practice, it combines together the results

of several decision trees trained with different portions of the training dataset and

different subsets of features. More details about the Random forest classifier can be

found in [57].
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3.4 Classification metrics

In machine learning and data mining, there are metrics to measure the accuracy of

a trained classifier using its predictions on a test set. Knowing the true classes of

examples in test set, it is possible to compare them with predictions and identify

the number of true positives (TP), false positives (FP) and false negatives (FN) for

every class.

Using these values it is possible to calculate:

• precision = TP
TP+FP , evaluates for a class the number correct classified exam-

ples, over the total number of examples classified as belonging to that class;

• recall = TP
TP+FN , evaluates for a class the number correct classified examples,

over the number of examples that really belongs to that class.

To measure the accuracy of the classification, F-measure (also knows as F1

score) consider both precision and recall with equal weight:

F1 = 2 ∗ precision ∗ recall
precision+ recall

=
2 ∗ TP

2 ∗ TP + FP + FN
.

3.4.1 Confusion matrix

A graphical instrument for evaluate the performance of classification is the confusion

matrix. In this matrix, every true class is reported in a row, re-scaled between 0

to 1 over total number of examples for that class. In other hand, on columns there

are classes prediction. An ideal classifier performance report a confusion matrix

with values equal to 1 on the diagonal, but 0 on other elements. For each row, it

is reported how many examples (over total examples for that class) are predicted

as belonging to the classes in columns. So in a row of a confusion matrix, the

correspondent element on diagonal coincide with the recall for that class, while FN

ratio on other elements.

In Figure 3.1, we report an example of confusion matrix. Considering the row

related to Class B, we observe that the 80% of examples for that class are classified

correctly, while the 5% and the 15% of them are wrongly classified as Class D and

Class E respectively. In the other hand, observing the column related to Class A,

the recall for that class is 1.0, so the 100% of the examples are classified correctly.
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Despite this, some examples of Class C and Class E (4% and 7% respectively) are

wrongly predicted as Class A, lowering the precision for that class.

Figure 3.1: An example of a graphical representation for a confusion matrix.





Chapter 4

Our framework

In this chapter, we describe the components of our framework. In particular, we

introduce the concept of flow and we describe the pre-processing steps that allow us

to model the network traffic. Then, we report the methodology followed to assign

flows to the user action that generates them. Finally, we describe the procedure to

build training and test dataset, and the algorithms used to classify user actions.

4.1 Network traffic pre-processing

Mobile apps generally rely on SSL/TLS to securely communicate with peers. These

protocols are built on the top of the TCP/IP suite. The TCP layer receives en-

crypted data from the above layer, it divides data into chunks, and adds a TCP

header creating a TCP segment. The TCP segment is then encapsulated into an

Internet Protocol (IP) datagram, and exchanged with peers. Since TCP packets

do not include a session identifier, both endpoints identify a TCP session using the

client’s IP address and the port number. A packet is a sequence of bytes, and con-

sists of a header followed by a payload. The header describes the packet’s source,

destination and control information. The payload contains the data is transmitting.

In Section 5.1, we describe in details the methodology we follow to acquire these

packets.

A fundamental entity considered in this thesis is the flow : with this term we

indicate a time ordered sequence of packets exchanged between two peers during a

single TCP session. In the following, we describe the procedure used to pre-process

17
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network traffic and flow labeling, we also report a scheme for this procedure, using

the flowchart in Figure 4.1.

Figure 4.1: Flowchart for network traffic pre-processing and labeling procedure.

Before generating flows from each TCP session, a few pre-processing steps have

to be performed:

1. we apply a domain filtering to select only packets belonging to the analyzed

app;

2. we filter the remaining packets, in order to delete the ones of them that may

degrade the precision of our approach (i.e., we filter out ACK and retransmitted

packets);

3. we generate flows limiting the duration of a TCP session.

4.1.1 Domain filtering

Since we analyze each app independently, we need to make sure that traffic generated

by apps other than the considered one (or traffic generated by the OS) do not

interfere with the analysis. In order to univocally identify the app that generates

a particular flow, we use the destination IP addresses, and the WHOIS protocol to
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perform a series of look up, inferring information about the owner of the destination

IP address. When the owner of the IP address is clearly related to the app which

is subject of the analysis, we take the flow into consideration for further analysis.

Since several apps also use third parties services (such as Akamai, or Amazon, as

reported in [18]), we take also these flows into consideration. In all the other cases,

we simply discard the flow.

4.1.2 Packets filtering

Due to network congestion, traffic load balancing, or other unpredictable network

behavior, IP packets can be lost, duplicated, or delivered out of order. TCP detects

these problems, hence requesting retransmission of lost data, and reordering out-

of-order data. It comes out that several TCP packets that do not carry data, may

hinder the analysis process. In the data exchange phase, for example, the receiver

sends a packet with the ACK flag set to notify the correct reception of a chunk of

data. These ACK packets are transmitted in asynchronous mode so they are affected

from many factors related to round trip time of the connection link. The order of

the received packets may hinder the evaluation of the similarity between two flows.

For this reason, we filter out all packets retransmissions, as well as packets marked

with the ACK flag. We filter out also other packets that do not bring any additional

information helpful in characterize flows. In particular, we filter out the three way

handshake executed to open a TCP connection, and the packets exchanged to close

it.

4.1.3 Flow building

Consecutive packets, with the same couples of IP addresses and port for source and

destination, are aggregated in flows. We model each flow as a set of time series:

(i) a time series is obtained considering the bytes transported by incoming packets

only; (ii) another one is obtained considering bytes transported by outgoing packets

only; (iii) a third one is obtained combining bytes transported by both incoming and

outgoing packets. Additional time series may be obtained, for example, considering

other parameters such as the time-gap between different packets. However, in our

analysis we only use the first three types mentioned above. In Section 5.3.2, we

report more details about flow time series representation we use in our framework.



Chapter 4. Our framework 20

To limit the duration of a flow we use a mechanism based on a timeout. We

consider a flow as terminated when there is not any new packet since a timeout of

4.5 seconds. Indeed, it has been proved experimentally that 95% of all packets arrive

at most 4.43 seconds after their predecessors [11].

4.2 Flows labeling

After pre-processing steps described in previous sections, we obtain a set of flows.

Using information about user actions, recorded during scripts execution (we describe

it in Section 5.2.2), we are able to label flows after the user action that generates

them. To do that we introduce the concept of time interval of a user action. A time

interval starts in the instant when a specific user action is executed, and it ends

after a timeout TAA (Time After a user Action). We consider all the flows within a

time interval as related to that user action. So we label those flows after that user

action. We also consider the flows within the time interval between TAA expiration

and the instant of the next user action execution. These flows are not related to

a user action, but we do not discard them. Indeed, we label these flows as if they

belong to a “bogus” user action, we named Background traffic.

Time interval idea is also reported in the Figure 4.2, where with t we mean the

time waited before the execution of the next user action. More details about the

value for the timeout TAA can be found in Section 5.3.3.

Figure 4.2: Time intervals related to user actions.

Finally, we create a file for every user action label, where we save flows marked

with the same label.
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4.3 Classification of user actions

Since we use a supervised learning approach, it is necessary to create a labeled

dataset that describes the user actions that we want to classify. For each app that

we analyze, we focus on user actions that are significant for that particular app.

4.3.1 Flows clustering

In most cases, a single user action generates a set of different flows (i.e., not just

a single one). Furthermore, different user actions may generate different sets of

flows. Our classification method is based on the detection of the sets of flows that

are distinctive of a particular user action. In order to elicit these distinctive sets of

flows, we build clusters of flows using the hierarchical clustering approach described

in Section 3.2.

In the following, we describe the procedure we follow to build clusters of similar

flows, also reported with the flowchart in Figure 4.3. Using clustering, flows that

Figure 4.3: Flowchart for flow clustering procedure.

are similar one to each other will be grouped together, while not similar flows will

be divided in different clusters. The average distance is used as linkage criterion,
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while the computation of the distance between two flows combines the distances of

the corresponding time series. Supposing that each flow fi is decomposed into a set

of n time series {T i
1, . . . , T

i
n}, the distance between fi and fj is defined as:

dist(fi, fj) =

n∑
k=1

wk ∗DTW (T i
k, T

j
k ),

where wk is a weight assigned to the particular time series. Weights can be assigned

in such a way to give more importance to some type of time series with respect

to others. For example, it is possible to give more weight to the time series that

represent incoming packets, and less weight to those that represent outgoing packets.

We use thresholds, in terms of flows distance, to “cut” the hierarchy of clusters.

So we obtain a set of clusters (also called flat clusters) for each considered threshold.

The smaller the value of a threshold, greater will be the number of clusters in that

set. In order to reduce the computational burden of the subsequent classification, a

leader is elected for each cluster. A leader is a flow that represent its cluster. Given

a cluster C containing the flows {f1, . . . , fn}, we elect the leader selecting the flow

fi that has minimum overall distance from the other members of the cluster, that

is:

arg min
fi∈C

 n∑
j=1

dist(fi, fj)

 .

4.3.2 User actions classification

Clustering is executed over the set of flows used to build the training dataset. In

the other hand, the cluster leaders are used to build both the training and the test

datasets. We consider the user actions as instances of the datasets, while the class of

each instance is a label representing the user action. We use one integer feature for

each cluster identified through the clustering procedure. The value of each feature

is determined analyzing the flows related to a user action. Each flow f captured

after the execution of a user action will be assigned to the cluster that minimizes

the distance between f and the leader of the cluster. The kth feature indicate the

number of flows assigned to the cluster Ck. For example, for the user action send

mail, the kth feature will be equal to 2 if there are 2 flows labeled with send mail

assigned to the cluster Ck.

Finally, we execute the classification with naive Bayes and Random forest al-

gorithms. The main idea behind the overall approach is that different user actions
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will “trigger” different sets of clusters. The classification algorithms therefore learn

which are these sets, and will be able to correctly determine the class labels for

unseen instances.





Chapter 5

Data acquisition and analysis

In the first part of this chapter, we discuss the environment configuration and the

procedure used to acquire network traffic. Later, we present the methodology fol-

lowed to simulate user actions using scripts. Finally, we report some study about the

domain of network traffic and user actions, in order to extract knowledge to improve

performance of our framework.

5.1 Network traffic acquisition

In this section, we describe the environment we set up for data acquisition, from both

hardware and software points of view. Starting with the description of hardware

components, we conclude this section talking about apps and accounts.

5.1.1 Hardware and network configuration

For the evaluation of our solution, we use a Galaxy Nexus (GT-I9250) smartphone,

running the Android 4.1.2 (Jelly bean) operative system, where we enable the “An-

droid Debug” option. Being a “Google” phone, this device runs an original version

of Android OS, without any other proprietary software. Anyway, we recall that in

our approach we discard flows having an IP address with domain not related to a

considered app (as explained in Section 4.1.1). We use a Wi-Fi access point (U.S.

Robotics USR808054) to provide wireless connectivity to the mobile phone. Finally,

we use a server (Intel Pentium Processor dual core E5400 2.7GHz with 4 GB DDR2

RAM) with two network cards running Ubuntu Server 11.04 LTS to route the traffic

25
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from the access point to the Internet, and vice versa. To eavesdrop network packets

flowing through the server, we use Wireshark software. From a Wireshark capture

file, we create a comma separated file (csv), where each row describes a packet

captured from the access point’s interface. For every packet, we report source and

destination IP addresses, ports, size in bytes and time in seconds from Unix epoch1,

protocol type and TCP/IP flags.

5.1.2 Account and apps setup

For our study, we consider three popular apps installed from the official Android

market: Gmail v4.7.2, Facebook v3.8, and Twitter v4.1.10. For each app, we create

10 accounts that are divided in two different categories of users: “active” and “pas-

sive” users. An “active” user simulate the behavior of a user that actively use the

app sending posts, email, tweets, surfing the various menus, etc. Differently, a “pas-

sive” user simulate the behavior of a user that passively use the app, just receiving

messages or posts. The accounts of both passive and active users are configured in

such a way to have several friends/followers within the group. We do not configure

the accounts with actual friends or followers, in order to avoid interference due to

notifications of external users activities that are not under our control.

5.2 Simulation of user actions using scripts

In this section, we describe the methodology we follow to simulate user actions on

Android apps. For the comprehension of this section, it is necessary to clarify the

distinction we make between interaction and user actions: with the term “interac-

tion” we refer to a physical or simulated operation on a device (e.g., tap, swipe, key

press), while with “user action” we mean an operation done by user on an app (e.g.,

send an email, post a status), that could require several interactions to be achieve.

We simulate interactions on a device issuing commands from Android Debug

Bridge (ADB). Provided by Android SDK, ADB is a versatile command line tool

used to control an Android device. This tool uses a client-server paradigm with

these components:

• client runs on a machine, and it can be invoked from a shell by issuing an ADB

command;

100:00:00 UTC, January 1st, 1970
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• server runs as a background process on a machine, this process manages com-

munication between ADB daemon on device and the client;

• ADB daemon runs on device, and execute commands issued by the client.

In our experiments, we first considered MonkeyRunner tool to simulate inter-

actions on a device. Unfortunately, we observed a conflict between MonkeyRunner

daemon and Gmail app, in fact some commands like sending an email (tap on “send”

button) are not executed properly. For this reason we abandoned Monkeyrunner in

favor of ADB tools.

Every user action could be consider as a sequence of interactions with a device.

Indeed, sometimes it is necessary a sequences of interactions in a precise order to

achieve a specific purpose, but often it could be achieve with a single interaction.

For example, to compose a textual content in a message it is necessary to issue a

sequence of “key press” events (one for each characters in the text). In the other

hand, to open in-box message page it is sufficient a single tap on a set of specific

coordinates on the screen.

Our scripts are composed by a sequence of four basic ADB commands: tap,

swipe, key press and process kill. In Listing 5.1, we report the Python functions to

invoke these commands.

from subprocess import call

# simulation of a tap on coordinates (x, y) on screen

def adb_touch_tap(x, y):

cmd="adb shell input touchscreen tap %s %s" % (x, y)

call(cmd.split ())

return

# simulation of a swipe from coordinates (x1 , y1) to (x2 , y2) on screen

def adb_touch_swipe(x1, y1 , x2 , y2, speed):

param=(x1, y1 , x2 , y2, speed)

cmd="adb shell input touchscreen swipe %s %s %s %s %s" % (param)

call(cmd.split ())

return

# simulation of keyboard button press identified by "code"

def adb_keycode(code):

cmd="adb shell input keyevent KEYCODE_%s" % (code)

call(cmd.split ())

return

# sending a signal to kill a process

def kill(process ):

cmd="adb shell am force -stop %s" % (process)
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call(cmd.split ())

return

Listing 5.1: Python fuctions to execute ADB shell commands.

For each app, we created a specific script, where we define a sequence of user

actions. During the script execution, these user actions are performed like there is

an human user doing them.

When a script performs a sequence of user actions, the app pass through differ-

ent states. We call states flow the whole sequence of these states observed during

the execution of a script. From start of an app, a script induce the app in a specific

states flow. We do that to be sure to predict the positions of all components in the

layout of the app when it is on a precise status. For example, given an app state and

the next interaction that is a tap on a button object A, the coordinates of object A

must remain the same during all script executions.

We use Android Device Monitor tool to obtain the precise coordinates of every

objects in a layout of an specific app status. Then, we collect these coordinate in a

database that is available for all scripts for an app. Unfortunately, this procedure is

slow since it does not exists an automatic tool to do what we need. Two examples

for layout objects coordinates obtaining procedure are reported in Figures 5.1 and

Figure 5.2, which represent screen coordinates for “Important” object in menu layout

on Gmail app, and a tweet in “Discover” page on Twitter app respectively.

5.2.1 User actions sequence

To reach a particular target, a user may have to perform several user actions in a

precise order. For example, a user has to perform three user actions in a precise

sequence to post a message on his Facebook wall (also reported on Figure 5.3). He

has to be sure that the Facebook app shows the “user’s wall”, then he has to tap on

the “write a post” button (1), fill the edit box with some text (2), and finally tap

on the “Post” button (3).

All user actions in a sequence are scripted specifically for each app and its

layouts, maintaining a consistent and predicable states flow. The scripts explore

several functionality of each app.

It is important to highlight that we do not use static text as content of emails,

posts, tweets or direct messages. indeed, we use textual strings randomly selected
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Figure 5.1: Coordinates for an object in Gmail layout.

Figure 5.2: Coordinates for an object in Twitter layout.
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from a large set of sentences (limited to 140 characters on Twitter app), but we do

not consider the images upload, neither of files.

Figure 5.3: States flow on Facebook app due to user actions.

5.2.2 Scripts execution

Every script iterate at least 20 times a whole sequence of user actions for an app.

During scripts execution are produced log files, where a row corresponds to a user

action. In these log files, script record for each row the label of the executed user

action, the sequence id (script iteration), the time stamps from Unix epoch and

from start of the sequence. Examples of log files produced by a script are reported

in Appendix A.

Between user actions in a sequence there is a wait time t equal to 20 seconds,

this permit to catch all the traffic generated by a user action, avoiding any inter-

ference due to the execution of the next one. It is very important to maintain the

synchronization between time stamps on log files and Wireshark captures. To do

that we execute both scripts and Wireshark capture on the same machine, where

system time is periodically updated using a ntp server.

5.3 Domain study

In this part of the chapter, we describe the studies done to understand the domain

of our analysis. After data acquisition process, we analyze collected data to improve

flows clustering and user actions classification. To do so, we start studying the

features of small entities like packets, then traffic flows, and gradually expanding

the focus until the user actions. We conclude observing user actions properties from

the point of view of network traffic, in order to find which features can discriminate

user actions from each other.
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5.3.1 Packets protocols

In Chapter 2, we report some works that use payload analysis on HTTP packets,

in order to trace a user browsing on a OSN [41, 42, 43]. A similar technique is also

used to profile Android apps [51, 52]. Being this techniques not feasible on payload

encrypted using SSL/TLS protocols, we analyze the protocols distribution over the

packets. In this analysis, we consider packets after filtering procedure, where TCP

connection control packets are discarded (as previously described in Section 4.1.2).

We report in Table 5.1 the distribution of protocols over network packets captured.

Protocol Facebook Gmail Twitter Total

TLSv1 96.0% (33398) 90.9% (7205) 96.3% (13435) 95.4% (54038)

TCP 03.7% (1316) 00.8% (70) 03.7% (522) 03.4% (1908)

HTTP 00.0% (0) 08.1% (644) 00.0% (0) 01.1% (644)

SSLv2 00.1% (63) 00.0% (0) 00.0% (0) 00.1% (63)

Table 5.1: Protocol presence among packets captured for all considered apps.

From the analysis on packets protocols, we observe that more than 95% of

packets are encrypted with TLS protocol, but 90% of packets related to Gmail app.

In the other hand, only Gmail app produces packets using HTTP protocol. For

this reason, an analysis based on packet payloads is not feasible on network traffic

produced by the apps we consider.

5.3.2 Traffic flows

Flow are fundamental entities of our analysis, and they can be seen as a sequence of

network packets ordered by time. As we explained in Section 4.1.3, we build three

time series using the sizes in bytes of packets in a flow. The final purpose of the

studies about flows is to understand how to regroup them in sets using their features.

In the following, we present a possible representation for a flow and the notation we

use to identify an interval of packets in a flow.

Representation of a flow

Being a flow a sequence of packets, we build an object with methods and data

fields projected for statistical feature analysis, in anticipation of future studies. In
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effect, we use Series objects from pandas2 libraries, for data fields corresponding to

time series like incoming, outgoing sequences of packets or their time-gap. Series

class provides methods for statistical data analysis tools on these time series, which

were useful on our preliminary studies of flows. We reports an example of time

series generated by three flows in Table 5.2. Values within square brackets represent

the amount of bytes exchanged per packet: negative values in complete time series

indicate incoming bytes, while positive values indicate outgoing bytes.

Flow ID Time series type Time series

Flow 1
Incoming [1514, 1514, 315, 113, 477]

Outgoing [282, 188, 514, 96, 1514, 179, 603, 98, 801, 98]

Complete [282, -1514, -1514, -315, 188, -113, 514, ...

..., 96, 1514, 179, 603, 98, 801, 98, -477]

Flow 2
Incoming [1514, 1514, 1266, 582, 113, 661]

Outgoing [282, 188, 692, 423]

Complete [282, -1514, -1514, -1266, -582, 188, -113, ...

..., 692, 423, -661]

Flow 3
Incoming [1245, 1514, 107, 465, 172, 111]

Outgoing [926, 655, 136, 913, 1514, 1514, 863]

Complete [926, 655, 136, -1245, 913, 1514, 1514, 863, ...

..., -1514, -107, -465, -172, -111]

Table 5.2: Example of time series generated by three flows.

In Figure 5.4, we graphically represent the same three flow time series through

a cumulative chart. The lower side of the chart represents incoming traffic, while

the upper side represents outgoing traffic. This is only one of the possible repre-

sentations, and it shows that the “shapes” of these three flows are quite different.

Intuitively, flow clustering procedure aims to identify the “shape” of unseen flows.

Flow packets interval

In a flow, packets interval is a representation we use to specifies the first and the last

packet to be considered. For example, considering a flow f composed by l packets,

and the interval [x, y] with x ≤ y and y ≤ l, the corresponding time series will be

composed by y − x + 1 values that report the bytes of the xth to the yth packet.

This simple mechanism allows us to focus on particular portions of the flow. The

first part of a flow is often the more significant. Indeed, Lim et al. report that

2pandas is an open source library providing data structures and data analysis tools for the Python
programming language – http://pandas.pydata.org/

http://pandas.pydata.org/
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Figure 5.4: Representation of flows time series.

the first packets in a network flow are a significant feature in traffic analysis [26].

We use this representation to identify interval of packets considered for clustering

parameters configuration (in Section 6.1.2), showing that the best configuration is

app dependent.

5.3.3 User actions

In this section, we present two studies on flows related to a user action. First, we

discuss about the duration of a time interval of a user action. Then, given different

time intervals of the same user action, we focus on sets of similar flows within them.

User actions time intervals

In Section 5.2.1, we report that in a script, there is a wait time t equal to 20

seconds between the execution of a user actions and the next one. Later, during

our studies on network traffic, we realize that an interval of 20 seconds after a user

action execution are too many. Indeed, it is hard to believe that a user action could

trigger the transmission of new flows after 20 seconds from its execution. It is more

reasonable to consider the flows that starts after a timeout as background traffic,

generated by the app during inactivity periods. In order to confirm this intuition,
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we study flows distribution over time in time intervals related to user actions. In

Figure 5.5, we report a chart where we overlap flows seen after the executions of 40

user actions per type. Every flow is represented through a cumulative chart, similar

to the one used in Figure 5.4, in the domain of time.

Figure 5.5: Network flows over time.

In this chart, it is possible to observe that network traffic concentrates on the

first 6 seconds, with a lapse of “silence” after. To confirm that impression, we study

the presence of flows in the domain of time, using the same data of the previous

chart. We do a sampling every 0.2 seconds, counting the number of “active” flows in

every sample of time. We report this alternative representation of data the chart in

Figure 5.6. As expected, there is a concentration of flows after the few seconds after

the execution of a user action. Afterwards the number of flows decreases reaching

a minimum after 6 seconds (especially Facebook app). For this reason, we set the

value of TAA timeout to 6 seconds, also highlighted with a red dashed line in the

chart in Figure 5.6.

So we consider the flows that start within the time interval ranging from 0 to 6

seconds, as directly generated by the execution of a user action.
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Figure 5.6: Presence of flows over time.

Flows clustering on user actions

Analyzing time intervals of single user actions, we often found multiple flows within

them. An example for this assertion can be found on post on wall user action on

Facebook app. In Figure 5.7, we represent in a chart the flows within the time

interval of a single “post on wall” user action, where the complete time series of the

those flows are:

Flow 1 → [92, 92, 93, 108, 93, 135, -95, 92, 92, 93, 108, 93, 134, -95];

Flow 2 → [928, 609, 137, -1337, 746, 353, -143, -1514, -1192, 764, -874, 822, -590].

Observing the different “shapes” for the flows, we understand that it is possible

to distinguish flows in categories using time series. We show that using hierarchical

clustering on flows generated by 20 user actions with the same label, in this case

post on wall. In this study, we consider complete flow time series and DTW distance

as metric (more precisely the cost of optimal warping path), while we use average as

linkage criterion.

The dendrogram in Figure 5.8 illustrate the arrangement of the clusters pro-

duced by hierarchical clustering. From the bottom to the top of the dendrogram, it

is possible to observe how single flows are aggregate in clusters. A node indicates
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a link between two clusters, merged in a new one. The height of a node coincide

with the average DTW distance between the complete flow time series inside the

new cluster.

Figure 5.7: Flows related to an post on wall user action on Facebook.

Figure 5.8: Dendrogram of hierarchical clustering of flows for post on wall user
action on Facebook.
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As we expected, we can observe on dendrogram two different sets of similar flows

(marked with different colors). So we verified that it is possible to elicit similar flows

using DTW distance between flow time series. In this example, we apply clustering

algorithm on flows related to a single user action. In our framework, we consider

instead all user actions at the same time, calculating distance between flows with

the method reported on Section 4.3.1).





Chapter 6

Clustering and classification

In this chapter, we describe the implementation details about flows clustering and

user actions classification. First, we present flows clustering parameters selection and

implementation choices. Afterwards, we discuss about the set up and performance

comparison between algorithms we use for user action classification. Finally, we

report the tool and libraries we use in the implementation of the clustering and

classification procedures.

6.1 Unsupervised clustering

In the overview of our framework in Chapter 4, we introduce the flow clustering

procedure. To regroup flows in sets, it is necessary to use an unsupervised clustering,

because we do not have any knowledge about the these sets, nor their number. First

of all, we have to introduce a study on flows length distribution, in order to explain

which part of time series we have to consider. We proceed defining the clustering

parameters to calculate the distance between flows.

6.1.1 Statistical flow length distribution

A further study on flows time series relates to their length. Figures 6.1, 6.3 and

6.2 reports the statistical distribution of the length of the complete, outgoing and

incoming flows time series respectively. In these plots, the first and third quartile

are represented as the left and right side of the notched box. The notch of the box

represents the median value. Lines that extend horizontally from the boxes indicate
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the 2nd percentile (left) and the 98th percentile (right). This knowledge is useful to

identify which part of a flow time series could be more significant.

Figure 6.1: Statistical distribution of the length of complete flow time series.

Figure 6.2: Statistical distribution of the length of incoming flow time series.

Figure 6.3: Statistical distribution of the length of outgoing flow time series.
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6.1.2 Clustering parameters selection

Using knowledge obtained from the study of network flow features, we select a set

of parameters to measure the distance between these flows. As explained in Sec-

tion 4.1, each network flow is modeled as a set of time series: incoming, outgoing

and complete. Table 6.1 reports the weights and the packet intervals considered of

each app. The notation used for specify the interval of packets to consider is the

same we introduced in Section 5.3.2.

Apps Sets Weights Incoming Outgoing Complete

Gmail

Conf. 1
0.80 [1,4] [1,2] [1,6]
0.20 [1,6] [1,3] [1,9]

Conf. 2
0.66 [1,4] [1,2] [1,6]
0.33 [1,6] [1,3] [1,9]

Conf. 3
0.33 [1,4] [1,2] [1,6]
0.66 [1,6] [1,3] [1,9]

Facebook

Conf. 1
0.66 [1,3] [1,5] [1,7]
0.33 [1,6] [1,7] [1,12]

Conf. 2
0.33 [1,3] [1,5] [1,7]
0.66 [1,6] [1,7] [1,12]

Conf. 3
0.20 [1,3] [1,5] [1,7]
0.80 [1,6] [1,7] [1,12]

Twitter

Conf. 1
0.95 - - [7,10]
0.05 - - [1,10]

Conf. 2
0.95 - - [8,11]
0.05 - - [1,11]

Conf. 3
0.95 - - [8,10]
0.05 - - [1,10]

Table 6.1: Weights set configurations and packets intervals for Gmail, Facebook
and Twitter apps.

We use different weights configurations, and we select the maximum number of

packets to consider in each time series analyzing the statistical length of the flows.

We consider the median value and the third quartile as thresholds to limit the length

of the generated time series.

Analyzing Figure 6.1, it can also be noticed that the the length of the flows

generated by Twitter is always between 9 and 10 TCP/IP packets. In fact, this app

seems to generate the same type of flows independently of the particular user action

that is executed. To confirm this statement, we report in Figure 6.4 and Figure 6.5

the graphical representation of the flows that occur when executing three different

user actions on Gmail and Twitter apps respectively.
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Figure 6.4: Representation of three different Gmail user actions.

Figure 6.5: Representation of three different Twitter user actions.

Comparing the two figures, we notice that the shape of flows produced by the

user actions drastically change on Gmail app, while they are almost unvaried on

Twitter app. As a matter of fact, different Twitter user actions just differ in their

last three or four packets. Nevertheless, our approach reaches very good performance

also for this app.
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6.2 Supervised classification

In this section, we present implementation details about the classification of user

actions. First, we define the division of the collected data in training and test sets.

We also report the selection of the significant user actions for every app. Finally,

we present the results of the challenge between naive Bayes and Random forest, in

terms of classification accuracy.

6.2.1 Training and test sets

During our experiments, we collected and labeled the traffic generated by 220 differ-

ent sequences of user actions for each app (for a total of 11660 different user actions

for Gmail, 6600 for Twitter, and 10120 for Facebook). The 70% of these user actions

are used for the training set, while the remaining 30% are used for the test set.

In the test set we consider the traffic generated by accounts that are not used to

generate the training set. Using different accounts to generate the training and the

test set, it is possible to assure that the results of the classification do not depend

on the specific accounts that have been analyzed.

6.2.2 Significant user actions

For each app, we choose a set of user actions that are in our opinion more sensitive

than others. The list of user actions is reported in Table 6.2. Less important user

actions are instead labeled with the term other. In the class other, there is also the

flows labeled as Background traffic.

6.3 Classification algorithms comparison

In this section, we present the results of performance for the considered classifiers, in

terms of accuracy. To understand which is the classifier with best accuracy between

naive Bayes and Random forest, we test them on a validation set (disjoint from

training and test sets). We report in Figure 6.6 and Figure 6.7 the averaged F-

measure for every app, obtained from naive Bayes and Random forest classifiers

respectively, when varying the number of clusters.
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Facebook

User action Description

send message send a direct message to a friend
post user status post a status on user’s wall
open user profile select user profile page from menu
open message select a conversation on messages page
status button select “write a post” on user’s wall
post on wall post a content on a friend’s wall
open facebook Facebook app execution start

Gmail

User action Description

send mail send a new email
reply button button to reply selection
open chats select chats page from menu
send reply send a reply to an email

Twitter

User action Description

refresh home request for refresh the home page
open contact select contacts page on menu
tweet/message publish a tweet or send a message
open messages select direct messages page
open twitter Twitter app execution start
open tweets select tweets page on menu

Table 6.2: Description of the Significant user actions for each app.

Considering the same number of clusters, we observe that for Facebook and

Twitter apps the accuracy obtained from Random forest is higher than naive Bayes.

While for Gmail app, the accuracy is quite the same for both classifiers.

Number of clusters

One of the issues to discuss before proceeding to the classification of the user actions

is the number of clusters to consider. In order to establish a reasonable value for this

parameter we study the Random forest performance (Figure 6.7). For each app, we

therefore considered the number of clusters that maximized the accuracy, in terms

of averaged F-measure.

6.4 Implementation tools

We implement flows clustering and classification procedure using external libraries

for Python. To calculate DTW distance between a couple of time series, we use the
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Figure 6.6: Classification accuracy using naive Bayes over number of clusters.

Figure 6.7: Classification accuracy using Random forest over number of clusters.

dtw std function defined in mlpy1 libraries v3.5.0.

Lots of Python libraries provide implementation for hierarchical clustering al-

gorithms, but the best for our needs is the module scipy.cluster.hierarchy in SciPy2

1mlpy is a Python module that provides machine learning methods for supervised and unsuper-
vised – http://mlpy.sourceforge.net/

2SciPy is a Python-based ecosystem of open-source software for mathematics, science, and engi-
neering – http://www.scipy.org/

http://mlpy.sourceforge.net/
http://www.scipy.org/
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libraries v0.13.0.

In classification procedure, we exploit the classification algorithms implemented

by scikit-learn3 libraries v0.14. In particular, we use GaussianNB for naive Bayes

and RandomForestClassifier for Random forest.

3scikit-learn are tools for data mining and data analysis – http://scikit-learn.org/

http://scikit-learn.org/


Chapter 7

Classification performance

In this chapter, we report the results of classification of user actions performed using

Random forest algorithm. For every considered app, we discuss the performance the

three considered configurations of weights and packets intervals, identifying the one

with the best accuracy. For that configuration, we report in details results in terms

of precision, recall and F-measure metrics. We describe these results using a table,

where each row represent a user action for the app in object. Finally, we report

the confusion matrix for that particular configuration. In the following sections, we

report performance for Facebook, Gmail and Twitter apps, in this order.

7.1 Facebook

We focused on seven different user actions that may be sensitive when using the Face-

book app. On average, the F-measure is equal to 99%, with a precision and a recall

of 99% and 98% respectively. Performance reached with different configurations of

weights and packets intervals constraints are reported in Figure 7.1.

For each user action at least one of the configurations exceeds 94% of accuracy,

while the worst performing is always higher than 74%. Table 7.1 reports precision,

recall and F-measure reached using Configuration 3.

We noticed that all the user actions have a precision higher 96%. The recall is

higher than 95% for all the actions but the open user profile, that reaches 91%. In

effect we realized that this particular user action is classified as other in 9% of the

examples, as we can see from the confusion matrix reported in Figure 7.2.
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User actions Precision Recall F-measure

send message 1.00 1.00 1.00
post user status 1.00 0.95 0.97
open user profile 0.96 0.91 0.94
open message 0.98 1.00 0.99
status button 1.00 1.00 1.00
post on wall 1.00 0.98 0.99
open facebook 1.00 1.00 1.00
other 0.99 1.00 0.99

Average 0.99 0.98 0.99

Table 7.1: Classification results of Facebook user actions reached using Configu-
ration 3.

Figure 7.1: Classification accuracy of the Facebook user actions.

7.2 Gmail

In this section, we analyze four specific user actions of the Gmail app: send mail,

reply button, open chats and send reply. Figure 7.3 shows the classification accuracy

that has been reached. We observe that we are able to distinguish with high accuracy

the user action of sending of a new email, from that of replying to a previously

received message, as well as the tap over the reply button. The open chats user

action is instead more difficult to distinguish.
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Figure 7.2: Facebook user actions confusion matrix for Configuration 3.

Table 7.2 reports precision, recall and F-measure for different configurations of

weights and packets intervals constraints. We can observe that the user action open

chats (that allows to read past chats) achieves a low precision but a high recall.

User actions Precision Recall F-measure

send mail 1.00 1.00 1.00
reply button 0.85 1.00 0.92
open chats 0.36 0.94 0.52
send reply 0.98 1.00 0.99
other 0.99 0.82 0.90

Average 0.83 0.85 0.86

Table 7.2: Classification results of Gmail user actions reached using Configura-
tion 1.

Analyzing the confusion matrix depicted in Figure 7.4 it is possible to notice

that 16% of other user actions wrongly classified as open chats. This is the reason

of such a low precision.
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Figure 7.3: Classification accuracy of the Gmail user actions.

Figure 7.4: Gmail user actions confusion matrix for Configuration 1.

7.3 Twitter

During the analysis we noticed that Twitter user actions may be more difficult to

classify than Gmail and Facebook user actions. Indeed, different Twitter user actions

generate similar time series that have in common a large portion. Only the last three

or four packets of each time series show some difference. Nevertheless, we have been



Chapter 7. Classification performance 51

able to reach outstanding results also for this app. In particular, we focus on six

specific user actions: refresh home, open contacts, tweet/message, open messages,

open twitter, open tweets.

On average, the F-measure is equal to 97%, with a precision and a recall of 98%

and 97% respectively, as reported in Table 7.3.

User actions Precision Recall F-measure

refresh home 0.94 0.99 0.96
open contacts 0.97 0.96 0.97
tweet/message 0.97 1.00 0.98
open messages 1.00 0.95 0.97
open twitter 1.00 1.00 1.00
open tweets 1.00 0.95 0.97
other 0.96 0.96 0.96

Average 0.98 0.97 0.97

Table 7.3: Classification results of Twitter user actions reached using the Con-
figuration 1.

Performance reached are reported in Figure 7.5. For each user action at least

one of the configurations exceeds 96% of accuracy, while the worst configuration has

an accuracy in any case higher than 91%.

The user action open twitter has accuracy and recall equal to 100%, indepen-

dently of the configuration set used in the clustering phase. As a consequence, none

of examples of the test set have been wrongly classified. Figure 7.6 reports the

confusion matrix obtained by considering the Twitter user actions. Three of the

six analyzed user actions are correctly classified in more than the 99% of the cases.

However, the other three user actions, open contacts, open messages and open tweets

are correctly classified in more than 95% of the cases.
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Figure 7.5: Classification accuracy of the Twitter user actions.

Figure 7.6: Twitter user actions confusion matrix for Configuration 1.



Chapter 8

Conclusions

In this thesis, we proposed a framework to analyze encrypted network traffic and

to infer which particular actions the user executed on some apps installed on his

mobile-phone. We demonstrated that despite the use of SSL or TLS, our traffic

analysis approach is an effective tool that an eavesdropper can leverage to undermine

the privacy of mobile users. With this tool an attacker may easily learn habits of

the target users, and even aggregate data of thousand users in order to gain some

commercial or intelligence advantage against some competitor.

We believe that this work will shade a light on the possible attacks that may

undermine the user privacy, and that it will stimulate researchers to work on efficient

countermeasures that can be adopted also on mobile devices. These countermeasures

may require a kind of trade-off between power efficiency and the required privacy

level.

To conclude this thesis, in the follow we look ahead, briefly discussing feasibility

of countermeasures and suggesting possible future directions for this research.

Possible Countermeasures

Users and service providers might believe that their two parties communications

are secure if they use the right encryption and authentication mechanisms. Unfor-

tunately, current secure communication mechanisms limit their traffic encryption

actions to the syntax of the transmitted data. The semantic of the communication

is not protected in any way [58]. For this reason, it has been possible for example
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to develop classifiers for TLS/SSL encrypted traffic that are able to discriminate

between applications.

The contribution of this thesis is to investigate to which extent it is feasible

to identify the specific user actions that a user is doing on his mobile device, by

simply eavesdropping the device’s network traffic. While it is out of the scope of

this thesis to investigate possible countermeasure to the proposed attack, we discuss

in the following some related issues.

One common belief is that simple padding techniques may be effective against

traffic analysis approaches. However, it has to be considered that padding coun-

termeasures are already standardized in TLS, explicitly to “frustrate attacks on a

protocol that are based on analysis of the lengths of exchanged messages” [59]. Ne-

vertheless, our attack worked against TLS encrypted traffic. More advanced tech-

niques have been proposed in the literature, such as traffic morphing and direct

target sampling [31, 60]. However, a recent result showed that none of the existing

countermeasures are effective [61]. The intuition is that coarse information is un-

likely to be hidden efficiently, and the analysis of these features may still allow an

accurate analysis. On the light of these results, we believe it is not trivial to propose

effective countermeasures to the attack we shown in this thesis. Indeed, it is inten-

tion of the authors to highlight a problem that is becoming even more alarming after

the revelation about the mass surveillance programs that are nowadays adopted by

governments and nation states.

Future work

In this thesis, we considered network traffic directly related to a user action. A

possible future work could be consider the “other side of the coin”. This means

classify network traffic due to actions made by external users. For example, we

would like to know when a user is receiving emails, direct messages or notifications.

Classification could also evaluate which clusters are relevant to classify a user action.

Starting from those clusters, i.e., flows inside them, we believe a more fine-grained

analysis is possible. For example, it would be interesting to assess whether such type

of analysis can allow to know the dimension in bytes of content of a post, message

or email. We intend to proceed our work trying to classify network traffic generated

by user activities on other Android apps. Another possible work could be to adapt

our analysis on network traffic generated by iOS devices.



Appendix A

Script log files

In this Appendix, we present examples of log files produced by a script for a specific

app. The syntax used in a log file coincides with the one used to define a csv files,

with commas that separate a value from another. In the first row, we report the

data labels. Each row corresponds to a user action executed by a script. The data

labels are:

• Script ID: identify the name of the script that execute the user action;

• Sequence ID: identifier of the iteration;

• User action label: the label that identify the user action executed;

• Time from epoch: the number of seconds that have elapsed from Unix epoch;

• Time from start: the number of seconds that have elapsed from the start of

the current script iteration

In the following, we report log files produced by an iteration of script for Gmail

(in Listing A.1), Facebook (in Listing A.2) and Twitter (in Listing A.3). In every

reported log files, we consider a sequence of actions that coincide with a single script

iteration.
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Script ID,Sequence ID,User action label , Time from epoch ,Time from start

gmail_01 , sequence_1 , open gmail , 1392222112.78 , 0.00018906593

gmail_01 , sequence_1 , new mail button a, 1392222223.73 , 110.958022118

gmail_01 , sequence_1 , destination field sel a ,1392222254.64 , 141.865797043

gmail_01 , sequence_1 , destination input a, 1392222285.56 , 172.789411068

gmail_01 , sequence_1 , destination done a, 1392222343.52 , 230.748980999

gmail_01 , sequence_1 , subject field select a, 1392222374.47 , 261.693037987

gmail_01 , sequence_1 , subject input a, 1392222405.39 , 292.616706133

gmail_01 , sequence_1 , compose field select a, 1392222452.06 , 339.289083958

gmail_01 , sequence_1 , compose input a, 1392222482.99 , 370.210983992

gmail_01 , sequence_1 , send mail a, 1392222589.14 , 476.366657019

gmail_01 , sequence_1 , new mail button b, 1392222620.08 , 507.306937933

gmail_01 , sequence_1 , destination field sel b ,1392222650.98 , 538.20936203

gmail_01 , sequence_1 , destination input b, 1392222681.93 , 569.153293133

gmail_01 , sequence_1 , destination done b, 1392222738.14 , 625.368258953

gmail_01 , sequence_1 , subject field select b, 1392222769.07 , 656.289945126

gmail_01 , sequence_1 , subject input b, 1392222799.95 , 687.1730721

gmail_01 , sequence_1 , compose field select b, 1392222838.74 , 725.961789131

gmail_01 , sequence_1 , compose input b, 1392222869.68 , 756.907241106

gmail_01 , sequence_1 , send mail b, 1392222983.3 , 870.520802975

gmail_01 , sequence_1 , opening menu , 1392223014.18 , 901.407958984

gmail_01 , sequence_1 , open inbox a, 1392223045.04 , 932.269609928

gmail_01 , sequence_1 , opening first email , 1392223075.95 , 963.173454046

gmail_01 , sequence_1 , reply button , 1392223106.85 , 994.075664043

gmail_01 , sequence_1 , mail reply , 1392223137.75 , 1024.97882795

gmail_01 , sequence_1 , reply compose select , 1392223137.75 , 1024.97952104

gmail_01 , sequence_1 , writing reply , 1392223168.66 , 1055.8814621

gmail_01 , sequence_1 , send mail reply , 1392223225.93 , 1113.15380192

gmail_01 , sequence_1 , back to inbox a, 1392223256.85 , 1144.07808304

gmail_01 , sequence_1 , menu selection a, 1392223287.71 , 1174.93701696

gmail_01 , sequence_1 , open prior inbox , 1392223318.62 , 1205.84026694

gmail_01 , sequence_1 , menu selection b, 1392223349.52 , 1236.74355507

gmail_01 , sequence_1 , open important , 1392223380.44 , 1267.66457891

gmail_01 , sequence_1 , menu selection c, 1392223411.34 , 1298.56740904

gmail_01 , sequence_1 , open chats , 1392223442.27 , 1329.49088597

gmail_01 , sequence_1 , menu selection d, 1392223473.21 , 1360.43284702

gmail_01 , sequence_1 , open sent , 1392223504.13 , 1391.35673094

gmail_01 , sequence_1 , menu selection e, 1392223535.03 , 1422.25865006

gmail_01 , sequence_1 , open draft , 1392223565.96 , 1453.18126893

gmail_01 , sequence_1 , menu selection f, 1392223596.88 , 1484.10493302

gmail_01 , sequence_1 , open outbox , 1392223627.78 , 1515.00507498

gmail_01 , sequence_1 , menu selection g, 1392223658.66 , 1545.88897991

gmail_01 , sequence_1 , open inbox b, 1392223689.65 , 1576.870924

gmail_01 , sequence_1 , search over mail , 1392223720.55 , 1607.77297902

gmail_01 , sequence_1 , writing on search , 1392223751.45 , 1638.676121

gmail_01 , sequence_1 , search button press , 1392223791.0 , 1678.22664404

gmail_01 , sequence_1 , back to inbox b, 1392223821.92 , 1709.14818096

gmail_01 , sequence_1 , menu selection h, 1392223853.09 , 1740.31089497

gmail_01 , sequence_1 , inbox selection c, 1392223883.99 , 1771.21476293

gmail_01 , sequence_1 , first mail select , 1392223914.91 , 1802.13945699

gmail_01 , sequence_1 , delete mail sel , 1392223945.90 , 1833.12448096

gmail_01 , sequence_1 , gmail background , 1392223976.84 , 1864.067348

gmail_01 , sequence_1 , gmail killed , 1392224198.89 , 2086.11308813

gmail_01 , sequence_1 , gmail script ended , 1392224248.94 , 2136.16485906

Listing A.1: Example of a log file produced by Gmail script for a sequence of
actions.
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Script ID, Sequence ID ,User action label , Time from epoch ,Time from start

facebook_01 , sequence_3 , open facebook , 1392268976.18 , 0.00015401840

facebook_01 , sequence_3 , menu selection a, 1392269087.19 , 111.012023926

facebook_01 , sequence_3 , replacing menu pos , 1392269118.11 , 141.930413008

facebook_01 , sequence_3 , edit search select , 1392269149.12 , 172.943547964

facebook_01 , sequence_3 , writing search , 1392269180.03 , 203.855633974

facebook_01 , sequence_3 , user friend select , 1392269233.23 , 257.054015875

facebook_01 , sequence_3 , dragging down , 1392269264.18 , 287.996669054

facebook_01 , sequence_3 , write selection , 1392269296.08 , 319.899863958

facebook_01 , sequence_3 , writing to friend , 1392269327.0 , 350.822953939

facebook_01 , sequence_3 , post button select , 1392269438.05 , 461.874152899

facebook_01 , sequence_3 , back to friend page , 1392269468.92 , 492.736173868

facebook_01 , sequence_3 , back to news a, 1392269500.02 , 523.839293957

facebook_01 , sequence_3 , photos news select , 1392269531.08 , 554.903454065

facebook_01 , sequence_3 , back to news b, 1392269561.98 , 585.805598974

facebook_01 , sequence_3 , menu selection b, 1392269593.03 , 616.848291874

facebook_01 , sequence_3 , user profile select , 1392269623.95 , 647.771296978

facebook_01 , sequence_3 , user about select , 1392269654.87 , 678.692636013

facebook_01 , sequence_3 , back to user profile , 1392269685.79 , 709.615328074

facebook_01 , sequence_3 , user photos select , 1392269716.86 , 740.678786993

facebook_01 , sequence_3 , photos album select , 1392269747.8 , 771.619953871

facebook_01 , sequence_3 , back to user profile , 1392269778.76 , 802.583379984

facebook_01 , sequence_3 , friends selection , 1392269809.91 , 833.727504015

facebook_01 , sequence_3 , back to user profile , 1392269840.81 , 864.629801989

facebook_01 , sequence_3 , back to news c, 1392269871.74 , 895.563575029

facebook_01 , sequence_3 , menu selection c, 1392269902.68 , 926.496381044

facebook_01 , sequence_3 , menu message select , 1392269933.55 , 957.372344017

facebook_01 , sequence_3 , conversation select , 1392269964.42 , 988.243901968

facebook_01 , sequence_3 , edit message select , 1392269995.35 , 1019.16791487

facebook_01 , sequence_3 , writing message , 1392270026.26 , 1050.07836103

facebook_01 , sequence_3 , send message select , 1392270127.13 , 1150.95598888

facebook_01 , sequence_3 , menu selection d, 1392270158.04 , 1181.86051607

facebook_01 , sequence_3 , menu news selection , 1392270188.96 , 1212.78170896

facebook_01 , sequence_3 , status selection , 1392270219.88 , 1243.70393395

facebook_01 , sequence_3 , writing status , 1392270250.81 , 1274.62744403

facebook_01 , sequence_3 , status post select , 1392270364.82 , 1388.6374929

facebook_01 , sequence_3 , notif friends select , 1392270395.74 , 1419.56058693

facebook_01 , sequence_3 , closing notif friends ,1392270426.56 , 1450.38430905

facebook_01 , sequence_3 , notif message select , 1392270457.44 , 1481.25692201

facebook_01 , sequence_3 , closing notif message ,1392270488.33 , 1512.148314

facebook_01 , sequence_3 , notif general select , 1392270519.21 , 1543.03004193

facebook_01 , sequence_3 , closing notif general ,1392270550.11 , 1573.93431997

facebook_01 , sequence_3 , facebook background , 1392270580.99 , 1604.81465602

facebook_01 , sequence_3 , facebook killed , 1392270802.98 , 1826.80087304

facebook_01 , sequence_3 , facebook script ended ,1392270853.02 , 1876.83933306

Listing A.2: Example of a log file produced by Facebook script for a sequence of
actions.
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Script ID, Sequence ID,User action label , Time from epoch ,Time from start

twitter_01 , sequence_1 , open Twitter , 1391372255.27 , 0.00016903877

twitter_01 , sequence_1 , Homepage select , 1391372366.28 , 111.005105019

twitter_01 , sequence_1 , refresh home , 1391372397.26 , 141.986573935

twitter_01 , sequence_1 , contact select , 1391372429.19 , 173.921017885

twitter_01 , sequence_1 , discover select , 1391372460.16 , 204.885387897

twitter_01 , sequence_1 , me selection , 1391372491.06 , 235.791321039

twitter_01 , sequence_1 , tweets select , 1391372522.0 , 266.732984066

twitter_01 , sequence_1 , back to me a, 1391372552.93 , 297.656400919

twitter_01 , sequence_1 , following select , 1391372584.03 , 328.762007952

twitter_01 , sequence_1 , back to me, 1391372614.96 , 359.683928013

twitter_01 , sequence_1 , followers select , 1391372646.04 , 390.767942905

twitter_01 , sequence_1 , back to me b, 1391372676.94 , 421.671257019

twitter_01 , sequence_1 , direct messages select ,1391372708.01 , 452.736727953

twitter_01 , sequence_1 , first message select , 1391372738.94 , 483.663450956

twitter_01 , sequence_1 , edit select , 1391372769.84 , 514.566174984

twitter_01 , sequence_1 , writing message , 1391372800.72 , 545.452179909

twitter_01 , sequence_1 , send select , 1391372855.21 , 599.935318947

twitter_01 , sequence_1 , back to me c, 1391372886.15 , 630.880910873

twitter_01 , sequence_1 , new tweet select , 1391372917.08 , 661.804966927

twitter_01 , sequence_1 , writing tweet , 1391372948.0 , 692.729681969

twitter_01 , sequence_1 , send tweet select , 1391373003.28 , 748.007267952

twitter_01 , sequence_1 , back to home , 1391373034.2 , 778.930988073

twitter_01 , sequence_1 , twitter in background , 1391373065.11 , 809.835093975

twitter_01 , sequence_1 , twitter background , 1391373276.33 , 1021.05460191

twitter_01 , sequence_1 , Twitter killed , 1391373287.28 , 1032.00500393

twitter_01 , sequence_1 , twitter script ended , 1391373337.33 , 1082.05790591

Listing A.3: Example of a log file produced by Twitter script for a sequence of
actions.
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