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ABSTRACT

We consider the problem of target localization using quantized data
in Wireless Sensor Networks in the presence of Byzantines (mali-
cious sensors). Since the effect of Byzantines can be treated as errors
in the transmitted data, we propose the use of error correcting codes
for the task of target localization. We design coding based iterative
schemes for target localization where, at every iteration, the Fusion
Center performs an M-ary hypothesis test and decides the Region
of Interest for the next iteration. Simulation results show that our
proposed schemes provide a better performance as compared to the
traditional Maximum Likelihood Estimation and are also computa-
tionally much more efficient.

Index Terms— Target Localization, Byzantines, Error Correct-
ing Codes, Wireless Sensor Networks

1. INTRODUCTION

Wireless sensor networks (WSNs) have been extensively em-
ployed to monitor a region of interest (ROI) for reliable detec-
tion/estimation/tracking of events [1–4]. In this paper, we focus
on target localization in WSNs using quantized data, where, due
to power and bandwidth constraints, each sensor sends quantized
data to a Fusion Center (FC). The FC combines these local sensors’
data to estimate the target location. We consider target localization
in the presence of Byzantine attacks [5–8] (also referred to as Data
Falsification Attacks). Byzantine attacks are internal security attacks
which involve malicious sensors within the network which send false
information to the FC to disrupt the global inference process. In our
previous work [8], we have considered target localization in WSNs
in the presence of Byzantines and showed that the FC becomes
‘blind’ to the local sensor’s data when the fraction of Byzantines is
greater than 50%. We also proposed mitigation techniques for the
network to make the Byzantines ‘ineffective’ in their attack strategy.

Wang et al. in [9] proposed a coding based distributed classifica-
tion fusion approach which is tolerant to faults in the network. Since
Byzantines can be treated as faults in the network, motivated by [9],
in this paper, we propose a novel coding based target localization ap-
proach to tolerate Byzantines in the network. The proposed schemes
provide a coarse estimate in a much more computationally efficient
manner as compared to the Maximum Likelihood Estimation (MLE)
and also has a higher Byzantine fault tolerance capability.
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011-158 -MY3 and NSC 101-2221-E-011-069 -MY3.

2. SYSTEM MODEL

Let N sensors be deployed in a WSN as shown in Fig. 1 to estimate
the location of a target at θ = [xt, yt] where xt and yt denote the
coordinates of the target in a 2-D Cartesian plane. We assume that
the signal radiated from this target follows an isotropic power atten-
uation model [2]. The signal amplitude ai received at the ith sensor
is given by

a2
i = P0

(
d0
di

)n

(1)

where P0 is the power measured at the reference distance d0, di �= 0
is the distance between the target and the ith sensor whose location
is represented by Li = [xi, yi] for i = 1, 2 · · · , N and n is the path
loss exponent. In this paper, without loss of generality, we assume
d0 = 1 and n = 2. The signal amplitude measured at each sensor is
corrupted by additive white Gaussian noise (AWGN):

si = ai + ni (2)

where si is the corrupted signal at the ith sensor and the noise ni

follows N (0, σ2).

Due to energy and bandwidth constraints, the local sensors quan-
tize their observations using threshold quantizers and send binary
quantized data to the FC:

Di =

{
0 si < ηi

1 si > ηi
(3)

where Di is the quantized data at the ith sensor and ηi is the thresh-
old used by the ith sensor for quantization. The FC fuses the data re-
ceived from the local sensors and estimates the target location. Tra-
ditional target localization uses MLE [2]:

θ̂ = argmax
θ

p(D|θ) (4)

where D = [D1, D2, · · · , DN ] is the vector of quantized observa-
tions received at the FC.

We assume the presence of B = αN number of Byzantines in
the network. Byzantines are local sensors which send false infor-
mation to the FC to deteriorate the network’s performance. In this
paper, we assume that the Byzantines attack the network indepen-
dently [8] where the Byzantines flip their data with probability ‘1’
before sending it to the FC.1 In other words, the data sent by the ith

1It has been shown in [8] that the optimal independent attack strategy for

the Byzantines is to flip their data with probability ‘1’.
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sensor is given by:

ui =

{
Di if ith sensor is honest

D̄i if ith sensor is Byzantine
(5)

The channels between the local sensors and the FC are assumed
to be ideal and the FC estimates the target location using the received
data u = [u1, u2, · · · , uN ]. For such a system, it has been shown
in [8] that the FC becomes ‘blind’ to the network’s information for
α ≥ 0.5. Therefore, for the remainder of the paper, we analyze the
system when α < 0.5.

3. TARGET LOCALIZATION USING ERROR
CORRECTING CODES

In this section, we propose Localization using Error Correcting
Codes which is tolerant to Byzantine attacks. Our algorithm is iter-
ative in which at every iteration, the ROI is split into M regions and
an M-ary hypothesis test is performed at the FC. The FC, through
feedback, declares this region as the ROI for the next iteration. The
M-ary hypothesis test solves a classification problem where each
sensor sends a binary quantized value based on a code matrix C.
The code matrix is of size M × N with elements cji ∈ {0, 1},
j = 0, 1, · · · ,M − 1 and i = 1, · · · , N where each row represents
a possible hypothesis and each column i represents ith sensor’s bi-
nary decision rule. After receiving the binary decisions u from local
sensors, the FC performs minimum Hamming distance based fusion
and decides on the hypothesis Hj for which the Hamming distance
between row of C corresponding to Hj for j = 0, · · · ,M − 1 and
the received vector u is minimized. In this way, the search space for
target location is reduced at every iteration and we stop the search
after a pre-determined stopping criterion. We also limit ourselves
to a regular grid network and, therefore, the optimal splitting of the
ROI at every iteration is to split it into equal sized regions as shown
in Fig. 1.

Fig. 1. Equal region splitting of the ROI for the M -hypothesis test

3.1. Basic Coding Based Scheme

In this subsection, we present the basic coding based scheme for tar-
get localization. Since there are N sensors in a regular grid as shown
in Fig. 1, the number of sensors in the new ROI after every iteration
is reduced by a factor of M . After k iterations, the number of sensors
in the ROI are N

Mk and, therefore, the code matrix at the (k + 1)th

iteration would be of size M × N
Mk .2 Since the code matrix should

2We assume that N is divisible by Mk for k = 0, 1, . . . , logM N − 1.

always have more columns than rows, kstop < logM N where kstop

is the number of iterations after which the scheme terminates. After
kstop iterations, there are only N

Mkstop sensors present in the ROI

and a coarse estimate θ̂ = [θ̂x, θ̂y] of the target’s location can be
obtained by taking an average of locations of the N

Mkstop sensors

present in the ROI:

θ̂x =
Mkstop

N

∑
i∈ROI

kstop

xi and θ̂y =
Mkstop

N

∑
i∈ROI

kstop

yi (6)

where ROIkstop is the ROI at the last step.

Since the scheme is iterative, the code matrix needs to be de-
signed at every iteration. Observing the structure of our problem,
we can design the code matrix in a simple and efficient way as de-
scribed below. As pointed out before, the size of the code matrix
Ck at the (k + 1)th iteration is M × N

Mk . Each row of this code

matrix Ck represents a possible hypothesis described by a region in
the ROI. Let Rk

j denote the region represented by the hypothesis Hj

for j = 0, 1, · · · ,M − 1 and let Sk
j represent the set of sensors

that lie in the region Rk
j . Also, for every sensor i, there is a unique

corresponding region in which the sensor lies which is represented
as rk(i). It is easy to see that Sk

j = {i ∈ ROIk|rk(i) = j}. The

code matrix is designed in such a way that for the jth row, only those
sensors that are in Rk

j have ‘1’ as their element in the code matrix.
In other words, the elements of the code matrix are given by

ck(j+1)i =

{
1 if i ∈ Sk

j

0 otherwise
(7)

for j = 0, 1, · · · ,M − 1 and i ∈ ROIk.

The above construction can also be viewed as each sensor i using
a threshold ηk

i for quantization (as described in (3)). Let each region
Rk

j correspond to a location θkj for j = 0, 1, · · · ,M − 1, which in

our case is the center of the region Rk
j . Each sensor i decides on a

‘1’ if and only if the target lies in the region Rk
rk(i). Every sensor i,

therefore, performs a binary hypothesis test described as follows:

H1 : θ ∈ Rk
r(i)

H0 : θ /∈ Rk
r(i) (8)

If di,j represents the Euclidean distance between the ith sen-
sor and θkj for i = 1, 2, · · · , N and j = 0, 1, · · · ,M − 1, then

rk(i) = argmin
l

di,l. Therefore, the condition θk ∈ Rk
rk(i) implies

a threshold ηk
i given by

ηk
i =

√
P0

di,rk(i)
(9)

This ensures that if the signal amplitude at the ith sensor is above
the threshold ηk

i , then θk lies in region Rk
rk(i) leading to minimum

distance decoding.

3.2. Exclusion Method for Decoding with Weighted Average

Although the scheme proposed in Section 3.1 has a very good
Byzantine fault tolerance capability as shown later in Section 5, the
performance can be improved by using an exclusion method for
decoding where the best two regions are kept for next iteration and
using weighted average to estimate the target location at the final
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step. This scheme builds on the basic coding scheme proposed in
Section 3.1 with the following improvements:

• Since after every iteration two regions are kept, the code ma-

trix after the kth iteration is of size M× 2kN
Mk and the number

of iterations needed to stop the localization task needs to sat-
isfy kstop < logM/2 N .

• At the final step, instead of taking an average of the sensor
locations of the sensors present in the ROI at the final step,
we take a weighted average of the sensor locations where the
weights are the 1-bit decisions sent by these sensors. Since,
a decision ui = 1 would imply that the target is closer to the
sensor i, a weighted average ensures that the average is taken
only over the sensors for which the target is reported to be
close.

Therefore, the target location estimate is given by

θ̂x =

∑
i∈ROI

kstop
uixi∑

i∈ROI
kstop

ui
and θ̂y =

∑
i∈ROI

kstop
uiyi∑

i∈ROI
kstop

ui
(10)

The exclusion method results in a better performance compared
to the basic coding scheme since it keeps the best two regions after
every iteration. This observation is also evident in the numerical
results presented in Section 5.

4. PERFORMANCE ANALYSIS

4.1. Byzantine Fault Tolerance Capability

For the basic coding scheme described in Section 3.1, each column
in Ck contains only one ‘1’ and every row of Ck contains exactly

N
Mk+1 ‘1’s. Therefore, the minimum Hamming distance of Ck is
2N

Mk+1 and, at the kth iteration, it can tolerate a total of at most
N

Mk+1 − 1 faults due to the presence of Byzantines in the network.
However, when the exclusion method based scheme described

in Section 3.2 is used, since the two best regions are considered after
every iteration, the fault tolerance performance improves and we can

tolerate a total of at most 2 2kN
Mk+1 −1 faults. This improvement in the

fault tolerance capability can be observed in the simulation results
presented in Section 5.

4.2. Probability of Detection of Target Region

Another metric to analyze the performance of the proposed scheme
is the probability of detection of the target region. It is an important
metric when the final goal of the target localization task is to find
the approximate region or neighborhood where the target lies rather
than the true location itself. Since the final ROI could be one of the
N/Mkstop

regions, a metric of interest is the probability of ‘zoom-
ing’ into the correct region. In other words, it is the probability that
the true location and the estimated location lie in the same region. In
the remainder of this section, we derive the detection probability of
target region.

The final region of the estimated target location is the same as
the true target location, if and only if we ‘zoom’ into the correct
region at every iteration of the proposed scheme. If P k

d denotes the
detection probability at the kth iteration step, the overall detection
probability is given by

PD = P (∩kcorrect detection at step k) =
∏
k

P k
d (11)

In this paper, we derive the detection probability for the basic
coding scheme. The detection probability for the exclusion method
can be found similarly and is omitted for the sake of brevity.

Let us consider the kth iteration and define the received vector
at the FC as uk = [uk

1 , u
k
2 , · · · , uk

Nk
] where Nk are the number of

local sensors reporting their data to FC at kth iteration. Let Dk
j be

the decision region of jth hypothesis defined as follows:

Dk
j = {uk|dH(uk, ckj ) ≤ dH(uk, cki ) for 1 ≤ i ≤ M}

where dH(·, ·) is the Hamming distance between two vectors, and
cki is the codeword corresponding to hypothesis i in code matrix

Ck. Then define the reward rj,k
uk associated with the hypothesis j as

rj,k
uk =

{
1

q
uk

when uk ∈ Dk
j

0 otherwise
(12)

where quk is the number of decision regions to whom uk belongs to.
Note that quk can be greater than one when there is a tie at the FC.
Since the tie-breaking rule is to choose one of them randomly, the
reward is given by (12). According to (12), the detection probability
at the kth iteration is given by

P k
d =

M∑
j=1

P (Hk
j )

∑
uk∈{0,1}Nk

P (uk|Hk
j )r

j,k

uk

=
1

M

M∑
j=1

∑
uk∈Dk

j

(
Nk∏
i=1

P (uk
i |Hk

j )

)
1

quk

(13)

where P (uk
i |Hk

j ) denotes the probability that the sensor i sends the

bit uk
i ∈ {0, 1}, i = 1, 2, · · · , Nk, when the true target is in the

region Rk
j corresponding to Hk

j at iteration k.

By assuming that the probability that a sensor is Byzantine is
pα, we get

P (uk
i = 1|Hk

j ) =
∫
θ∈Rk

j
P (uk

i = 1|θ)dθ (14)

=
∫
θ∈Rk

j
[(1− pα)Q

(
ηk
i −ai

σ

)
+ pα

(
1−Q

(
ηk
i −ai

σ

))
]dθ(15)

where ηk
i is the threshold used by the ith sensor at kth iteration, σ2

is the noise variance, ai is the amplitude received at the ith sensor
given by (1) when the target is at θ and Q(x) is the complementary
cumulative distribution function of standard Gaussian and is given
by

Q(x) =
1√
2π

∫ ∞

x

e(−t2/2)dt (16)

Since (14) is complicated, it can be approximated using θkj
which is the center of the region Rk

j . Eq. (14) now simplifies to

P (ui = 1|Hk
j ) ≈ (1−pα)Q

(
ηk
i − ak

ij

σ

)
+pα

(
1−Q

(
ηk
i − ak

ij

σ

))

(17)
where ak

ij is the signal amplitude received at the ith sensor when the

target is at θkj .

Using (11), the probability of detection of target region can be
found as the product of detection probabilities at every iteration k.
As pointed out before, these expressions can be extended to the
scheme where exclusion method is used for decoding.
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5. SIMULATION RESULTS & DISCUSSION

In this section, we present the simulation results to evaluate the per-
formance of the proposed schemes in the presence of Byzantine
faults. We analyze the performance using two performance metrics:
mean square error (MSE) of the estimated location and probability
of detection (PD) of the target region. We use a network of N = 512
sensors deployed in a regular 8 m ×8 m grid as shown in Fig. 1. Let
α denote the fraction of Byzantines in the network that are randomly
distributed over the network. The received signal amplitude at the
local sensors is corrupted by AWGN noise with noise standard de-
viation σ = 3. The power at the reference distance is P0 = 200.
At every iteration k, the ROI is split into M = 4 equal regions as
shown in Fig. 1. We stop the iterations for the basic coding scheme
after kstop = 2 iterations. The number of sensors in the ROI at the
final step are, therefore, 32. In order to have a fair comparison, we
stop the exclusion method after kstop = 4 iterations, so that there
are again 32 sensors in the ROI at the final step.

Fig. 2 shows the performance of the proposed schemes in terms
of the MSE of the estimated target location when compared with the
traditional maximum likelihood estimation described by (4). The
MSE has been found by performing 1× 103 Monte Carlo runs with
the true target location randomly chosen in the 8 m×8 m grid.
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Fig. 2. MSE comparison of the three localization schemes

As can be seen from Fig. 2, the performance of the exclu-
sion method based coding scheme is better than the basic coding
scheme and outperforms the traditional MLE based scheme when
α ≤ 0.375. When α > 0.375 the traditional MLE based scheme
has the best performance. Although the traditional MLE approach
performs better than our basic coding approach, it is at a cost
of higher computation. It is important to note that the proposed
schemes provide a coarse estimate as against the traditional MLE
based scheme which optimizes over the entire ROI. The traditional
scheme is computationally much more expensive than the proposed
coding based schemes. In the simulations performed, the proposed
schemes are around 150 times faster than the conventional scheme
when the global optimization toolbox in MATLAB was used for the
conventional scheme. The computation time is very important in a
scenario when the target is moving and a coarse location estimate is
needed in a timely manner.

Fig. 3 shows the performance of the proposed schemes in terms
of the detection probability of the target region. The detection prob-
ability has been found by performing 1×104 Monte Carlo runs with
the true target randomly chosen in the ROI. Fig. 3 shows the re-
duction in the detection probability with increase in α when more
sensors are Byzantines sending false information to the FC.
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Fig. 3. Probability of detection of target region as a function of α

In order to analyze the effect of the number of sensors on the
performance, we perform simulations by changing the number of
sensors and keeping the number of iterations the same as before.
Figs. 4 and 5 show the effect of number of sensors on MSE and
detection probability of the target region respectively when the ex-
clusion method based coding scheme is used. As can be seen from
both the figures (Figs. 4 and 5), the fault-tolerance capability of the
proposed scheme increases with increase in the number of sensors.
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Fig. 4. MSE of the target location estimate with varying N
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Fig. 5. Probability of detection of target region with varying N

In the future, we plan to extend this work to the case of target
tracking when the target’s location is changing with time and the
sensor network’s aim is to track the target’s motion. The proposed
schemes provide an insight on M-ary search trees and show that the
idea of coding based schemes can also be used for other applica-
tions involving ‘search’ such as rumor source localization in social
networks.
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