
Journal of Computer Virology manuscript No.
(will be inserted by the editor)

Detecting Machine-Morphed Malware Variants Via Engine Attribution

Radhouane Chouchane · Natalia Stakhanova · Andrew Walenstein · Arun Lakhotia

Received: date / Accepted: date

Abstract One method malware authors use to defeat detec-
tion of their programs is to use morphing engines to rapidly
generate a large number of variants. Inspired by previous
works in author attribution of natural language text, we in-
vestigate a problem of attributing a malware to a morphing
engine. Specifically, we present the malware engine attribu-
tion problem and formally define its three variations: MVRP,
DENSITY and GEN, that reflect the challenges malware an-
alysts face nowadays. We design and implement heuristics
to address these problems and show their effectiveness on
a set of well-known malware morphing engines and a real-
world malware collection reaching detection accuracies of
96% and higher. Our experiments confirm the applicability
of the proposed approach in practice and indicate that en-
gine attribution may offer a viable enhancement of current
defenses against malware.

Keywords Anti-Virus Scanner · Malware · Morphing
Engine

1 Introduction

In 2008 Symantec added 1.6 million new malware signa-
tures to its malware database [67,74]. This number increased
to 2.9 million in 2009. In 2010, the new addition to the

Radhouane Chouchane
CCT 430, Columbus State University, 4225 University Avenue,
Columbus, GA, US, 31907.
E-mail: chouchane@columbusstate.edu

Natalia Stakhanova
University of New Brunswick, Fredericton, Canada
E-mail: natalia.stakhanova@unb.ca

Andrew Walenstein, Arun Lakhotia
University of Louisiana at Lafayette, Lafayette, LA, USA
E-mail: walenste@ieee.org,arun@louisiana.edu

database constituted 4.4 million new signatures, which trans-
lated to around 22,000 signatures per working day. These
staggering numbers reveal the complexity of the problem
that the anti-malware vendors face nowadays. This unusu-
ally fast pace of malware writers is mostly attributed to the
wide availability of malware toolkits that allow malware au-
thors to rapidly produce large numbers of new malware vari-
ants through the use of advanced obfuscation techniques.

The two most common obfuscation techniques favored
by the malware writers today are polymorphism and meta-
morphism. Both techniques change the form of malware while
retaining the same functionality across all malware variants.
While polymorphism hides the code through a self-decrypting
behavior, metamorphism uses mutation techniques aiming
to produce syntactically different instances of malware [68].

Both techniques present a significant challenge for the
traditional signature-matching detection engines. The clas-
sic polymorphic malware follows a path of syntactic trans-
formations (compression and encryption essentially change
the statistical properties of malware binary) and thus is eas-
ily detectable by byte-level statistics-based approaches [70,
45], and other syntactics-based techniques [71]. Several meth-
ods in polymorphic obfuscation (e.g., targeted blending at-
tacks) were designed to escape such statistics-based
approaches [15]. They however can be addressed by semantics-
based detectors [35,11].

As opposed to polymorphism, metamorphic obfuscation
presents a larger challenge to anti-virus detectors. Even a ba-
sic metamorphic malware can easily escape statistics-based
detectors relying on syntactic features of malware samples [43].
As such metamorphic obfuscation requires methods capable
of advanced analysis of program semantics. Such analysis
calls for sophisticated techniques that often rely on formal
methods to reason about the potential malicious functional-
ity of the code [44,62,3]. Unfortunately, most of these tech-
niques are impractical either due to prohibitively high com-

2 Radhouane Chouchane et al.

plexity of analysis or additional constraints on the environ-
ment.

In this work we propose to take an alternative approach
to detection of machined morphed malware based on author-
ship attribution. Authorship attribution is a technique, well-
established in social science, aiming to determine an author
of a document given some textual characteristics of the au-
thor’s writing style extracted from his previous works [65].
These characteristics, often called stylistic discriminators,
uniquely identify an author, on the one hand remaining con-
stant among all his works, while on the other hand, vary-
ing between the works of different authors [23]. Authorship
attribution technique has been actively used for plagiarism
detection [66], author verification and profiling [32,2] and
in the recent year in biometric research [18] an source code
authorship analysis [16,39].

In our study, we draw an analogy between an author and
a morphing engine, i.e. a malware obfuscation toolkit. Given
a collection of programs generated by a set of engines, the
goal of engine attribution is to associate a new malware in-
stance to the engine (author) that created it. The main idea
behind our approach is that a morphing engine during an ob-
fuscation process follows a certain algorithm to create mean-
ingful strings belonging to a language. As such it should be
possible to extract stylistic discriminators that would appear
in every malware instance obfuscated by this engine.

If such discriminators are found then instead of trying
to recognize an individual malware variant based on its spe-
cific characteristic, a whole family of malware can be identi-
fied by recognizing its engine. The benefit of such approach
is clear, instead of maintaining one signature per malware
variant, we could effectively use one signature that would
uniquely characterize all malware variants generated by the
same engine.

This approach aims to complement and simplify a triage
stage of an existing automated malware analysis, usually
performed by antivirus vendors to identify threats that war-
rant further analysis. Morphed malware that mutates with
each propagation, could easily escape the initial hash based
filtering of triage. However, matching such mutated sample
to an array of available engine signatures would allow to
quickly diagnose the threat without requiring expensive pro-
gram analysis.

In this work we present a malware engine attribution
problem and define three variations of this problem: two
general cases of attributing a malware to an engine, denoted
as the MV RP and the DENSITY problems and one special
case of determining whether a new sample is a descendant
of a known variant created by a morphing engine, the GEN
problem. All three problems take an advantage of the rec-
ognizable repertoire of morphing techniques employed by
engines that result in predictable features embedded in their
output (i.e., morphed malware).

The first two problems: the MV RP and the DENSITY ,
consider a situation when malware engines are known, and
the main question is to recognize whether an instance on
hand presents a threat by attributing it to corresponding en-
gines. In this work we present two algorithms for generation
of engine signatures: ngram instruction frequency based cal-
culation (MV RP problem) and clue-density based computa-
tion (DENSITY problem). Both heuristics take advantage
of statistical properties of the instruction forms of malware
program. An engine signature serves as a benchmark for ma-
licious behavior, and a suspicious program is then filtered if
its statistical properties significantly deviate from the avail-
able engine signatures.

The latter problem GEN addresses the situation when
the engines are unknown and only variants generated by
some engine are available. In this case it is important to de-
termine whether given variants present a threat and if so, to
outline malicious behavior that can be expected from these
instances. This situation may arise if a morphing engine is
altered to the extend that statistically it becomes undistin-
guishable from other legitimate constructors. In this context,
the GEN problem would allow to determine whether or not
a given program is a morphed variant of a known malware
which would allow to determine a sample’s potential behav-
ior and diagnose a problem. We formalize the GEN recog-
nition problem using Markov chain theory and propose a
heuristic that models program properties changes as a tran-
sition matrix and relies on Markov identities to test to some
fixed generation, whether or not a given program is a de-
scendant of a known malware variant.

The main contributions of the paper may be summarized
as follows:

– We present a new method for detecting large number of
machine morphed malware variants using static signa-
tures. The method uses authorship attribution analysis to
relate the malware variants generated by a morphing en-
gine to their corresponding author, i.e. engine.

– We present and formally define the malware engine at-
tribution problem and three of its variations: MV RP,
DENSITY and GEN.

– We design and implement heuristics for each of these
detection problems. We evaluate the proposed solutions
on a set of well-known malware morphing engines and
a real-world malware collection and show detection ac-
curacies of 96% and higher.

The rest of the paper is organized as follows. Section 2
gives a general background into the problem and formal
definitions of morphing malware, and the three detection
problems. Sections 3, 4 and 5 propose and evaluate solu-
tion approaches to the three variations of engine detection
problems. Section 3 proposes and evaluates an ngram based
solution to the problem of attributing, to their engine, any

Detecting Machine-Morphed Malware Variants Via Engine Attribution 3

of the morphed malware instances that are known to have
been generated by a fixed, closed-world engine, one whose
transformation procedures and rules do not change overtime
(e.g., by uploading new transformation rules to the engine).
Section 4 proposes and evaluates a clue-density based so-
lution to the problem of recognizing morphed malware in-
stances which are known to have been generated by closed-
world, code-substituting morphing engine. Section 5 pro-
poses and evaluates a Markov-chain-based solution to the
problem of not only determining whether a given malware
instance has been generated by a known, closed-world mor-
phing engine, but also to attribute the instance to a specific
generation of descendants of a known variant. The state of
the research in the area of malware detection is given in
Section 6, and limitations of our work are discussed in Sec-
tion 7. Section 8 concludes the paper.

2 Background

The use of various self-protection techniques (i.e. encryp-
tion, compression) has always been a desired approach for
virus writers to evade antivirus detection and challenge hu-
man analysts. In the recent years these techniques have sig-
nificantly evolved allowing for sophisticated self-protected
and self-distributing malware.

Among these advanced techniques, oligomorphism, poly-
morphism and metamorphism have emerged as the most pop-
ular solutions for bypassing traditional malware detection.
Aiming to preserve semantic equivalence of produced mal-
ware variants, these techniques manipulate syntactic charac-
teristics of a code (e.g., encryption, byte/instruction reorder-
ing, junk instruction insertion) generating syntactically dif-
ferent instances of malware while retaining the same func-
tionality across all variants.

Both oligomorphism and polymorphism hide malicious
code through encryption that is dynamically reversed right
before the code execution. Since the decrypting routine has
to be carried alone an encrypted code and has to remain
clear, it presents a major weakness that is easily picked by
signature-based detectors. To disguise decryptions, oligo-
morphic (so called semi-polymorphic) and more advanced
polymorphic malware use mutated decryptors that change
in each generation of malware [68].

As opposed to this, metamorphism is a code obfuscation
strategy that does not use encryption and thus does not re-
quire a decryptor. Metamorphic malware uses various code
mutation techniques to disguise its code, each time generat-
ing instances syntactically different from one another [68].
Such mutation can be achieved through the transformations
modifying either data flow (e.g., rewriting rules, junk inser-
tion, permutation, registers exchange) or control flow (e.g.,
branch insertions) [68,6].

The rapid development of self-protected and self-distributing
techniques has resulted in a number of off-the-shelf obfusca-
tion engines and virus generator kits. Among the most pop-
ular engines are ADMmutate [26], CLET [13], MetaSploit
engines [72]: Shikata Na Gai, Fnstenv Mov and Call4dWord,
and virus generating kits: NGVCK [51], noted to be one of
the most effective in creating highly metamorphic code [81],
and VCL [75].

ADMmutate, CLET and MetaSploit engines are the ex-
amples of morphing engines employing both encryption (to
hide malware attack code) and mutation techniques (to dis-
guise decryptors). Although all engines use XOR encryption
(or similar type, e.g. ROR), the complexity of the mutation
varies from instructions re-ordering (e.g., ADMmutate [26])
to registers exchange (CLET) [13]. Among the MetaSploit
engines, only Shikata Na Gai is fully polymorphic according
to the Metasploit documentation [28].

Typically, polymorphic engines generate a ready-to-use
raw attack code (often in assembly language), that is in-
jected into memory by exploiting a buffer overflow vulner-
ability. As opposed to these engines, virus generating kits
allow to assemble a stand-alone executable. A virus source
code is generated from a number of available library com-
ponents (including various propagation and infection meth-
ods) and then obfuscated using basic self-protection tech-
niques (i.e., encryption, antidebugging) and mutation [68].
Two of such kits are VCL (Virus Creation Laboratory) and
NGVCK (Next Generation Virus Creation Kit). NGVCK is
an advanced version of VCL that in addition to encryption
also supports mutation, i.e. every new virus variant created
with the kit is automatically morphed so that no two viruses
look the same [68].

Our focus in this work is primarily on morphing engines
that apply mutation techniques to disguise malware code (ei-
ther in a raw code form or as a stand alone executable). As
such the detection of encrypted malware code is beyond the
scope of this paper.

2.1 Morphing Malware: Definitions and Notations

In this section we give a formal definition of morphing en-
gine and morphing malware that we will rely on for the rest
of the paper.

Since it is a simple yet powerful way of expressing non-
determinism and efficient computation, we use the Turing
machine as an underlying mathematical model to define a
morphing engine and malware. A nondeterministic Turing
machine (NDTM)1 is a 6-tuple M = (S,Σ ,Γ ,δ ,s0,h), where
S is a finite set of states, Σ = {0,1} is the input alphabet, Γ is
the tape alphabet, s0 ∈ S is the start state, h /∈ S is a halt state,

1 A detailed definition of an NDTM and of a polynomial time
NDTM can be found in [63].

4 Radhouane Chouchane et al.

and δ : S×Γ → 2(S∪{h}×Γ×{←,→}) is the transition function,
where ← and → encode the directions in which the tape’s
head is to move.

Based on this definition, a morphine engine can be viewed
as any engine (Turing machine) that transforms at least one
sequence of input symbols on any run through any set of non
deterministic choices. Formally,

Definition 1 (Morphing Engine) A polynomial-time NDTM
M is said to be a morphing engine if there exist distinct
v,v′ ∈ Σ ∗ such that (⊔,s0,v) ⊢∗ (⊔,h,v′), where (⊔,s0,v)
and (⊔,h,v′) are possible configurations of M. Every such
v is called an M-friendly sequence.

Definition 2 (M-friendly) Given an engine M, a malware
instance is M-friendly if M is capable of transforming it on
at least one of its computations.

Since the main goal of morphing engines is to transform
the appearance of malware instances, engine friendliness es-
sentially refers to a level of transformability of an instance.
In other words, it describes how much of an original instance
can be transformed by this morphing engine. As such high
transformability can be referred to as high engine friendli-
ness and consequently, low transformability can be viewed
as low engine friendliness.

There are a number of measures that can be defined to
assess engine friendliness. For example, uniqueness of gen-
erated descendants, amount of overhead imposed on new
variants or the amount of sequences of instructions in a sam-
ple transformed by an engine in a single computation.

Definition 3 (Engine Friendliness Measure)
A M-friendliness f r(M, p) of a program p is any measure
that is proportional (not necessarily linearly) to the size of
M(p), which is the set of all the programs that can pos-
sibly be output by M on input p. One such natural mea-
sure, denoted f r0(M, p), is the size of M(p) itself, that is,
f r0(M, p) = |M(p)|. Given two programs p and p′, we will
say that p is at least as M-friendly (with respect to M-friendliness
measure f r(., .)) as p′ if f r(M, p)≥ f r(M, p′).

Definition 4 (Morphing Malware) Let M be a morphing
engine, s some arbitrary sequence, and f r some measure of
engine friendliness. We say that s is an instance of a mor-
phing malware, with respect to M and f r, if f r(M,s) ≥
a|M(s)|, for some a > 1.

Morphing engines tend to preserve the level of trans-
formability across generations, that is high transformability
(i.e. high engine friendliness) will be preserved through all
variants of malware.

Definition 5 (High Friendliness Preservation) M is said
to be a high friendliness preserving morphing engine if all
of the M-descendants of a high engine friendly instance s
are at least as highly M-friendly (with respect to some M-
friendliness measure f r(., .)) as s′ if f r(M,s)≥ f r(M,s′).

Malware engine attribution problems In this work we in-
troduce three variations of malware engine attribution prob-
lem: MV RP, DENSITY and GEN.

Informally, MV RP, the Morphed Variant Recognition Prob-
lem, is the general problem of deciding membership in the
set of all programs that can possibly be output by a given
morphing engine M to which we have input/output (or black-
box) access and to whose description we may have access.
Formally, MV RP of M can be stated as follows:

Definition 6 (MV RPM) Given a Turing machine (TM) se-
quence v, does there exist a TM sequence u such that there
is a computation of M which returns v on input u?

A more specific version can be formulated as DENSITY ,
a detection problem of descendants of an instance of a mor-
phing malware,

Let (M,x) denote an instance of a morphing malware
where x is a highly M-friendly sequence and M is a high
friendliness preserving morphing engine. The set of all pos-
sible descendants of (M,x) is hence composed “mostly” of
non-overlapping instances of sequences inserted by M into
the descendant. The ratio of the sum of the sizes of the se-
quences inserted by M to the size of the descendant is high.
This ratio can be seen as an “engine signature”, indicating
the potential involvement of the engine in the generation of
an immediate parent of the descendant. We refer to this type
of engine signature as clue-density based signature and de-
fine it as follows:

Definition 7 (Clue-density-based engine signature) Let (1)
M denote a high friendliness preserving morphing engine
in the sense given in Section 2.1, (2) v denote a highly M-
friendly sequence in the sense that every instruction in the
sequence is transformable by the engine, (3) vwitness denote
a sequence returned by M on input v, and (4) W denote the
multiset of sequences inserted by M into v as a result of
this run. The clue-density-based engine signature σM of M
is given by

σM =
Σr∈W |r|
|vwitness|

(1)

In other words, solving DENSITYM is deciding whether
a suspect program p contains non-overlapping occurrences
of code segments c j each of which is identical to a sequence
insertable by M, and such that the ratio of the sum of their
sizes to that of the size of p is equal to the signature σM of
M.

Formally, the DENSITY detection problem of M-descendants
of an instance of a morphing malware can be defined as fol-
lows:

Detecting Machine-Morphed Malware Variants Via Engine Attribution 5

Definition 8 ((DENSITYM , DDM))
For high-friendliness-preserving morphing engine M that may
insert one or more of a finite set of sequences into its input
sequence, we denote by DENSITYM the following problem:
Given a sequence v and the set R = {r1, ...,rn} of sequences
known to be insertable by M into a malware variant, does
there exist (c1, ...,cm) ∈ (Σ ∗)m such that:

1. ∀1≤ j ≤ m,∃1≤ i≤ n such that c j = ri,
2. ∃w1,w2, ..,wn,wn+1 ∈ Σ ∗

such that v = w1c1w2c2...wncnwn+1, and
3. σM =

∑m
i=1 |ci|
|p| .

Both problems MV RP and DENSITY can be general-
ized to finding a specific generation of malware variants pro-
duced by engine M, as stated by the problem GEN.

Definition 9 (GENn
M) For every positive integer n and mor-

phing engine M, we denote by GENn
M the following prob-

lem: Given two sequences v and v′ ∈Σ ∗, is v′ an nth-generation
M-descendant of v?

A more general definition of this problem can be ex-
tended to a set of all possible descendants of a malware vari-
ant.

Definition 10 (GEN∗M , DM) For morphing engine M, we de-
note by GEN∗M the following problem: Given two sequences
v and v′ ∈ Σ ∗, does there exist a positive integer n such that
v′ is an M-descendant of v?

3 Morphed Variant Recognition Problem (MV RP)

In this section we present our approach to address the Mor-
phed Variant Recognition Problem (MVRP). Specifically, we
describe a method for computing an engine signature for
the morphing engine, given a training sample of programs
known to have been generated by a given engine.

We propose to adapt the ngram frequency vector based
method. This method was also successfully employed to at-
tribute natural language documents to their human authors [30],
and to determine whether a suspect program is malicious, al-
though without any attempt to attribute it to an engine [1]. N-
grams have also been used to attribute binary files to datatype
that follow predetermined criteria (type signatures) [61].

In the context of attributing morphed malware to its en-
gine, we propose to use optimized ngram frequency vectors
(for an appropriately chosen positive integer n) of a pro-
gram’s opcodes as a feature vector for that program. Treat-
ing these features as unique characteristics of a morphing
engine, we generate an engine signature following a modi-
fied Rocchio classification algorithm [58]. The Rocchio clas-
sifier is a simple centroid-based algorithm known to be one
of the best for document classification [21]. This algorithm

relies on a centroid vector to represent documents of each
class, assigning each new document to a class that is most
similar to a centroid vector. In spite of its simplicity, the al-
gorithm has been shown to consistently outperform other al-
gorithms such as the k-nearest-neighbors and Naive
Bayesian [21].

3.1 ngram-Based Attribution of Morphed Malware to its
Engine

Let our alphabet A be the finite set {a1,a2,a3, ...,am} of op-
codes for the computing platform for which we intend to run
a procedure that is capable of attributing programs to one or
more members of a fixed, finite set of known morphing en-
gines. Let NG(A) denote the set of all of A’s ngrams. Given
any two distinct ngrams ngi and ng j of A, we have ngi ≺ ng j
or ng j ≺ ngi, where ≺ is a total order relation on A. (≺ is
guaranteed to exist since A is finite.)

We first process an assembly language program p by re-
moving all of the non-empty strings occurring in P, except
for the opcodes. Let Op denote the sequence of opcodes ob-
tained as a result of this first processing stage. We denote by
|Op| the length of this sequence (i.e., the number of opcodes
occurring in the sequence).

The (normalized) 1gram instruction frequency vector 1.NFV
of P is the tuple

1.NFV (p) = (
fi

Σ m
j=1 f j

)1≤i≤m, (2)

where, for 1≤ i≤ m, fi is the frequency (or the number
of occurrences) in Op of opcode ai.

More generally, for n > 2, the (normalized) ngram in-
struction frequency vector n.NFV of P is the tuple

n.NFV (p) = (
fngi

Σ k
j=1 fng j

)1≤i≤k, (3)

where k = n!n!
m!(m−n)! is the number of distinct ngrams that can

be generated using A’s opcodes, and for 1≤ i< j≤ n!n!
m!(m−n)! ,

ngi ≺ ng j. fngi and fng j are the frequencies (or the number
of occurrences) in Op of ngrams ngi and ng j, respectively.

For any given positive integer n, we define the ngram
engine signature ESn of a given morphing engine M as the
arithmetic average of the NFV ’s of a set S = (p1, p2, ..., ps)

of programs known to have been generated by the engine. In
other words,

ESn = ∑
i∈{1,...,s}

n.NFVi/|S|, (4)

where, n.NFVi is the n.NFV of program Pi.
Attribution of a suspect program to any one of a given set

of morphing engines is carried out by measuring the distance

6 Radhouane Chouchane et al.

between the n.NFV of the program to each of the ngram en-
gine signatures ESn of the engines. For any given positive
integer n and the instruction frequency vectors n.NFV1 and
n.NFV2, we will use the following distance measure [30]
to compute the dissimilarity D(n.NFV1, n.NFV2) between
these vectors:

D(n.NFV1,n.NFV2) =

|NG(A)|

∑
k=1

(
2× (n.NFV1[k]−n.NFV2[k])
(n.NFV1[k]+n.NFV2[k])

)2. (5)

The engine whose signature ESn is closest to the suspect
program’s n.NFV is declared to have authored the program.

Implicit in an ngram frequency vector is information about
the probability that the nth instruction in an ngram will fol-
low the n− 1 instructions preceding it in the ngram. This
observation shows that choosing n = 2 will enable the de-
tector to do just as well as the method proposed by Wong
and Stamp [81] that models the generation process (by the
engine) of any malware variant as a first order Markov pro-
cess, where the instruction following the current instruction
in the malware could be predicted with a certain probabil-
ity. For n > 2, the authorship attribution method proposed
in this section is able to capture more information (than for
n≤ 2) about how the engine generates the different instruc-
tions that compose a morphed malware instance. So, for ex-
ample, a trigram frequency vector for a morphed malware
instance captures the probability that any given instruction
will follow any given bigram. However, this also signifi-
cantly increases a size of frequency vectors to be considered.
As such, for a given integer n, the number of components of
a program’s NFV is equal to the nth power of the instruction
set of the platform (x86) or, if we choose to ignore those op-
codes which do not occur in the program, to the nth power
of the number of distinct opcodes within the program. To re-
duce the size of the ngram instruction frequency vectors to
be computed we chose for the proposed method n = 2.

3.2 Evaluation

This section presents the evaluation of our attribution method
for engine signature generation. The evaluation has been
performed in two stages. In the first stage, we analyzed the
effectiveness of our signature-based classifier to attribute mal-
ware instances generated by seven morphing engines to the
corresponding engines. In the second stage, we evaluated the
general applicability of our approach on a set of malware
samples collected from the wild.

mov

add

mov

add

mov

pop

push

jmp

push

push

nop

mov

mov

add

push

mov

push

Frequent instructions:

mov

push

Frequent bigrams:

mov:add

RI strategy selection:

mov:push

push:mov

push:push

RB strategy selection:

mov:add

Fig. 1 An illustration of the RI and RB strategies.

3.2.1 Subject

To evaluate the proposed attribution method, seven morph-
ing engines and kits introduced in Section 2 were analyzed:
ADMmutate [26], CLET [13], NGVCK [51], VCL [75] and
three MetaSploit engines [72]: Shikata Na Gai, Fnstenv Mov
and Call4dWord. For each of the engines and kits one hun-
dred malware instances were generated for experiments (in
a form of binary code for Metasploits engines and assembly
language for the rest).

Note, that the set of benign data was not included in
our experiments intentionally. An analysis of legitimate pro-
grams for an authorship would require a knowledge of an
author (more precisely generating engine) which is in this
case unknown.

3.2.2 Instruction Selection Strategies

In evaluation we consider two strategies for selecting the
most relevant opcodes: the strategy based on the most rele-
vant instructions, RI strategy, and the strategy based on the
relevant bigrams, RB strategy.

In the RI strategy, we consider only those instructions
which are “frequent enough” across a sample of programs
used for the experiments. Then among all possible bigrams,
this strategy retains only those that are composed of any two
of the most frequent opcodes across the collected samples.
For example, consider a set of instructions given in Figure 1.
Based on a set of the frequent instructions, the RI strategy
retains mov:push, push:mov and push:push bigrams, while
discarding mov:add, despite the fact that mov:add bigram is
the most frequent among samples. Since this strategy does
not account the actual frequency of a formed bigram across
a sample, for a small number of frequent instructions, the RI
strategy might generate vectors of a significantly larger size.

Detecting Machine-Morphed Malware Variants Via Engine Attribution 7

Table 1 The selected relevant instructions for the RI strategy and the first 20 relevant bigrams selected by the RB strategy (in the order from the
most frequent opcode to the least frequent opcode).

Cumulative Occurrence Frequency of Occurrence Information Gain
RI strategy nop;add;mov;xchg;pop;push;xor;inc;

cmp;call;stc;dec;sub;and;sar;int;pusha;
je;jmp;ret;lea;clc;aas;aaa;jne;
cld;fwait;das;cmc;cltd;cwtl;pushf

mov;xor;xchg;add;pop;push;
and;sub;cmp;test;or;imul;
sbb;je;adc;jmp;cld;nop;
out;clc;in;jae;loop;stc;
lea;inc;ja;call;int;fwait; cwtl;jb

call;dec;inc;pusha;ret;fnstenv;
pushf;je;div;bound;
rexy;rexyz;cmpw;fldz;insw;
jc;jnc;jz;o;pushl;aaa;xorl;
aas;outsw;jnz;movzwl;movb;
popl;cmpb;imul;arpl;popa

RB strategy nop:nop;add:add;mov:mov;
xchg:xchg;xor:xor;mov:add;
sar:mov;mov:stc;stc:sar;
add:mov;xchg:pop;pop:xchg;
push:push;cmp:cmp;pop:pop;
call:cmp;add:push;mov:int;
mov:xor;push:mov

mov:mov;xor:mov;mov:xor;
xchg:mov;mov:sub;mov:and;
je:imul;mov:add;inc:pop;
pop:mov;add:mov;sub:mov;
mov:xchg;pop:pop;inc:inc;
mov:pop;push:push;mov:cmp;
xor:add;pop:inc

dec:inc;inc:dec;push:inc;
push:je;je:imul;add:inc;
add:dec;inc:add;push:push;
dec:add;inc:pop;push:dec;
inc:push;call:mov;jmp:call;
fnstenv:pop;nop:nop;
call:call;je:jmp;push:imul

An alternative way of finding the most relevant bigrams,
followed by the RB selection strategy, is to directly select a
subset of those bigrams which are the most frequent across
the samples. Following our example, the RB strategy will di-
rectly choose mov:add bigram for the experiment. Note that
this strategy also allows us to address the performance issue
imposed on the ES classifier by the RI strategy by bounding
the size of frequency vectors.

0

100

200

300

400

500

600

3 5 7 9 11 14 17 20 23 26 29 32

V
ec

to
r

si
ze

Number of instructions

RI strategy
ADMmutate

CLET

Metasploit-
Call4dword
Metasploit-
fnstenvmov
Metasploit-Shikata
Ga Nai
NGVCK

VCL

200

300

400

500

600

700

V
e
c
to
r
s
iz
e

RB strategy

CLET
Metasploit
engines
VCL

NGVCK

ADMmutate

0

100

4

3
0

6
9

1
1
4

1
6
4

2
1
4

2
6
8

3
2
8

3
8
8

4
4
8

5
0
8

5
6
8

6
2
8

6
9
2

7
6
2

8
3
2

9
0
2

9
7
2

Number of bigrams

Fig. 2 The ES signature vector size (cumulative occurrence method).

For each of these strategies the set of the relevant in-
structions is selected based on cumulative occurrence, i.e,
a total number of times opcode/bigram appears across all

samples, frequency of occurrence, i.e. the number of op-
code/bigram occurrence in each malware instance and op-
code/bigram information gain [49]. Figure 2 shows the sig-
nature vectors generated by both strategies based on cumu-
lative occurrence. As it can be seen on the figures, with the
RI strategy taking the 32 most frequent instructions yields
very large NFVs. For example, the smallest vector composed
of 303 numbers, each denoting a frequency for some bi-
gram, is constructed for the VCL engine, while the largest
NFV containing 550 numbers belongs to the NGVCK en-
gine. The picture is different for the RB strategy: for the
1000 most relevant bigrams, the size of vectors generally
stays below 1000. As such, the largest vector constructed
for the NGVCK engine consists of 627 numbers. While the-
oretically the size of the NFV with the RB strategy should
be linear in the number of the relevant bigrams, we reduce
the size by explicitly maintaining only the bigrams with non
zero frequencies.

Since the resulting vectors are similar in sizes, in our ex-
periments we chose to retain the 32 most relevant instruc-
tions in the RI strategy and the 1000 relevant bigrams in
the RB strategy. Table 1 lists the selected instructions and
bigrams. Although the selected instructions for both strate-
gies are similar, the complete set of 1000 bigrams includes
bigrams containing instructions not appearing in the set se-
lected by the RI strategy. Thus in spite of infrequency of
those individual instructions, the formed bigrams appear to
be more relevant, i.e., frequent across the samples. Since
both strategies operate on the bigrams, we would expect the
RB strategy be more accurate.

3.2.3 Detection effectiveness

To evaluate the proposed method using the RI strategy we
considered bigrams which were composed of any two of the
32 most frequent opcodes across the 800 collected instances.
A set of 2gram instruction frequency vectors was extracted

8 Radhouane Chouchane et al.

Table 2 Average accuracies of the k-nn classifier (RI selection strategy.)

RI 3 4 5 6 7 8 9 10
1-nn 0.945 0.990 0.993 1 1 1 1 1
5-nn 0.948 0.988 0.993 1 1 1 1 1

10-nn 0.945 0.988 0.993 1 1 1 0.995 1
15-nn 0.915 0.955 0.960 0.963 0.965 0.965 0.923 0.945
20-nn 0.918 0.955 0.958 0.960 0.965 0.948 0.870 0.965

Table 3 Average accuracies of the k-nn classifier (RB selection strategy).

RB 3 4 5 6 7 8 9 10 11
1-nn 0.995 0.983 0.990 0.993 0.995 0.995 0.995 0.995 0.995
5-nn 0.995 0.978 0.985 0.993 0.995 0.995 0.995 0.995 0.995

10-nn 0.993 0.975 0.990 0.993 0.995 0.995 0.993 0.995 0.995
15-nn 0.993 0.980 0.955 0.958 0.960 0.960 0.960 0.960 0.958
20-nn 0.963 0.973 0.955 0.958 0.960 0.960 0.958 0.958 0.958

RB 12 13 14 15 16 17 18 19 20
1-nn 0.995 0.995 0.995 0.995 1 1 1 1 1
5-nn 0.995 0.995 0.993 0.993 1 1 1 1 1

10-nn 0.995 0.995 0.993 0.993 1 1 1 0.998 0.998
15-nn 0.958 0.960 0.958 0.958 0.965 0.965 0.965 0.963 0.963
20-nn 0.958 0.958 0.958 0.958 0.965 0.965 0.965 0.963 0.963

from the available instances and a classifier for these 2.NFVs
was constructed.

To compute and then evaluate the signature for each of
the seven morphing engines and kits, 10-fold cross valida-
tion was employed: the collected instances were divided into
the training and testing sets in the following manner: 90 in-
stances from each of the samples were set aside as the train-
ing sets for the corresponding engines and the remaining 10
instances from each sample were combined into a testing set
(total of 80 instances).

The signatures ES2 for each engine were computed us-
ing training sets as described in Section 3.1. The generated
signatures were then evaluated by measuring a distance be-
tween the signature and the frequency vector NFV of the
program from the testing set (see Section 3.1). The accuracy
of this ES classifier was evaluated by measuring the ratio
of the number of those test NFV’s which were found to be
closer to the signature ES2 of a sample whose label is differ-
ent from theirs to the size of the testing set.

In addition to testing each of the ES classifiers, we evalu-
ated several k-nn classifiers [31] to determine how well these
widely used classifiers would be able to attribute each of the
NFV’s in a testing set to their corresponding engines. A k-nn
classifier, where k is a fixed positive integer, is an instance
based classifier that predicts the class of a test instance by
counting its k nearest neighbors, for a given distance mea-
sure, from a diverse set of labeled training instances, and
then returning the class label (the name of a morphing mal-
ware engine in our case) that has the most number of rep-
resentatives among the test instance’s k nearest trainers. k-
nn classifiers were run in Weka [20] using normalized Eu-
clidean distance and the 10-fold cross validation method.

In the experiments with both classifiers, we chose to ig-
nore the cases where i = 1 and i = 2, since bigrams which
only contain either or both of the most frequent opcode and
the second most frequent opcode do not bring much discrim-
inating information.

The obtained results for the k-nn classifier for k=1, 5, 10,
15, and 20 are shown in Tables 2 and 3.The corresponding
results for the ES classifier are given in Figure 3.

As the results in Tables 2 and 3 show, the k-nn classifiers
performed very well with both strategies, reaching a perfect
filtering accuracy for certain choices of relevant instructions
and bigrams.

The k-nn classifier was able to achieve 100% accuracy in
the first set of experiments for RI = 6 to RI = 10 for k = 1,5
and for RI = 6 to RI = 8 for k = 10. In the second set of
experiments, the perfect accuracy was reached at k = 1 and
5 for RB = 16 to RB = 20 and at k = 10 for RB = 16 to RB
= 18.

In spite of its perfect accuracy, the k-nn classifier is known
to incur a high computational cost mainly due to the neces-
sity to compute the distance between a test instance and each
of the training examples. In this context, the proposed ES
classifier offers a better approach by essentially using one
signature per engine.

The average ES classifier performance is shown in Fig-
ure 3. As expected, our classifier performed better with the
RB strategy reaching the accuracy of 99% with the informa-
tion gain selection method, 94% with the frequency of oc-
currence selection method, and 90% with the cumulative oc-
currence method. With the RI strategy the ES classifier was
only able to achieve 88% with the information gain method.

Detecting Machine-Morphed Malware Variants Via Engine Attribution 9

Fig. 3 Average accuracy of the ES classifier with the RB and RI strategies.

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
c
c
u
ra
c
y

Cumulative occurrence

Frequency of
occurrence

Information gain

0%

10%

3 5 7 9 11 14 17 20 23 26 29 32

RI

50%

60%

70%

80%

90%

100%

A
c
c
u
ra
c
y

Cumulative occurrence

Frequency of
occurrence

Information gain

0%

10%

20%

30%

40%

3

2
7

6
5

1
0
9

1
5
9

2
0
9

2
6
2

3
2
2

3
8
2

4
4
2

5
0
2

5
6
2

6
2
2

6
8
5

7
5
5

8
2
5

8
9
5

9
6
5

A
c
c
u
ra
c
y

RB

Information gain

More insight into the ES classifier performance can be
gathered from Figures 4 and 5. The proposed classifier was
able to reach perfect accuracy for VCL, NGVCK, CLET,
ADMmutate engines in both strategies. However, the best
performance was achieved in the RB strategy with the infor-
mation gain method, when the classifier reached the 100%
accuracy for VCL, NGVCK, CLET, ADMmutate and Metas-
ploit’s Shikata Ga Nai engines and near perfect accuracy for
the other two Metasploit engines (in the range from 96% to
99% for RB=400 to RB=600).

In other words, the engine signatures capturing the fre-
quencies of anywhere between 400 and 600 the most fre-
quent bigrams were sufficient to provide the near perfect de-
tection rate for most of the engines.

This result is consistent with findings of Song et al. [64]
that analyzed the variance of decryptors in instances gen-
erated by the polymorphic engines. They showed that both
CLET and Metasploit’s Fnstenv Mov contain artifacts that
are always present in instances of these engines, while Metas-
ploit’s Shikata Ga Nai and Call4dWord generate similar blocks
of code that are scattered throughout their decryptors.

In general, the classifier’s performance in attributing mal-
ware to the engines improved with the signatures size. This
is an expected behavior as larger signatures incorporate more
information about the most frequent bigrams and consequently
provide better differentiation between the engines. One ex-
ception to this rule is the NGVCK engine. The proposed
classifier performance for the NGVCK engine sharply in-
creases reaching 100% accuracy and then slowly declines
with the signature size. Since the large NGVCK engine sig-
nature accumulates bigram frequency information similar to
that contained in other engines’ signatures, it becomes less
precise thus making the overall detection using the proposed
signature-based method less accurate.

3.2.4 Performance

We evaluated the processing requirements of the pro-
posed classifier using a system with an Intel(R) Xeon 2.67
GHz system. Figures 6 and 7 show the runtime process-
ing requirements for both RI and RB strategies with the cu-
mulative occurrence method. The other instruction selection
methods performed similarly.

Due to the nature of the proposed classifier, the runtime
performance is mainly affected by the size of the underlying
frequency vectors. As such, the RI strategy performed sig-
nificantly slower taking almost 0.0075 sec for RI=10, while
the RB strategy only required 0.0035 sec for RB=1000. This
is mainly due to the actual size of the NFVs that are on aver-
age twice as large in the RI strategy as they are for RB=1000.

3.2.5 Experiments with the samples captured in the wild

We have tested our proposed engine signature based approach
on the wild collection of malware samples. These samples
were acquired from an anti-virus company that performed
their initial processing (e.g. unpacking) and classification.
We selected three malware families: W32.Agent, W32.Hupigon
and W32.Pcclient; and used one hundred samples to repre-
sent each family. Note that, since we do not have a ground
truth for this data, we simply rely on the classification pro-
vided by the anti-virus company and assume that all these
samples were generated by the same morphing engine. For
these experiments, we performed the same 10-fold cross val-
idation method described above.

The classification accuracy results for these malware sam-
ples are shown in Figures 8 and 9. Similar to the controlled
experiments, in the experiments with the wild samples, the
RB strategy gave consistently better results than the RI strat-
egy, reaching 100% accuracy for W32.Pcclient samples with
the information gain method (RB=3 and 4) and 99% accu-
racy with the frequency of occurrence method (RB=382 to
RB=592). Interestingly, all three instruction selection meth-
ods on average performed similarly in the RB strategy with
the cumulative occurrence achieving the highest accuracy of
78%, and the information gain reaching the lowest accuracy
of only 73%. This is different from the controlled experi-
ment’s results, where the information gain method on aver-

10 Radhouane Chouchane et al.

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
c
c
u
r
a
c
y

Cumulative Occurrence

ADMmutate

CLET

VCL

NGVCK

Metasploit-Shikata
Ga Nai

Metasploit -

0%

10%

20%

3 4 5 6 7 8 9 10

RI

Metasploit -
Call4dword

Metasploit-
fnstenvmov

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
c
c
u
r
a
c
y

Frequency of Occurrence

ADMmutate

CLET

VCL

NGVCK

Metasploit-Shikata
Ga Nai

Metasploit -

0%

10%

20%

3 4 5 6 7 8 9 10

RI

Metasploit -
Call4dword

Metasploit-

fnstenvmov

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
c
c
u
r
a
c
y

Information Gain

ADMmutate

CLET

VCL

NGVCK

Metasploit-Shikata
Ga Nai

Metasploit -

0%

10%

20%

3 4 5 6 7 8 9 10

RI

Metasploit -
Call4dword

Metasploit-

fnstenvmov

Fig. 4 Accuracy of the ES classifier (RI strategy).

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
c
c
u
r
a
c
y

Cumulative Occurrence

ADMmutate

CLET

Metasploit-
Call4dword

Metasploit-
fnstenvmov

Metasploit-Shikata
Ga Nai

NGVCK

NGVCK

0%

10%

20%

3

2
7

6
5

1
0
9

1
5
9

2
0
9

2
6
2

3
2
2

3
8
2

4
4
2

5
0
2

5
6
2

6
2
2

6
8
5

7
5
5

8
2
5

8
9
5

9
6
5

RB

NGVCK

VCL

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
c
c
u
r
a
c
y

Frequency of Occurrence

ADMmutate

CLET

Metasploit-
Call4dword

Metasploit-
fnstenvmov

Metasploit-Shikata
Ga Nai

NGVCK

NGVCK

0%

10%

20%

3

2
7

6
5

1
0
9

1
5
9

2
0
9

2
6
2

3
2
2

3
8
2

4
4
2

5
0
2

5
6
2

6
2
2

6
8
5

7
5
5

8
2
5

8
9
5

9
6
5

RB

NGVCK

VCL

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
c
c
u
r
a
c
y

Information Gain

ADMmutate

CLET

Metasploit-

Call4dword

Metasploit-
fnstenvmov

Metasploit-Shikata
Ga Nai

NGVCK

NGVCK

0%

10%

20%

3

2
7

6
5

1
0
9

1
5
9

2
0
9

2
6
2

3
2
2

3
8
2

4
4
2

5
0
2

5
6
2

6
2
2

6
8
5

7
5
5

8
2
5

8
9
5

9
6
5

RB

NGVCK

VCL

Fig. 5 Accuracy of the ES classifier (RB strategy).

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

3 5 7 9 11 14 17 20 23 26 29 32

R
u

n
 t

im
e

(s
ec

)

RI

Cumulative Occurrence
ADMmutate

CLET

Metasploit-
Call4dword
Metasploit-
fnstenvmov
Metasploit-Shikata
Ga Nai
NGVCK

VCL

Fig. 6 Runtime performance of the ES classifier (RI strategy).

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

R
u
n
 t
im
e
 (
s
e
c
)

Cumulative Occurrence

ADMmutate

CLET

Metasploit-
Call4dword

Metasploit-
fnstenvmov

Metasploit-Shikata
Ga Nai

NGVCK

Metasploit
engines

0

0.0005

3

2
7

6
5

1
0
9

1
5
9

2
0
9

2
6
2

3
2
2

3
8
2

4
4
2

5
0
2

5
6
2

6
2
2

6
8
5

7
5
5

8
2
5

8
9
5

9
6
5

R
u
n
 t
im
e
 (
s
e
c
)

RB

NGVCK

VCL

Fig. 7 Runtime performance of the ES classifier (RB strategy).

age had significantly better detection rate than the other two
methods. Overall, the performance of our classifier varied
more on the wild samples than it did in a controlled envi-
ronment. In the lack of ground truth, we can attribute this
variability to either incorrect classification of samples by
the anti-virus company or perhaps unsuitability of our as-
sumption. The latter would indicate that these sample came
a number of morphing engines which would be challenging
if impossible to confirm.

3.2.6 Summary

In summary, we find that the proposed engine signature method
of attributing morphed malware to its engine is a rather promis-
ing approach due to two reasons.

First, as opposed to traditional signature detection meth-
ods that store one signature per malware sample, the pro-
posed method only requires one signature per engine. This is
especially appealing to malware detectors which aim space

and time efficiency. Since the number of morphing engines
is several magnitudes smaller than ever-increasing number
of malware samples, a small number of engine signatures is
an attractive alternative solution.

Second, the proposed method exhibits a good filtering
capacity overall and achieves the 100% accuracy for some of
the most popular engines. As expected, the RB strategy gives
consistently better results, often significantly outperform-
ing the RI strategy. The results of the relevant instruction
selection methods are mixed. Although in the experiments
with the seven engines, the information gain method unan-
imously achieved the best performance, in the wild sample
set all three methods on average has similar results.

4 Clue-density-based engine signature generation -
DENSITYM

In this section we present another variation of a malware en-
gine attribution problem, called DENSITY problem. DENSITY
problem targets code substituting morphing engines, i.e, en-

Detecting Machine-Morphed Malware Variants Via Engine Attribution 11

30%

40%

50%

60%

70%

80%

90%

100%

A
c
c
u
ra
c
y

Cumulative Occurrence

agent

hupigon

pcclient

0%

10%

20%

3 5 7 9 11 14 17 20 23 26 29 32

RI

30%

40%

50%

60%

70%

80%

90%

100%

A
c
c
u
ra
c
y

Frequency of Occurrence

agent

hupigon

pcclient

0%

10%

20%

3 5 7 9 11 14 17 20 23 26 29 32

RI

30%

40%

50%

60%

70%

80%

90%

100%

A
c
c
u
ra
c
y

Information Gain

agent

hupigon

pcclient

0%

10%

20%

3 5 7 9 11 14 17 20 23 26 29 32

RI

Fig. 8 Accuracy of the ES classifier on the malware samples captured in the wild (RI strategy).

50%

60%

70%

80%

90%

100%

A
c
c
u
r
a
c
y

Cumulative Occurrence

pcclient

agent

hupigon

0%

10%

20%

30%

40%

3 27 65 109 159 209 262 322 382 442 502 562 622 685 755 825 895 965

A
c
c
u
r
a
c
y

RB

50%

60%

70%

80%

90%

100%

A
c
c
u
r
a
c
y

Frequency of Occurrence

hupigon

pcclient

0%

10%

20%

30%

40%

3 27 65 109 159 209 262 322 382 442 502 562 622 685 755 825 895 965

A
c
c
u
r
a
c
y

RB

50%

60%

70%

80%

90%

100%

A
c
c
u
r
a
c
y

Information Gain

hupigon

pcclient

agent

0%

10%

20%

30%

40%

3 27 65 109 159 209 262 322 382 442 502 562 622 685 755 825 895 965

A
c
c
u
r
a
c
y

RB

Fig. 9 Accuracy of the ES classifier on the malware samples captured in the wild (RB strategy).

gines that insert into morphed malware instances code seg-
ments from a known set. In this case, deciding whether a
suspect malware instance is generated by an engine is cast
as deciding whether this program contains non-overlapping
occurrences of code segments known to be insertable by an
engine.

4.1 A Code Substituting Morphing Engine

Consider a closed-world morphing engine M that uses a fixed
set of productions, each mapping a sequence of instructions
(the left hand side) to a different sequence of instructions
(the right hand side). Let T denote the fixed set of produc-
tions carried by M. Since M is a closed-world morphing en-
gine, the set T is assumed to be extractable manually, or in-
teractively, from M. Using the f r0(M, p) measure of engine-
friendliness given in the Section 2.1, we say that a code seg-
ment is highly M-friendly if the ratio of the frequency of the
left hand sides of T which occur in the segment to the num-
ber of instructions in the segment is greater than 1− ε for
a small ε > 0. M is also assumed to preserve high engine-
friendliness among all of its generated descendants.

Writers of morphing malware sometimes attempt to achieve
this by requiring that at least one occurrence of a left hand
side occurs in each of the right hand sides [82]. The trans-
formation step of the morphing engine performs a linear
scan of the malware instance to be transformed. Upon vis-
iting a code segment that is also the left hand side of one
of T ’s productions, the engine probabilistically determines
whether the segment should be replaced with its correspond-
ing right hand side.

Left-hand side

 Right-hand side

mov [esi+4],9 � mov [esi+4],6

add [esi+4],3

mov [ebp+8],ecx �

push eax

mov eax, ecx

mov [ebp+8],eax

pop eax

push 4 � mov eax, 4

push eax

push eax � push eax

mov eax, 2Bh

Clue Set:

Clues Weight

mov add

2

push mov mov pop 4

mov push 2

push mov 2

Fig. 10 An example of clue set construction for a subset of transfor-
mations of W32.Evol.

The high engine-friendliness of a morphing malware vari-
ant, coupled with the need to leave as small region as pos-
sible unchanged in the variant, imply that M will insert one
or more of a-priori known code segments in place of the
transformable region.

4.2 The clue-density based engine signature computation

Let M denote a morphing engine, equipped with a set T
of productions as described in the previous section. Given
a code segment V , we abstract each instruction in V to its
opcode. (This is actually needed to represent the, typically
intractably large, set of possible right hand sides that a trans-
formation involving variables taking on scalar values might

12 Radhouane Chouchane et al.

Position Code
segment

Accumulated
sum of clue
weights

1 push 6

2 mov 0

3 mov 0

4 pop 0

5 push 2

6 mov 0

7 mov 2

8 push 2

9 mov 2

10 add 0

11 mov 2

12 add 0

13 pop 0

SM(V) = 16/13 = 1.23

Fig. 11 An example of a clue-density computation on a code segment
suspected of having been generated by Evol.

generate.) We view the right hand sides of T as clues indicat-
ing M’s potential involvement in producing a code segment.

The example of a clue set construction is illustrated in
Figure 10. The engine maps the sequence of instructions on
left hand side to the corresponding code segments that con-
tains one of more sequences of instructions (i.e. right hand
side). The clue set is constructed from the right hand side
sequences. Clues are chosen and assigned weights equal to
their lengths, i.e. number of instructions.

We define a scoring function SM that takes as input a
code segment V (a sequence of x86 opcodes) and returns a
score for V . The score of V with respect to M, which we
denote by SM(V), is considered to be a measure of the evi-
dence linking V to M. The scoring function is computed as
follows

SM(V) =
∑s ∑c wcesc

|V |
(6)

where |V | is the instruction count of V , wc is the weight
of clue c (in this case, its instruction count), and esc = 1 if
clue c is at site s and 0 otherwise. A naı̈ve algorithm com-
puting this function would simply do a linear scan of V . For
each instruction i visited, it would determine whether i is the
beginning of an occurrence of one or more clues. If it is, it
would accumulate the sum of the weights of these clues in
some variable. It would finally divide the accumulated sum
by the instruction count of V and then return the result of
the division. Figure 11 gives an example using the scoring
function. As such at position one instruction push is the be-
ginning of two clues push, mov and push, mov, mov, pop,
the sum of these clues’ weights is six.

4.3 Evaluation

To evaluate our clue-density based approach to attributing
malware samples to code substituting morphing engines, we
experimented with the W32.Evol virus and its metamorphic
engine Evolve. The W32.Evol is a full metamorphic virus

and its engine Evolve is known to operate in manner de-
scribed in Section 4.1 [68].

For our experiments, we implemented a simulator for the
W32.Evol virus [68], and used it to evaluate the proposed
scoring function (more details on the simulator implemen-
tation can be found in [8]). Using the simulated engine one
hundred distinct instances of W32.Evol, spanning four gen-
erations of descendants of the original instance, were gener-
ated. In addition, a set of one hundred distinct benign pro-
grams were prepared. The benign programs were retrieved
from http://download.com/, http://sourceforge.net/, and from
a fresh installation of Windows VistaTM; and processed to
extract the opcode sequences.

The productions used by W32.Evol’s engine, abstracted
to their opcode representations, have exactly 29 distinct right
hand sides (i.e., clues), varying in size from one to six op-
codes. These clues were ordered by size from smallest to
largest. Twenty nine classifiers, C1 though C29, were then
constructed. Each Ci was made to use clues c1 through ci,
along with a suspect program, as inputs to its scoring func-
tion.

These classifiers were evaluated on the set of collected
samples divided to form training and testing subsets. The set
of benign opcode sequences B was divided into two disjoint
subsets B1 and B2 of size 50 each. Similarly, the W32.Evol
sample, E, was broken into two subsets E1 and E2 of same
size. The operation of the classifiers based on these subsets
is described in Figure 12.

Each of the classifiers Ci was first trained by computing
a score for instances of E1 and B1 using clues c1 through ci.
These scores are what we call the W32.Evol’s engine signa-
ture, ESE and the “benign engine signature”, ESB. E2 and B2
sets were then used for testing the classifier. For each of test
instances ti in E2 and B2 the classifier computed a score. If
the magnitude of the difference between the computed score
of that instance and W32.Evol’s engine signature is smaller
than that between a score of a test instance and the “benign
engine signature” (|Sti−ESE | < |Sti−ESB|), then the clas-
sifier declared a test instance to be a variant of W32.Evol.

However, if a score of a test instance was found to be
equidistant to both signatures, a class is chosen at random
by the classifier.

Two fold cross validation was then used (by using the
members of B2 and E2 as trainers, and those of B1 and E1 as
testers) to cross check the accuracy (AC), the false positive
rates (FP), and the false negative rates (FN), of each of the
twenty nine classifiers (RC).

The evaluation results shown in Table 4 reveal that the
proposed method is able to achieve 96% accuracy with a
false positives rate of 3%. In general, the method’s perfor-
mance improved as more clues were used as input to the
scoring function, reaching an accuracy of 96% for a clue
count of 25, while having only 56% accuracy with one clue.

Detecting Machine-Morphed Malware Variants Via Engine Attribution 13

Classifier Ci

Training phase

Testing phase

Benign sample B

W32.Evol sample E

Extract opcode

mnemonics

B1
b1 b2 ….. b50 E1

e1 e2 ….. e50

E2 e1 e2 ….. e50 B2
b1 b2 ….. b50

SE1 ESE

SB1 ESB

Sti

 |Sti - ESE | < |Sti - ESB | , ti is a variant of W32.Evol

 Otherwise, ti is benign

Fig. 12 Operation of the DensityM classifiers.

4.4 Discussion

With this classification accuracy, the proposed scoring method
offers an attractive alternative solution to a malware detec-
tion and analysis, compared to the traditional signature-based
approach. Specifically, we see the following advantages:

– This method requires a suspect program to be only disas-
sembled, stopping early in the malware analysis pipeline.

– The storage requirements consist of (1) just one real num-
ber to be used as a signature for the engine, and (2) a
small set of clues to be used to compute the score of sus-
pect programs.

– The worst case time complexity of SM is a constant mul-
tiple of |V | ∗ |C|, where |V | is the frequency of the op-
codes within a suspect program V , and |C| is the number
of clues that are to be inspected by the scoring function.

Although in this work we chose to experiment with clue
weights equal to their instruction count, other kinds of weight
assignments for the clues can be potentially beneficial. For
example, a stand-alone garbage segment could be given more
weight than a right hand side segment, since odds are low
that a benign program contains a particular do-nothing seg-
ment, especially a large one, known to be routinely inserted
by M at more than one location. Some engines, such as
W32.Simile (a.k.a. MetaPHOR), shrink code by applying
transformations mapping relatively large code segments to
smaller ones. The shrinking part (or application of expand-
ing rules both ways), should adversely affect the current
scoring function if the engine takes the shrinking direction

of the rules (considerably) more often than it does the ex-
panding direction, inducing smaller clues in the output pro-
gram. In order to thoroughly defeat the function, most of the
smaller segments must be of minimal size; that is, in the or-
der of one instruction each, leaving malware authors with
fewer transformation options to replace any given instruc-
tion.

5 Recognition of malware variant descendants - GENn
M

and GEN∗M

In this section we introduce GEN, the third variation of mal-
ware engine attribution problem. Informally, GEN is the prob-
lem of deciding whether a malware instance is a descendant
of a known morphing malware variant Eve given that large-
enough samples from known generations of descendants of
Eve are available.

We propose solutions to two versions of this problem,
GENn

M and GEN∗M as defined in Section 2.1. Both solution
heuristics leverage Markov chain theory to define quickly-
checkable properties of a morphing engine. The key of this
approach is to select properties that are indicative of certain
morphing actions, and in particular can determine the fre-
quency of these actions in subsequent generations of mor-
phed malware.

In this work we target morphing engines that apply a
fixed, finite set of transformation rules. These rules are used
by an engine to probabilistically substitute instructions present

14 Radhouane Chouchane et al.

Table 4 Filtering accuracy of the DENSITYM classifier.

RC 1 2 3 4 5 6 7 8 9 10
FN 46% 22% 13% 22% 20% 14% 14% 13% 14% 13%
FP 42% 32% 31% 32% 32% 32% 28% 26% 24% 21%
AC 56% 73% 78% 73% 74% 77% 79% 80.5% 81% 83%
RC 11 12 13 14 15 16 17 18 19 20
FN 16% 12% 14% 14% 12% 10% 9% 9% 9% 11%
FP 12% 7% 6% 6% 4% 4% 3% 3% 3% 3%
AC 86% 90.5% 90% 90% 92% 93% 94% 94% 94% 93%
RC 21 22 23 24 25 26 27 28 29
FN 10% 9% 9% 8% 5% 6% 6% 6% 6%
FP 3% 3% 3% 3% 3% 3% 3% 3% 3%
AC 93.5% 94% 94% 94.5% 96% 95.5% 95.5% 95.5% 95.5%

in a mutated malware variant to a corresponding sequence of
instructions thus generating a new variant’s descendant.

The proposed solutions to GENn
M and GEN∗M problems

rely on program’s optimized instruction frequency vectors
as indicators of transformation rules applied in generation of
Eve’s descendants [9]. More specifically, we propose a pro-
cedure that given an instruction frequency vector of a mor-
phing malware predicts an average instruction frequency vec-
tor of nth generation descendants of this variant. The intu-
ition behind this approach stems from the observation that
for this type of morphing engines average frequencies of in-
structions are likely to resemble many of the actual instruc-
tion frequency vectors of the nth generation descendants of
Eve. As such the defined engine’s instruction frequency vec-
tors serve as an engine signature allowing to calculate the
likelihood of a suspicious program being a member of one
of Eve’s descendants.

5.1 Modeling morphing engine using Markov models

To formalize the proposed approach we use Markov chain
theory. For the purpose of this work, we model program
property as a state, and map state transitions as predictable
changes to that property [10].

– State. To be consistent with the terminology used in Markov
chain theory, we will use the term “state” (normally called
abstraction) to refer to a program’s instruction frequency
vector. The instruction frequency vector of a program P,
denoted IFV (P), is the n-tuple each of whose compo-
nents represents exactly one opcode and its frequency
(or count) in P. No two components may represent the
same opcode.

– State Transition Probability. Given two program states
α1,M and β 1,M , a transition probability from α1,M to
β 1,M is a probability that, on input a program whose state
is α1,M , a morphing engine produces a program whose
state is β 1,M . In other words, given a morphing malware
with an IFVα1,M , this probability will define how likely it

is for the morphing engine to produce a descendant with
an IV Fβ 1,M .

Following these two definitions we model a set of mor-
phing transformations performed by an engine with the cor-
responding probabilities as an IFV transition matrix. Exist-
ing work on Markov chains [48] has identified certain inter-
esting classes of chains and ways of using a chain’s transi-
tion matrix to infer useful information about the process it
represents. The following two results suggest how and when
an IFV transition matrix can be used to assist in solving
GENn

M and GEN∗M:

1. Distribution Prediction Using the Successive Powers of
the Transition Matrix. A Markov chain T is typically
started in a state chosen by a probability distribution on
the set of states, called a probability vector. Let u de-
note a probability vector which holds the initial proba-
bilities of a malware instance’s state. The powers of T
are known to give interesting information about the evo-
lution of these distributions from one malware genera-
tion to the next: For any positive integer n, the i jth entry
(T n)i j of T n gives the probability that the chain, starting
in state si, will be in state s j after n steps. More gen-
erally, if we let un = uT n, then the probability that an
nth-generation descendant of Eve is in some state si after
n transitions is the ith component of un.

2. Convergence towards a stationary state distribution. For
every transition matrix T of a Markov chain with a fi-
nite space, there exists at least one stationary distribu-
tion π , i.e., a row vector π satisfying π = πT . Fur-
thermore, if T is irreducible and aperiodic, then it has
a unique, a-priori computable, stationary distribution π
given by limn→∞ T n = 1.π , where 1 is a column vector
all of whose entries equal 1. Hence, for malware whose
starting probability distribution on the set of IFVs hap-
pens to be a stationary distribution for its engine’s IFV
transition matrix, the corresponding states of the ele-
ments of every generation of descendants of the malware
will be distributed as indicated by π .

Detecting Machine-Morphed Malware Variants Via Engine Attribution 15

Table 5 An example rule set.

li → {ri1
i ri2

i ri3
i }

1 mov [reg1+imm], reg2 → push reg push reg
mov reg, imm mov reg, reg1
mov [reg1+reg], reg2 add reg,imm1
pop reg mov [reg+imm2], reg2

pop reg

2 mov reg, imm → mov reg, imm1 mov reg, imm1 mov reg, imm1
add reg, imm2 sub reg, imm2 xor reg, imm2

3 push reg → push reg
mov reg, imm

4 sub reg reg → xor reg, reg

5.2 Computing an IFV Transition Matrix

For a class of morphing engines which use a fixed set of
productions, an IFV transition matrix may be constructed di-
rectly, given just this set of productions, assuming that this
set is equipped with a fixed production application probabil-
ity and mapping of instructions to corresponding, possibly
larger, code segments. The morphing engine of W32.Evol is
an example of such class of engines [46]. One of W32.Evol’s
rules is to insert segments of dead code within the code be-
ing transformed. This rule can be captured in a production
by mapping an empty instruction to one or more segments
of dead code.

For a given class of morphing engines, let I = {I1, I2, ..., Im}
denote the instruction set of a target computing platform
(e.g., the IA-32 instruction set) and T denote a set of n pro-
ductions used by a morphing engine to transform an input
variant. Then,

T = {li→{(Pr j
i ,r

j
i) : 1≤ j ≤ imax)}} (7)

where li ∈ I and rj
i ∈ I +. In other words, whenever

a morphing engine visits an instruction present on the left
hand side li of some production the engine substitutes li for
rj
i with a probability Pr j

i . An example set of productions’
rules is given in Table 5.

In order to allow an engine to choose whether or not to
transform an occurrence li, we require that exactly one rj

i to
be identical to li, and ∑imax

j=1 Pr j
i = 1, for all 1≤ i≤ n.

Pr j
i denotes the probability of use of right hand side ele-

ment rj
i , i.e., the probability that li will be replaced with rj

i
instance. We assume that the probabilities of use are fixed for
each production and extractable interactively from a morph-
ing engine. Furthermore, if the engine is not available, these
probabilities may also be estimated from large corpora of
programs, where each corpus contains members of some
specific generation of descendants of some Eve. Probabil-
ities of use maybe also implemented using a random num-
ber generating procedure that is part of the engine and that
makes its choices at run time by reading arbitrary memory

locations (as it is in the W32.Evol and W32.Simile meta-
morphic viruses). If the latter is the case then we assume that
the choices are uniform; Pr j

i =
1

imax
for each rj

i .

Computing transition probabilities Given a fixed set of pro-
ductions, a transition probability, T (α1,M,β 1,M), from some
IFV α1,M to some IFV β 1,M , is computed using the func-
tions F , G, and H.

For instructions (Ii, Ik) ∈ I 2, let Fi,k(β) compute the
probability that, on one input instance of Ii, the engine gen-
erates β instances of Ik.

Fi,k(β) =
imax

∑
j=0

Z(β −OCC(r j
i , Ik))×Pr j

i . (8)

where OCC is the function from (I +,I) to N mapping
each (P, Ii) pair to the frequency of instruction Ii in code
segment P, and Z is the function from R to {0,1} which
returns 1 if and only if its argument is 0.

Let Gi,k(α,β) compute the probability that, on α in-
put instances of Ii, the engine generates β instances of Ik.
Gi,k(α,β) returns 0 if α = 0.

We view the probabilistic instruction substitution pro-
cess of α instances of instruction Ii as α independent events
(individual substitutions of each of the α instances of in-
struction Ii). The outcome of each of these events may yield
zero or more occurrences of instruction Ik.

Let S = {δ : Fi,k(δ) ̸= 0} denote a set of all possible
counts of instruction Ik that can be generated by an engine
on one input instance of instruction Ii. Let Sα

β denote the set
of α-tuples δ 1,α = (δ1,δ2, ...,δα) of elements of S such that
||δ 1,α ||1 = β 2. Gi,k(α,β) is hence given by

Gi,k(α,β) = ∑
δ 1,α∈Sα

β

α

∏
j=1

Fi,k(δ j), (9)

2 The problem of finding an δ 1,α ∈ Sα such that ||δ 1,α ||1 = β is an
NP-complete one. In fact, computing any α-tuple x whose ||.||1 equals
a fixed β is an instance of the Subset Sum problem and is hence NP-
complete [17]. In practice, one may want to choose to use a polynomial
time approximation scheme for computing each of the Gi,k(α,β).

16 Radhouane Chouchane et al.

Finally, Hk(α1,m,β) is a probability that, on input a pro-
gram whose IFV is α1,m, a probabilistic engine generates
β instances of instruction Ik. Hk(α1,m,β) can be recursively
computed by observing that for 1 < i < m,

Hk(α i,m,β) =
β

∑
δ=0

Fi,k(δ)×Hk(α i+1,m,β −δ) (10)

The recursion stops when i + 1 = m, since Hk(αm,m,β −
δ) = Gm,k(||αm,m||1,β −δ).

The transition probability from one IFV to another is
then computed as follows:

T (α1,m,β 1,m) =
m

∏
i=1

H(α1,m, ||β i,i||1). (11)

Improving efficiency Operating on a full transition matrix
produced by the described above procedure is not only com-
putationally intensive but is also infeasible in practice due
to a potentially infinite set of all possible IFVs. A more re-
alistic approach is to impose certain constraints on the size
of this set while preserving predictive power of a transition
matrix. We offer the following two optimization heuristics
that allow reducing a size of a full transition matrix:

1. Selection of Relevant Instructions (RI). This will allow
to select and retain only instructions considered rele-
vant, which will reduce the size of an IFV to the num-
ber of considered instructions. This effectively reduces
the overhead of computing, storing and manipulating in-
struction frequency vectors.

2. IFV Grouping. A strategy for grouping IFV’s into dis-
joint sets will reduce a column (and row) counts of a
matrix. This grouping of IFV will make the transition
matrix for each generation of Eve’s descendants capture
the transition probabilities from one group of IFVs to
another, instead of the transition probabilities from one
IFV to another.

Following these two strategies will produce a smaller
and more efficient IFV transition matrix.

5.3 Evaluation

In our experimental evaluation we primarily focused on the
ability of an optimized IFV matrix to accurately attribute
malware descendants to their respective generations.

To evaluate our approach, we experimented with the
W32.Evol virus and its metamorphic engine Evolve that,
as was mentioned earlier, is known to operate on a fixed set
of productions. W32.Evol falls within the class of morph-
ing malware for which an exact IFV transition matrix can be
computed (though inefficiently) given just W32.Evol’s Eve,
engine, and probabilistic productions. We however generate

a reduced version of an IFV matrix by applying two opti-
mization heuristics, the RI strategy and the IFV grouping
strategy.

The application of RI strategy to the production set of
W32.Evol revealed 19 distinct opcodes. Thus frequency vec-
tors were only constructed for these 19 relevant instructions.

The IFV groupings were implemented using a Euclidian
norm ||.||23 by splitting the interval
[min(||IFVi||2),max(||IFVi||2)], where 0 < i < v and v is
the number of samples, into N equal intervals. In the ex-
periments we tested values of N ranging from 2 to 20. This
choice of N was primarily guided by performance consider-
ations: since a transition matrix has N by N dimensions then
the smaller the value of N the smaller the size of a transition
matrix for any given generation.

For our experiments, we implemented a simulator for
the W32.Evol virus, and used it to generate 120 W32.Evol-
descendants of an W32.Evol’s variant that we obtained from
the VX Heavens archive [76]. The descendants spanned the
first four generations of descendants, and numbered 30 de-
scendants per generation. Among these descendants, 15 in-
stances were used for building an IFV matrix while 15 were
reserved for testing.

Having a single variant Eve, we illustrate a solution to
GENn

M problem that can be easily extended to GEN∗M if
other variants are readily available. For a single instance
Eve, only one row of each IFV transition matrices corre-
sponding the given instance is necessary.

Since our experiments spanned four generations of de-
scendants of a single Eve, four IFV transition matrices (each
reduced to size 1×N) for each of W32.Evol’s generations
were built. These matrices were populated with the counts of
descendants whose ||IFV ||2 were represented by the corre-
sponding groups. This procedure is illustrated in Figure 13.
These counts represent transition probabilities among differ-
ent IFVs and define how likely it is for a morphing engine to
produce a descendant with a corresponding frequency vec-
tor.

The accuracy of the generated IFV matrix was tested
with the remaining 60 instances representing all four genera-
tions. The classifier operated by computing ||IFV ||2 for each
test instance and identifying an interval to which a com-
puted norm belongs. A generation was predicted by choos-
ing an IFV matrix that has the highest transition probability
in identified interval. In case a test instance is equally likely
to represent two generations the result generation was cho-
sen at random. In these experiments two fold cross valida-
tion was employed.

The classification accuracies for selected values of N and
relevant instructions, RI are shown in Table 6. The results

3 Euclidian norm shows a vector magnitude and in a given context
allows to measure a difference between vectors.

Detecting Machine-Morphed Malware Variants Via Engine Attribution 17

4
th

 generation samples IFVs:

||IFV1||2 =0.3542

||IFV2||2 =0.3493

……..

||IFV15||2=0.3563

Eve

4
th

 generation IFV matrix

1 2 3 …… N

 …… ….. N 1
st

 generation IFV matrix

…… … N

…… … N 3
d
 generation IFV matrix

2
d
 generation IFV matrix

3
d
 generation samples IFVs:

||IFV1||2 =0.3542

||IFV2||2 =0.3493

……..

||IFV15||2=0.3563

2
d
 generation samples IFVs:

||IFV1||2 =0.3542

||IFV2||2 =0.3493

……..

||IFV15||2=0.3563

1
st

 generation samples IFVs:

∥IFV1∥� =0.3549

∥IFV2∥� =0.3493

 ……..

∥IFV15∥�=0.3563

For each ∥ IFV
�

GEN	g
∥�∈	interval int

IFVGEN	g[int] ++

��
������

∥ IFV� ∥�

��
������

∥ IFV� ∥�

Identify

N intervals

E
v
e

Fig. 13 An illustration of IFV transition matrices construction.

are shown only for the values that yield higher classification
accuracy.

5.4 Discussion

The evaluation results reveal that, for a 17× 17 transition
matrix size, an accuracy of 96.7% was achieved in attribut-
ing morphed instances of W32.Evol to their respective gen-
erations. An accuracy of 98.3% was achieved with 20× 20
transition matrices.

The proposed method offers a quick decision support
procedure for the malware detectors in cases when a mor-
phing engine changes not only a malware appearance but
also its behavior as it replicates.

Attributing such morphed malware instance to a given
generation of descendants of some Eve, perhaps in order to
determine what sort of malicious behaviors or instruction
patterns are to be expected of the malware instance, is a de-
sirable step in the detection process.

Aside from the one-time computational overhead of con-
structing a matrix for each generation of Eve’s descendants,
the storage resources and CPU cycles needed to attribute a
program to a generation of Eve’s descendants are consider-
ably lower that those that would be needed if the detector
were to maintain a signature for each descendant of Eve.

6 Related Work

The problem of program authorship attribution is not new.
Its feasibility has been shown in small pilot study by [33]
and has since revolved around the idea of attributing source
code through various characteristics of a programmer style [22].
Rosenblum et al. [59] has recently took this idea further and
investigated the problem of binary attribution through ex-
traction of stylistic features of program binaries. Although
they envisioned the application of their approach in general
security, it can potentially be used as a complement to our
malware engine attribution approach in the relevant instruc-
tions selection phase.

There have been a number of other studies analyzing
a suspect binary, without the binary execution or control
flow graph (CFG) construction, for a purpose of extracting
’clues’ to guide the process of discriminating between mali-
cious and benign programs [31,60,83,47,69,41,4]. Among
these are the works that employ byte ngram frequency vec-
tors [60]. These methods do not attempt to link malware in-
stances to a particular engine, and hence do not provide the
decision support procedures that a malware detector needs to
justify a necessity for potentially time consuming program
analysis (such as emulation and control flow analysis) that
is tailored for a particular engine.

Our approach, on the other hand, specifically focuses on
building engine signatures to be able to map malware in-

18 Radhouane Chouchane et al.

Table 6 Filtering accuracy of GENn
M classifier.

RI N=10 N=11 N=12 N=13 N=14 N=15 N=16 N=17 N=18 N=19 N=20
7 0.833 0.850 0.800 0.817 0.850 0.783 0.867 0.967 0.933 0.950 0.933
8 0.617 0.867 0.933 0.850 0.850 0.817 0.867 0.883 0.867 0.950 0.950
9 0.617 0.883 0.717 0.867 0.850 0.817 0.883 0.817 0.867 0.950 0.933

10 0.883 0.717 0.833 0.817 0.800 0.900 0.950 0.933 0.917 0.867 0.983

stance to the corresponding engine. In this context, several
methods were proposed for constructing a string-based mal-
ware signature (of bytes or opcode mnemonics) to detect
members of a given set of malware instances, regardless of
whether they have been generated by a fixed engine [27,78,
19]. These methods improve upon a similar method that was
proposed in 1994 by Kephart and Arnold for automatically
constructing, given a malicious binary, a sequence of bytes
that may be used as a signature for the binary [29]. These
methods are similar to the proposed approach as they aim to
reduce a number of signatures stored by malware detectors,
and do not require a program’s CFG to be constructed, but
they also do not provide means to link malware instances to
a specific engine.

There has been also some research efforts on automati-
cally building polymorphic malware signatures [71,42] fo-
cusing on network traffic analysis.

Program normalization is an alternative approach to re-
ducing the size of the signature space. Normalization aims
to remove the results of obfuscation, typically used in meta-
morphic malware, to allow a detector to analyze the program
in its ’normal’ form of a known morphing malware. Various
types of normalizers were proposed. Program normalizers
that do not require a construction of a suspect binary’s CFG
stop early in the malware analysis pipeline [77]. This allows
them to proceed with the signature verification stage without
having to solve potentially hard/unsolvable problems such
as def-use analysis or halting behavior analysis of subpro-
grams. Normalizers that do require binary’s CFG, rely on
simplifying a control flow graph by applying transforma-
tions similar to those performed by optimizing compilers to
reduce the complexity of CFG [12,7].

One advantage that our proposed engine signature method
has over a normalization method is that the construction of
an engine signature does not require a malware variant be
necessarily available. Moreover, it has been shown that no
guarantees can be possibly made, that a normalizer will be
able to generate a set of normal forms of any given (man-
ageable) size for an arbitrary malware family [77].

Several approaches have used behavioral analysis for mal-
ware characterization. These approaches are typically di-
vided into two types: (1) dynamic analysis, i.e. running a
suspect program in an emulator and identifying what the
program does on a given, carefully chosen set of inputs; and
(2) static analysis, i.e., statically analyzing the suspect bi-
nary, often by disassembling it, extracting its CFG, focus-

ing on what may signal a malicious content that can be po-
tentially matched to the signature of a known malicious bi-
nary [73,80,79]. In general, the static analysis techniques
have been shown to not perform well on obfuscated mal-
ware [38,36]. A number of static analysis methods that rely
on a detector’s ability to analyze a suspect’s CFG have been
suggested, and achieved various degree of success, under
condition that the CFG construction is not considerably chal-
lenged through obfuscation and that computational resources
are available for the detector to use any one of these methods
to analyze each of the suspect programs that are submitted
to it [37,11,7,34,24,56,5,40]. A taxonomy of these CFG-
based malware detection methods is presented in [25]. The
fundamental limitations of relying on static analysis to de-
tect malware instances have been documented by [38] and
by [50].

As opposed to static analysis, dynamic analysis showed
to be more effective against the advanced obfuscation tech-
niques [54,14,55]. Majority of this research focused on code
injection attacks and polymorphic shellcode itself [53,54,
14,55]. However, as some of these dynamic analysis ap-
proaches are based on emulation techniques which is not
scalable in practice and is vulnerable to certain types of eva-
sion tactics [57,25,52], their potential adoption in real life
defense tool is less likely.

7 Limitations

The proposed work focuses on morphing engines and specif-
ically mutation techniques characterized as metamorphic ob-
fuscation. Hence, detection of encrypted malware code is
beyond the scope of this work. Although the evaluation of
the proposed approach also included several polymorphic
engines, the primary focus in these experiments was on de-
cryptors often obfuscated with mutation techniques.

The proposed methods work exclusively at the opcode
mnemonic level, since the experiments involved malware
instances that were generated as assembly language pro-
grams. The methods are certainly applicable at the byte-
level, which would relieve malware detector from having
to attempt to disassemble suspect binaries that may have
been crafted to force disassembly to fail. The accuracy of the
methods would need to be reevaluated should one choose to
apply them at the byte level.

Detecting Machine-Morphed Malware Variants Via Engine Attribution 19

Using opcode mnemonics to construct and mine signa-
tures injects a measure of semantics-awareness to the pro-
posed detection methods. Semantics-awareness may certainly
be taken a step further by taking whole instructions or pat-
terns of instructions into consideration, with the added com-
putational cost of having to extract behavioral patterns from
suspect programs and from morphing engines.

8 Conclusions and Directions for Future Work

In this work we proposed and evaluated solution approaches
to the three variations of engine detection problems inspired
by existing works in forensic linguistics. The proposed so-
lutions use one signature, that of the engine, to determine
whether a suspect binary has been authored by a known
morphing engine. The main goal of the proposed methods
is to relieve the burden of having to extract, maintain, and
distribute a signature for each of a large number of possi-
bly obfuscated malware instances, be they known or never-
before-seen. The proposed methods do not require that be-
havioral analysis (such as control flow analysis or emula-
tion) of a suspect program to be performed by the detector.
Instead, they only ask the detector be able to disassemble
a suspect binary, extract the opcode mnemonics within the
disassembly’s instructions, and proceed with the attribution
phase (of the suspect program to a known morphing engine)
using as information about the suspect program only its se-
quence of opcode mnemonics. Detection accuracies of 96%
and above were achieved by each of the proposed methods,
for engine signature sizes ranging from just one real number
to a 17×17 matrix of real numbers.

The experimental results suggest that forensic linguis-
tics literature may hold more authorship attribution methods
that one may be able to successfully adapt to the context of
attributing malware to malware-generating machines.

Acknowledgements This material is based upon work supported by
the Air Force Office of Scientific Research under Award No. FA9550-
09-1-0715. The authors would like to thank Edna Milgo and Sushma
Vallabhaneni for their assistance in conducting the experiments.

References

1. Abou-Assaleh, T., Cercone, N., Kešelj, V., Sweidan, R.: N-gram-
based detection of new malicious code. In: 28th Annual IEEE In-
ternational Computer Software and Applications Conference, pp.
41–42 (2004)

2. Argamon, S., Koppel, M., Pennebaker, J.W., Schler, J.: Automat-
ically profiling the author of an anonymous text. Commun. ACM
52(2), 119–123 (2009)

3. Babić, D., Reynaud, D., Song, D.: Malware analysis with tree au-
tomata inference. In: Proceedings of the 23rd Int. Conference on
Computer Aided Verification (CAV), pp. 116–131. Snowbird, UT
(2011)

4. Bilar, D.: Opcodes as predictor for malware. Int. J. Electronic
Security and Digital Forensics 1(2), 156–168 (2007)

5. Bonfante, G., Kaczmarek, M., Marion, J.Y.: Architecture of a mor-
phological malware detector. Journal in Computer Virology 5(3),
263–270 (2009)

6. Borello, J.M., Me, L.: Code obfuscation techniques for metamor-
phic viruses. Journal in Computer Virology 4, 211–220 (2008)

7. Bruschi, D., Martignoni, L., Monga, M.: Using code normaliza-
tion for fighting self-mutating malware. In: Proceedings of In-
ternational Symposium on Secure Software Engineering. IEEE
(March, 2006)

8. Chouchane, M.R., Lakhotia, A.: Using engine signature to detect
metamorphic malware. In: 4th Workshop on Recurring Malcode
(WORM) (2006)

9. Chouchane, M.R., Walenstein, A., Lakhotia, A.: Statistical signa-
tures for fast filtering of instruction-substituting metamorphic mal-
ware. In: 5th Workshop on Recurring Malcode (WORM) (2007)

10. Chouchane, M.R., Walenstein, A., Lakhotia, A.: Using markov
chains to filter machine-morphed variants of malicious programs.
In: Proceedings of the 3rd International Conference on Malicious
and Unwanted Software (Malware’08) (2008)

11. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.:
Semantics-aware malware detection. In: Proceedings of the 2005
IEEE Symposium on Security and Privacy (S&P’05), pp. 32–46
(2005)

12. Christodorescu, M., Kinder, J., Jha, S., Katzenbeisser, S., Veith,
H.: Malware normalization. Tech. rep., Department of Computer
Science, The University of Wisconsin (2005)

13. Detristan, T., Ulenspiegel, T., Malcom, Y., Underduk, M.S.V.:
Polymorphic shellcode engine using spectrum analysis. Phrack
61 (2003)

14. Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending
browsers against drive-by downloads: Mitigating heap-spraying
code injection attacks. In: Proceedings of the 6th International
Conference on Detection of Intrusions and Malware, and Vul-
nerability Assessment, DIMVA ’09, pp. 88–106. Springer-Verlag,
Berlin, Heidelberg (2009)

15. Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., Lee, W.: Poly-
morphic blending attacks. In: In Proceedings of the 15 th USENIX
Security Symposium, pp. 241–256 (2006)

16. Frantzeskou, G., Gritzalis, S., Macdonell, S.G.: Source code au-
thorship analysis for supporting the cybercrime investigation pro-
cess. In: In Proc. 1 st International Conference on e-business and
Telecommunications Networks (ICETE04), Vol, pp. 85–92 (2004)

17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co.
(1979)

18. Gavrilova, M.L., Yampolskiy, R.V.: Applying biometric principles
to avatar recognition. In: Proceedings of the 2010 International
Conference on Cyberworlds, CW ’10, pp. 179–186. IEEE Com-
puter Society, Washington, DC, USA (2010)

19. Griffin, K., Schneider, S., Hu, X., cker Chiueh, T.: Automatic gen-
eration of string signatures for malware detection. In: E. Kirda,
S. Jha, D. Balzarotti (eds.) Recent Advances in Intrusion Detec-
tion, Lecture Notes in Computer Science, pp. 101–120. Springer
Berlin/Heidelberg (2009)

20. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., Witten, I.H.: The weka data mining software: An update.
SIGKDD Explorations 11 (2009)

21. Han, E.H., Karypis, G.: Centroid-based document classification:
Analysis and experimental results. In: Proceedings of the 4th
European Conference on Principles of Data Mining and Knowl-
edge Discovery, PKDD ’00, pp. 424–431. Springer-Verlag, Lon-
don, UK (2000)

22. Hayes, J.H., Offutt, J.: Recognizing authors: an examination of the
consistent programmer hypothesis. Software Testing, Verification
and Reliability (2009)

20 Radhouane Chouchane et al.

23. Holmes, D.: Authorship attribution. Computers and the Human-
ities 28, 87–106 (1994). URL http://dx.doi.org/10.1007/

BF01830689. 10.1007/BF01830689
24. Holzer, A., Kinder, J., Veith, H.: Using verification technology to

specify and detect malware. In: 11th International Conference on
Computer Aided Systems Theory (2007)

25. Jacob, G., Debar, H., Filiol, E.: Behavioral detection of malware:
from a survey towards an established taxonomy. Journal in Com-
puter Virology 4(3), 251–266 (2008)

26. K2: Admmutate. http://www.pestpatrol.com/zks/pestinfo/a/admmutate.asp
(2005)

27. Karim, M.E., Walenstein, A., Lakhotia, A., Parida, L.: Malware
phylogeny generation using permutations of code. European Re-
search Journal of Computer Virology 1(1-2), 13–23 (2005)

28. Kennedy, D., O’Gorman, J., Kearns, D., Aharoni, M.: Metasploit:
The Penetration Tester’s Guide. No Starch Press (2011)

29. Kephart, J.O., Arnold, W.C.: Automatic extraction of computer
virus signatures. Virus Bulletin pp. 178–184 (1994)

30. Kešelj, V., Peng, F., Cercone, N., Thomas, C.: N-gram-based au-
thor profiles for authorship attribution. In: 6th Conference of the
Pacific Association for Computational Linguistics, pp. 256–264
(2003)

31. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify mali-
cious executables in the wild. Journal of Machine Learning Re-
search 7, 2721–2744 (2006)

32. Koppel, M., Schler, J., Bonchek-Dokow, E.: Measuring differen-
tiability: Unmasking pseudonymous authors. J. Mach. Learn. Res.
8, 1261–1276 (2007)

33. Krsul, I., Spafford, E.H.: Authorship analysis: Identifying the au-
thor of a program. Computers and Security (1996)

34. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Poly-
morphic worm detection using structural information of executa-
bles. In: Proceedings of the 8th Symposium on Recent Advances
in Intrusion Detection (RAID’2005), Lecture Notes in Computer
Science. Springer-Verlag (2005)

35. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Poly-
morphic worm detection using structural information of executa-
bles. In: Proceedings of the 8th international conference on Re-
cent Advances in Intrusion Detection, RAID’05, pp. 207–226.
Springer-Verlag, Berlin, Heidelberg (2006)

36. Lakhotia, A., Kumar, E.U., Venable, M.: A method for detecting
obfuscated calls in malicious binaries. IEEE Transactions on Soft-
ware Engineering 31(11), 955–968 (2005)

37. Lakhotia, A., Mohammed, M.: Imposing order on program state-
ments to assist anti-virus scanners. In: Proceedings of the 11th
Working Conferenceon Reverse Engineering (2004)

38. Lakhotia, A., Singh, P.K.: Challenges in getting ’formal’ with
viruses. Virus Bulletin pp. 15–19 (2003)

39. Layton, R., Watters, P., Dazeley, R.: Unsupervised authorship
analysis of phishing webpages. In: Communications and Infor-
mation Technologies (ISCIT), 2012 International Symposium on,
pp. 1104 –1109 (2012)

40. Leder, F., Steinbock, B., Martini, P.: Classification and detection
of metamorphic malware using value set analysis. In: 2009 4th
International Conference on Malicious and Unwanted Software
MALWARE, pp. 39–46. IEEE (2009)

41. Li, W.J., Wang, K., Stolfo, S.J., Herzog, B.: Fileprints: identifying
file types by n-gram analysis. In: Information Assurance Work-
shop (2005)

42. Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., Chavez, B.: Hamsa: fast
signature generation for zero-day polymorphic worms with prov-
able attack resilience. In: Security and Privacy, 2006 IEEE Sym-
posium on, pp. 15 pp. –47 (2006)

43. Lin, D., Stamp, M.: Hunting for undetectable metamorphic
viruses. J. Comput. Virol. 7(3), 201–214 (2011)

44. Lo, R.W., Levitt, K.N., Olsson, R.A.: Mcf: A malicious code filter.
Computers& Security 14, 541–566 (1995)

45. Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted
and packed malware. IEEE Security and Privacy 5(2), 40–45
(2007)

46. Mathur, R., Maida, A., Palmer, C.E.: Normalizing metamorphic
malware using term rewriting. In: In: Proc. of the 6th IEEE In-
ternational Workshop on Source Code Analysis and Manipulation
(SCAM 06, pp. 75–84. Hill (2006)

47. Menahem, E., Shabtai, A., Rokach, L., Elovici, Y.: Improving mal-
ware detection by applying multi-inducer ensemble. Comput. Stat.
Data Anal. 53(4), 1483–1494 (2009)

48. Meyn, S., Tweedie, R.: Markov Chains and Stochastic Stability.
Springer-Verlag, London (1993)

49. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)
50. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for mal-

ware detection. In: 23rd Annual Computer Security Applications
Conference (2007)

51. NGVCK: Ngvck download page. VXheavens- Virus eXchange
Website. http://vx.netlux.org/vx.php?id=tn02

52. Paleari, R., Martignoni, L., Fresi, G., Bruschi, R.D.: A fistful of
red-pills: How to automatically generate procedures to detect cpu
emulators. In: In Proceedings of the USENIX Workshop on Of-
fensive Technologies (WOOT (2009)

53. Payer, U., Teufl, P., Lamberger, M.: Hybrid engine for polymor-
phic shellcode detection. In: Proceedings of the Second in-
ternational conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, DIMVA’05, pp. 19–31. Springer-
Verlag, Berlin, Heidelberg (2005)

54. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Network-
level polymorphic shellcode detection using emulation. In: In Pro-
ceedings of the Conference on Detection of Intrusions and Mal-
ware and Vulnerability Assessment (DIMVA, pp. 54–73 (2006)

55. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Compre-
hensive shellcode detection using runtime heuristics. In: Proceed-
ings of the 26th Annual Computer Security Applications Con-
ference, ACSAC ’10, pp. 287–296. ACM, New York, NY, USA
(2010)

56. Preda, M.D., Christodorescu, M., Jha, S., Debray, S.: A semantics-
based approach to malware detection. ACM Transactions on Pro-
gramming Languages and Systems 30(5) (2008)

57. Raffetseder, T., Kruegel, C., Kirda, E.: Detecting System Emula-
tors. In: 10th Information Security Conference (ISC) (2007)

58. Rocchio, J.J.: Relevance feedback in information retrieval. In:
G. Salton (ed.) The Smart retrieval system - experiments in auto-
matic document processing, pp. 313–323. Englewood Cliffs, NJ:
Prentice-Hall (1971)

59. Rosenblum, N., Zhu, X., Miller, B.P.: Who wrote this code?
identifying the authors of program binaries. In: Proceedings
of the 16th European conference on Research in computer se-
curity, ESORICS’11, pp. 172–189. Springer-Verlag, Berlin, Hei-
delberg (2011). URL http://dl.acm.org/citation.cfm?id=

2041225.2041239
60. Shafiq, Z., Khayam, S.A., Farooq, M.: Embedded malware detec-

tion using markov n-grams. Lecture Notes in Computer Science
5137, 88–107 (2008)

61. Shaner, R.A.: Patent 5991714 - method of identifying data type
and locating in a file (1999)

62. Singh, P., Lakhotia, A.: Static verification of worm and virus be-
haviour in binary executables using model checking. In: Proceed-
ings of the 4th IEEE Information Assurance Workshop, pp. 298 –
300. IEEE Computer Society, Los Alamitos, CA, USA (2003)

63. Sipser, M.: Introduction to the Theory of Computation. PWS
(1997)

64. Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo,
S.J.: On the infeasibility of modeling polymorphic shellcode.
Mach. Learn. 81, 179–205 (2010)

65. Stamatatos, E.: A survey of modern authorship attribution meth-
ods. JOURNAL OF THE AMERICAN SOCIETY FOR INFOR-
MATION SCIENCE AND TECHNOLOGY p. 538556 (2009)

Detecting Machine-Morphed Malware Variants Via Engine Attribution 21

66. Stein, B., Lipka, N., Prettenhofer, P.: Intrinsic plagiarism analysis.
Lang. Resour. Eval. 45(1), 63–82 (2011)

67. Symantec: Global internet security threat report (2009)
68. Ször, P.: The Art of Computer Virus Research and Defense, 1st

edn. Symantec Press. Addison Wesley Professional (2005)
69. Tabish, M., Shafiq, Z., Farooq, M.: Malware detection using sta-

tistical analysis of byte-level file content. In: Proceedings of the
ACM SIGKDD Workshop on CyberSecurity and Intelligence In-
formatics, pp. 23–31 (2009)

70. Tang, Y., Chen, S.: Defending against internet worms: a signature-
based approach. In: INFOCOM 2005. 24th Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Pro-
ceedings IEEE, vol. 2, pp. 1384 – 1394 (2005)

71. Tang, Y., Xiao, B., Lu, X.: Signature tree generation for polymor-
phic worms. IEEE Trans. Comput. 60(4), 565–579 (2011)

72. TEAM, M.D.: Metasploit project. http://www.metasploit.com
(2006)

73. Toth, T., Kruegel, C.: Accurate buffer overflow detection via ab-
stract payload execution. In: Proceedings of the Recent Advances
in Intrusion Detection, RAID, pp. 274–291 (2002)

74. Triumphant, Inc.: The world-wide malware signature counter
(2010). http://www.triumfant.com/Signature_Counter.asp

75. VCL: Vcl download page. VXheavens - Virus eXchange Website.
http://vx.netlux.org/vx.php?id=tv03

76. VX heavens. vx.netlux.org
77. Walenstein, A., Mathur, R., Chouchane, M.R., Lakhotia, A.: Con-

structing malware normalizers using term rewriting. Journal in
Computer Virology (2008). Doi:10.1007/s11416-008-0081-5

78. Walenstein, A., Venable, M., Hayes, M., Thompson, C., Lakhotia,
A.: Exploiting similarity between variants to defeat malware. In:
Proceedings of BlackHat Briefings. Black Hat (2007)

79. Wang, X., Chan Jhi, Y., Zhu, S., Liu, P.: Still: Exploit code de-
tection via static taint and initialization analyses. In: Proceedings
of the Computer Security Applications Conference, ACSAC, pp.
289–298. IEEE Computer Society (2008)

80. Wang, X., Pan, C.C., Liu, P., Zhu, S.: Sigfree: a signature-free
buffer overflow attack blocker. In: Proceedings of the 15th con-
ference on USENIX Security Symposium - Volume 15. USENIX
Association, Berkeley, CA, USA (2006)

81. Wong, W., Stamp, M.: Hunting for metamorphic engines. Journal
in Computer Virology 2(3), 211–229 (2006)

82. Z0mbie: Some ideas about metamorphism. http://vx.netlux.

org/lib/vzo20.html

83. Zhou, Y., Inge, M.: Malware detection using adaptive data com-
pression. In: AISec ’08: Proceedings of the 1st ACM workshop
on Workshop on AISec, pp. 53–60 (2008)

