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Abstract—We analyze the downlink of multiple input multiple
output (MIMO) multicell systems in the presence of inter-
cell interference (ICI), under different transmit channel state
information (CSI) assumptions. We assume, for the first scenario,
that the Base Stations (BSs) have only the statistical CSI of all the
channels. For the second scenario, we assume that the BSs have
perfect CSI of their User Terminals(UTs) but only the statistical
CSI of channels of the interfering BSs. We consider the following
receiver structures at the UTs a) Optimal Decoding b) Minimum
Mean Square (MMSE) receiver. We derive analytical expressions
to compute the optimal number of streams each BS must use in
order to maximize the total spectral efficiency of the system. We
perform our analysis in the large dimensional regime (assuming
the number of antennas on the BSs and UTs approaching
infinity, at the same rate) using results from random matrix
theory (RMT). However, the asymptotic results provide close
approximation in the finite dimensional scenario. Remarkably, in
the asymptotic regime, the optimization parameters depend only
on the channel statistics and not on the instantaneous CSI, thus
enabling a decentralized resource allocation policy in a multicell
scenario. Our results show that in an interference limited regime,
it is optimal for the BSs to use only a small subset of its streams
to maximize the total spectral efficiency of the system.

I. INTRODUCTION

In this work, we provide an asymptotic analysis of the

downlink spectral efficiency of MIMO multicell systems. For

a point to point MIMO channel in the absence of interfer-

ence, under high SNR assumption and optimal decoding at

the receiver, the spectral efficiency scales linearly with the

available degrees of freedom (DOFs, number of streams) [1].

This implies that the BS must use all its available DOFs.

However, when the receiver uses a linear decoding strategy

such as linear Minimum Mean Square error (MMSE) receiver,

there exists an optimal fraction of streams to maximize the

spectral efficiency [2] 1. The performance of todays cellular

systems is limited by inter-cell interference (ICI). In this work,

we analyze the impact of ICI on the optimal number of streams

in a MIMO multi-cell setting. We derive analytical expressions

to compute the optimal number of streams to be used by each

BS in a MIMO multicell scenario in order to maximize the

total spectral efficiency of the system.

With respect to transmitter channel state information

(CSIT), we consider two scenarios. First the case where BS

1Note that [2] derives the result in the case of CDMA system with MMSE
receivers. However, the analysis is analogous to a point to point MIMO
system.

has only the statistical CSI of all the channels including that

of the interfering BSs. In the second scenario, the BS is

assumed to have perfect CSI of its UT and statistical CSI of

the channels of the interfering BSs. These two CSIT scenarios

are particularly important due to the fact that the knowledge of

perfect CSI of interfering BSs require tremendous amount of

information exchange between the BSs. Hence, it is imperative

to optimize the performance of multi-cell systems with such

partial CSI sharing strategies at the BS. We assume that the

UTs have perfect knowledge of the channel of its serving BS

and the interfering links. We consider two separate decoding

strategies at the receiver namely optimal decoding (MMSE

receiver+successive interference cancellation for the useful

streams while considering ICI as colored Gaussian noise) and

linear MMSE receiver (treating all the other stream except

the stream to be decoded as colored Gaussian noise). Quite

remarkably, in each of the two CSIT scenarios, we show that

there is an optimal fraction β ∈ [0, 1] of the total number of

available streams that each BS must use in order to maximize

the total spectral efficiency of the system.

We formulate the analysis in the asymptotic regime (assum-

ing the number of antennas on the BSs and UTs approaching

infinity, their ratio being constant) using tools from random

matrix theory (RMT). We then show that the asymptotic result

provides good approximation in the finite dimensional scenario

as well. The advantages of such a formulation is two fold.

• In the large dimensional regime, the total spectral effi-

ciency of the system only depends on the channel statis-

tics rather than the instantaneous realizations. Hence the

BSs have to exchange only the statistical CSIT between

themselves which tremendously reduces the amount of

information exchange between the BSs.

• In the finite dimensional regime, choosing the optimal

subset of antennas to transmit the streams is a NP-hard

problem and hence computationally expensive. However,

in the asymptotic formulation, the antenna selection prob-

lem depends only on the channel statistics rather than

the instantaneous gains. Since all the channels between

a given BS and UT have the same statistics, it does not

matter which antenna subset the BS uses. The system

performance only depends on the number of antennas

the BS transmits on.

Prior works relating to stream control in MIMO systems



in the presence of interference include [3],[4],[5] (Some other

references in field of ad-hoc networks have not been discussed

here due to the lack of space). Of particular relevance is

the work of [5]. It deals with ad-hoc networks consisting of

multiple transmit receive pairs with transmitters knowing only

the CSI of the channel of their receiver. The authors derive

asymptotic expression for the spectral efficiency and show with

the help of simulations that when the node density becomes

high, the system performance is better if nodes transmit using

fewer streams.

II. RELEVANT RESULTS FROM RANDOM MATRIX THEORY

We start by summarizing the relevant results from RMT for

use in our subsequent analysis.

Theorem 1. (Deterministic Equivalent of the Shannon Trans-

form [6]) Let K,N, n be positive integers and define

BN =

K
∑

k=1

R
1/2
k XkTkXkR

1/2
k

where the matrices R
1/2
1 , . . . ,R

1/2
K ∈ C

N×N
are determin-

istic correlation matrices and T
1/2
1 , . . . ,T

1/2
K ∈ C

n×n
are

nonnegative diagonal matrices and X1, . . . ,XK ∈ C
N×n

are

random channel matrices with i.i.d. entries with zero mean,

variance 1
n . Let us denote |X| and tr(X) as the determinant

and the trace of matrix X respectively. The Shannon transform

of the matrix BN is defined as

ΨN (z) = log
∣

∣

∣
IN +

1

z
BN

∣

∣

∣

For large N,n the Shannon transform satisfies

ΨN (z)− Ψ̄N (z)
a.s.−−−−−−→

N,K→∞
0

where Ψ̄N (z) is the deterministic equivalent of the Shannon

transform evaluated at point z given by
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K
∑

k=1

1

N
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∣

∣

∣
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∣

∣

∣
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K
∑

k=1

δk(z)ek(z) (1)

(ei(z), δi(z)) , i ∈ 1, . . . ,K, form the unique solution to the

equations

ei(z) =
1

N
trRi

(

z

[

IN +

K
∑

k=1

δk(z)Rk

])−1

(2)

δi(z) =
1

ni
trTi (z [Ini

+ ciei(z)Ti])
−1

(3)

The deterministic equivalent of the Stieltjes transform of the

matrix BN can be evaluated as

m̄BN
(z) =

1

N
tr

(

z

[

IN +

K
∑

k=1

δk(z)Rk

])−1

(4)

III. SYSTEM MODEL

Consider a cellular system consisting of N cells. Each BS

has Nt antennas and the UTs have K antennas 2. We consider

only one active UT per cell at any given time (over a particular

frequency band). The channel matrix between a BS i and UT

in cell j is given by µijHij ∈ C
Nt×K

, where µij is the path

loss between BS i and UT in cell j.We consider the Kronecker

channel model [6] with only left sided correlation.

Hij = R
1/2
ij Xij

R
1/2
ij ∈ C

K×K
is a complex Hermitian matrix representing

the correlation at the receiver. The entries of the matrix Xij

are i.i.d. Gaussian distributed (CN (0, 1/Nt).) We assume that

the antennas at the BS are spaced sufficiently apart from each

other. Hence, the correlation matrix at the transmitter is the

identity matrix. Each BS employs a precoding matrix Wi and

hence xi = Wisi. We assume that the BSs use Gaussian

codebooks, si ∼ CN (0, INt
). The received signal yi ∈ C

K×1

by the UT in cell i is given by

yi = µiiHiixi +
∑

j 6=i

µjiHjixj + ni

where xi ∈ C
Nt×1

is the useful signal for UT in cell i and
ni ∈ C

K×1 ∼ CN (0, σ2I) is the noise vector.

IV. ANALYSIS

In this section, we analyze the system under different CSIT

assumptions.

A. Statistical CSIT

We first consider the case with only statistical CSI at the

BS. For a point to point MIMO system with only statistical

CSIT, it is well known [7] that the optimal strategy is to

transmit streams on all the antennas with uniform power

allocation (assuming independent and identically distributed

(i.i.d.) Gaussian channels). In the presence of ICI, we assume

that the BSi uses only Mi ≤ Nt of its antennas to send Mi

independent streams with uniform power allocation (hence the

precoding matrix Wi = INt
). We seek to find the optimal

number of streams M∗
i for every BSi so that the total spectral

efficiency of the system is maximized.

We define βi = Mi/Nt, the fraction of antennas which

are turned on. Accordingly the covariance matrix of the input

signal Λi for BSi is

Λi =
NtPmax

Mi

(

IMi
0

0 0Nt−Mi

)

In the formulation of Λi, we have assumed that the BS decides

to divide its power between the first Mi of its antennas.

However, the BS can equivalently choose to divide its power

between any of its Mi antennas yielding a different perfor-

mance in terms of the total spectral efficiency. Let us denote

the permutation matrix by Π. The the covariance matrix of

the input signal (with BSi transmitting on Mi antennas) can

correspond to any permutation ΠΛi of Λi.

2Note that the setup can be easily extended to include different number of
antennas at the BS and UTs (Nti and Ki).
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1) Optimal Decoding: Assuming Gaussian signaling, the

spectral efficiency for UTi assuming optimal decoding strat-

egy (for the useful streams) and considering ICI as colored

Gaussian noise is given by

Ri(β1, . . . , βN ) =
1

Nt
log |I+ µiiHiiΛiH

H
iiG

−1
i | (5)

1

Nt









log |I+
N
∑

j=1

µjiHjiΛjH
H
ji | − log |I+

N
∑

j=1
j 6=i

µjiHjiΛjH
H
ji |









(6)

where Gi =
∑

j 6=i µjiHjiΛjH
H
ji + σ2

nI. Let us denote the

first term and second terms of (6) by the notation ΨS+I and

ΨI respectively. The spectral efficiency maximization problem

can be formulated as an optimization problem given by

max
β1,...,βN

N
∑

i=1

Ri(β1, . . . , βN ) (7)

s.t. βi ∈
[

1

Nt
,
2

Nt
, . . . , 1

]

Note that in order to analyze the above system directly, the BSs

must have perfect knowledge of all the channels including the

interfering links. This information can is very hard to obtain

in real time. Additionally, the BSs must compare all possible

subsets of antenna selection (and every possible permutation)

which is a NP-hard problem. In what follows, we overcome

this issue by resorting to the asymptotic approximation as-

suming very large system dimensions and use tools from

RMT. In the large dimensional regime, we can approximate

the expression for the spectral efficiency by its deterministic

equivalent given by

Ri(β1, . . . , βN )− R̄i(β1, . . . , βN )
a.s.−−−−−−→

Nt,K→∞
0 (8)

where R̄i(β1, . . . , βN ) can be calculated using the result of

Theorem 1 applied to the terms ΨS+I and ΨI separately.

The BSs can now jointly optimize βi, i ∈ {1, . . . , N}
in order to maximize the total spectral efficiency of the

system. We now introduce the theorem which will enable

us to maximize the deterministic equivalent of the spectral

efficiency directly rather than maximizing the exact expression

in equation (5). Let us define

β
∗
1 , . . . , β

∗
N = argmax

β1,...,βN

N
∑

i=1

Ri(β1, . . . , βN ) (9)

β̄
∗
1 , . . . , β̄

∗
N = argmax

β1,...,βN

N
∑

i=1

R̄i(β1, . . . , βN ) (10)

Theorem 2.

Ri(β
∗
1 , . . . , β

∗
N )− R̄i(β̄

∗
1 , . . . , β̄

∗
N )

a.s.−−−−−−→
Nt,K→∞

0 (11)

The proof follows a similar approach as in [8]. It has been

omitted here for the lack of space.

It should be noted that the computation of the deterministic

equivalent only depends upon the statistics of the channel and

not on the exact realization. Since the channels between a

given BS and UT have the same statistical properties, it does

not matter which subset of antennas the BS decides to use.

The only factor to be considered is the number of streams

which the BSs must optimize. Interestingly, the BSs have to

exchange only the statistical CSI which reduces the amount

of information to be exchanged between them (especially in

fast fading scenarios).

2) MMSE Receiver: We now consider a more practical

decoding strategy namely the MMSE receiver. Let us denote

the kth column of the matrix Hii by the notation hik.
Likewise, we denote the kth transmitted, received symbol

and power allocation for UTi by the notation yik, xik and

pik respectively. We once again consider the uniform power

allocation strategy. With the above notation, the received signal

yik = µiihikxik +
∑

l 6=k

µiihilxil +
∑

j 6=i

µjiHjixj + nik

Let us denote Λ−l
i as the matrix Λi with the lth diagonal entry

removed. The SINR of the kth stream, γi,k at the output of

the MMSE receiver is

γi,k = pikh
H
ikG

MMSE
ik

−1
hik (12)

G
MMSE
ik =

∑

l 6=k

µiihilΛ
−l
i h

H
il +

∑

j 6=i

µjiHjiΛjH
H
ji + σ

2
I

The spectral efficiency for UTi is given by the sum of spectral

efficiencies of the individual streams.

RMMSE
i (β1, . . . , βN ) =

1

Nt

Nt
∑

k=1

log(1 + γi,k) (13)

Once again in order to obtain analytical expressions to opti-

mize the fraction βi, we use asymptotic results from RMT.

Under large dimensional assumption, we can approximate

the RHS of equation (12) by the deterministic equivalent of

the Stieltjes transform of the matrix Gik evaluated at point

z = σ2.

hH
ikG

MMSE
ik

−1
hik − m̄GMMSE

ik

a.s.−−−−−−→
Nt,K→∞

0

which can be evaluated as in equation (4). Hence the deter-

ministic equivalent γ̄i,k of the SINR per stream is given by

γ̄i,k = pikm̄GMMSE
ik

(14)

Therefore the expression for the spectral efficiency in (13) con-

verges to its deterministic equivalent in the large dimensional

regime given by

RMMSE
i (β1, . . . , βN )− R̄MMSE

i (β1, . . . , βN )
a.s.−−−−−−→

Nt,K→∞
0

where

R̄MMSE
i (β1, . . . , βN ) =

1

Nt

Nt
∑

i=1

log(1 + γ̄i,k)

We would like to remark that equation (14) only shows the

convergence of SINR of a single stream. The expression

for RMMSE
i (β1, . . . , βN ) involves summing over the spectral

efficiency of infinitely many streams whose convergence to

the sum of its deterministic equivalents is not true in general.

3



However, [9] proves the convergence of the sum in the special

case of Gaussian distributed channel, hence validating the

RMT approximation. We now proceed to study the impact

of perfect knowledge of CSI at the BS on the optimal number

of streams.

B. Perfect CSIT

In this section, the BS is assumed to have perfect CSI of the

UT it serves. For the point to point MIMO system in presence

of CSIT, the optimal transmission strategy is to perform SVD

of the channel matrix and transmit along the right singular

vectors with water filling power allocation strategy [7]. In the

presence of interference, the authors in [5] argue that per-

forming SVD and transmitting along the Mi ≤ min(Nt,K)
best right singular vectors is still a good strategy when the

BSs do not have the knowledge of interference caused to the

unintended UTs (due to the lack of CSI). We adopt a similar

transmission strategy in our setting as well.

For technical reasons, we restrict our analysis to the case

of i.i.d. Gaussian channel model (with transmit and receive

correlation matrices being identity) and optimal decoding

strategy at the receiver. Let us denote the SVD of the channel

matrix Hii by the notation

Hii = UiiΣiiV
H
ii

Uii = [ui1 ui2 . . .uiNt
] ∈ C

Nt×Nt and VH
ii =

[vi1 vi2 . . .viK ] ∈ C
K×K

are unitary matrices and Σii ∈
R

Nt×K
is a diagonal matrix containing the singular values of

matrix Hii as its diagonal elements. The transmitted message

xi by BSi and the corresponding covariance matrix Λi is

xi = Viisi

Λi = ViiPiV
H
ii

where Pi = diag(pi1, . . . , pimin(Nt,K)). Note that since the

covariance matrix of the input signal now depends on the

channel matrix, we cannot apply the result of Theorem 1

directly to our analysis. It can be shown that, the spectral

efficiency of UTi is upper and lower bounded by the following

[5],

Mi
∑

k=1

log2

(

1 + pikλikû
H
ikG

l
i

−1
ûik

)

≤ Ri ≤

Mi
∑

k=1

log2

(

1 + pikλiku
H
ikG

u
i
−1

uik

)

(15)

where the matrices Gl
i =

∑

j 6=i µjiK̂jiPjK̂
H
ji + σ2

nI,

and Gu
i =

∑

j 6=i µjiKjiPjK
H
ji + σ2

nI, K̂ji ∈
C

Nt−M+1×M
,Kji ∈ C

Nt×M
entries of each of

these matrices being i.i.d. CN (0, (1/Nt)). The vectors

ûH
ik ∈ C

Nt−M+1×1
,uH

ik ∈ C
Nt×1

are unit-norm isotropic

random vectors that are mutually orthogonal. λik and pik
represent the kth largest eigen value of matrix HiiH

H
ii and the

power allocated on the kth largest eigen mode respectively.

In the asymptotic limit, the upper and lower bounds collapse

to the same value. Once again for analytical tractability, we

resort to an asymptotic approximation of the achievable rate

using RMT. First notice that asymptotically,

uH
ikG

u
i
−1

uik −mGu
i

a.s.−−−−−−→
Nt,K→∞

0

mGu
i
is the deterministic equivalent of the Stieltjes transform

evaluated at z = σ2. For large Nt and K, the eigen value

distribution of the matrix HiiH
H
ii converges almost surely to

the deterministic distribution given by the Marcenko-Pastur

(MP) Law

dF (λ) = (1 − c−1)δ(λ) +
1

2πcλ

√

(λ− a)+(b− λ)+

where c = Nt/K (ratio of the dimensions), a = (1 −√
c)2, b = (1 +

√
c)2, correspond to the support set of the

eigen value distribution and δ(λ) = 1{0}(λ) is the Dirac

function. We assume that the power allocation across the eigen

values converges to piλ in the asymptotic regime. Additionally,

the summation of (15) converges to integration over a subset

of the support of the eigen value distribution (corresponding

to the Mi largest eigen values). Hence,

Ri −−−−−−→
Nt,K→∞

∫ b

αi

log2
(

1 + µiipiλmGu
i
λ
)

dF (λ) (16)

The lower limit αi ∈ [a, b] is related to the M th
i largest eigen

values by the relation

αi ≈ F−1((N −Mi + 1)/N)

where F−1 is the functional inverse of the cumulative distri-

bution function (CDF) of the MP law, given by

F (λ) =

{

π+
√

4λ−λ2+2arcsin(π/2−1)

2π
, 0 ≤ λ < 4

1, else

Finally, the relationship between βi, and αi is given by

βi = 1− F (αi)

Once again, we have formulated the asymptotic approximation

of the system with perfect CSIT. The BSs can now optimize

the asymptotic expression to maximize the total spectral effi-

ciency of the system.

V. SIMULATION RESULTS

In this section, we provide some simulation results. We

consider a distance dependent path loss model. The path loss

factor from BSi to UTj is given as µij =
(

1
dij

)γ

where dij
is the distance between from BSi to UTj. γ is the path loss

exponent which is taken to be 3.6. We normalize the variance

of the total received noise to σ2 = 1. For the correlation

model at the receiver, we use an extended version of the

Jake’s model, refer [6] for details. We plot the variation of

the spectral efficiency around the deterministic equivalent for

finite system dimensions in Figure 1 for a two cell scenario

with β1 = β2 = 1. We assume the number of receive antennas

scales with number of transmit antennas such that Nt = K .

The horizontal line represents the deterministic equivalent and

the vertical lines represent the variation of spectral efficiency

around their mean value. It can be seen that the deterministic
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(b
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z)

Fig. 1. Variation of spectral efficiency for finite channel dimensions around
the asymptotic value for the case with statistical CSIT and optimal decoding.

equivalent provides us with good approximation results for

practical network dimensions of the order 10 × 10, thus

validating the RMT results.

To have a good understanding of the impact of ICI on the

optimal number of streams and the spectral efficiency, we now

consider the infinite 1-D Wyner model (as shown in Figure

2 with α = 0.8). We assume a special case in which each

UT in a given cell receives interference from only L adjacent

BSs (and zero from the rest). We study the impact of L on

the optimal number of streams. Note that since the system

is perfectly symmetric in the asymptotic regime, all the BSs

transmit with the same number of streams (which we will

optimize to maximize the spectral efficiency). The optimal

number of streams per BS is plotted as a function of the

number of cells causing ICI in Figure 3. It can be observed that

the optimal number of streams decreases with the number of

interfering BSs. We would like to mention that both in the case

of perfect CSIT and the case with MMSE receiver, the optimal

fraction β∗ < 1, even with no ICI. In the case of perfect

CSIT, this is due to the fact that the BS invests power only

in the best eigen modes. The spectral efficiency attainable by

investing power in certain weaker eigen modes might actually

be lesser. In the case of MMSE receiver, the optimal fraction

is less than 1 due to the inter-stream interference.

1
α α α2α2

Fig. 2. Wyner Model

Finally, in order to compare the gain obtained by knowledge

of perfect CSIT over the case of statistical CSIT, we plot the

maximum achievable spectral efficiency (obtained by optimiz-

ing β∗)in both the cases as a function of the SNR in Figure 4.

It can be seen that the presence of CSI yields higher spectral

efficiency than the case latter case. In Figure 4, we obtain a

gain of 21% at 10dB SNR.

VI. CONCLUSION

In this paper, we derived an analytical model for the

downlink spectral efficiency of MIMO multicell systems in

the asymptotic regime using tools from RMT. We also showed

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

No. of Interfering BSs

β
∗

Perfect CSIT

Statistical CSIT/ Optimal Decoding

Statistical CSIT/ MMSE Receiver

Fig. 3. Optimal fraction of streams Vs the No. of Interfering Cells, Wyner
Model with α = 0.8, Nt = K = 10 and SNR = 30dB.

2 4 6 8 10
5

10

15

20

25

SNR [dB]
R

∗ s
u
m

(b
/s
/H

z)

Perfect CSIT

Statistical CSIT/ Optimal Decoding

Fig. 4. Optimal sum spectral efficiency Vs SNR(dB) for 2 cells, Wyner
Model with α = 0.8, Nt,K = 5

that in an interference regime, it is optimal for the BSs to

transmit over only a small subset of streams. In the case with

statistical CSIT, this translates to turning off certain antennas

on the BS. Turning off of a subset of antennas has importance

in the context of ”Green Communications” since it leads to

the reduction in the RF power and the cost of RF elements.
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