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ABSTRACT

This demo presents a framework for running probabilistic
graph queries on uncertain graphs and visualizing their re-
sults. The framework supports the most common uncer-
tainty model for uncertain graphs, i.e. existential uncer-
tainty for the edges of the graph. A large variety of mean-
ingful graph queries are supported, such as shortest path,
range, kNN, reverse kNN, reachability and various aggrega-
tion queries. Since the problem of exact probability compu-
tation according to possible world semantics is in # P-Time
for many combinations of model and query, and since ignor-
ing uncertainty (e.g. by using expectations only) will yield
counterintuitive and hard to interpret results, our frame-
work uses an optimized version of Monte-Carlo sampling to
estimate the results which allows us not only to perform
queries that conform to possible world semantics but also to
sample only parts of a graph relevant for a given query. The
main strength of this framework is the visualization com-
bined with statistic hypothesis tests, which gives the user not
only the estimated result of a query, but also an indication of
how significant and reliable these results are. The aim of this
demonstration is to give an intuition that a sampling based
approach to probabilistic graphs is viable, and that the es-
timated results quickly converge even for very large graphs.
A video demonstrating our framework can be downloaded at

http://www. dbs.ifi.lmu.de/Publikationen/videos /P Graph.html
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1. INTRODUCTION

Uncertainty is ubiquituous in the physical world. It can
be introduced by faulty measurements e.g. in wireless sen-
sor networks, but also by privacy enhancing transformations
of collected data. Therefore, in the last years database re-
searchers developed tools, data structures and query algo-
rithms for uncertain data, both for relational databases, but
also for spatio-temporal and multimedia databases [1].
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Spatial networks, such as street networks and informa-
tion routing networks, but also social networks, the World
Wide Web and even biological networks, e.g.protein-protein
interaction networks [2] can be modeled by graphs. Within
many of these applications, uncertainty is a major concern.
Routers can loose connectivity due to overload or physical
damage, congestion can obstruct streets, and the informa-
tion given by users in social networks might be erroneous.

However, although addressing uncertainty in databases is
of critical interest both for researchers and industry, the
problem of exact probability computation according to pos-
sible world semantics is in # P-Time for nearly all combi-
nations of model and query. Discarding uncertainty infor-
mation often makes results counterintuitive and difficult to
interpret such that approximation of the results achieved by
possible world semantics is usually a better choice. To pro-
vide an insight into the topic of querying uncertain graphs
under the possible worlds semantics, we developed a tool
for visualizing sampling-based queries on probabilistic graph
data. In accordance to related research [2], our graph model
assumes nodes to be certain while edges own existential un-
certainty, i.e. edges either exist or do not exist, while the
length of an edge is assumed to be fixed. Based on a sim-
ple interface, the user can create graphs, load them from an
XML file and modify the graphs by changing edge weights
and probabilities. He can perform queries such as kNN
queries[2], RENN [3] queries or finding reachable nodes, and
he can retrieve statistics over the probabilistic graph, such
as its diameter or its largest connected component. Since
queries in probabilistic graphs are inherently uncertain, the
user receives probability distributions over possible results
or probabilities of objects being part of the result. Graph
data and resulting probabilities are visualized by employing
one of three visualization techniques.

With our demonstration we aim at providing an insight
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Figure 1: High Level Framework



into the sampling process, answering questions such as How
many samples are sufficient to achieve high accuracy of the
query result?. We approach this problem both from a vi-
sualization perspective and by employing statistical models.
visualization allows the user to find out when the sampling
process converges to a statistical distribution. The imple-
mented statistical models draw the same conclusions in a
formal manner.

The remainder of this paper is organized as follows. In
Section 2 we introduce the theoretical foundations of our
demonstration. Section 3 introduces the building blocks
of our framework, namely queries and visualizations, and
provides an insight into implementation-specific details. In
Section 4 we give an insight into the aspects that we will
demonstrate during our presentation.

2. THEORETICAL BACKGROUND

Before introducing our framework, let us first provide a
short overview over the theoretical background of our work.
One of the most basic concepts addressed within our work
is the concept of a Graph.

DEFINITION 1 (GRAPH). An (undirected) weighted graph
G is a tuple G = (V, E,w) with V being a set of vertices
(nodes), E being a set of edges, E C {(v1,v2)|v1,v2 € V},
and w: E — R being a weighting function.

Within our setting, the set of edges is not fixed, but each
edge has a probability of existence, while the existence of
one edge does not affect the existence of another edge:

DEFINITION 2  (PROBABILISTIC GRAPH). A probabilistic

graph under existential uncertainty is an (undirected) weighted

graph P = (V, E,w,p), with p : E — [0, 1] being a function
that returns for each e € E the probability of being an edge
of G.

A realization of P can be drawn by applying the function p
to each edge e € E, resulting in a graph G = (V, E' C E,w).
Each of these realization corresponds to a possible world of
P. The number of possible worlds of P is usually exponential
in the number of uncertain edges, i.e. in the number of
edges e € F with 0 < p(e) < 1. Therefore materializing
every possible world of P, computing its probability, and
computing results exhaustively is not a matter of choice.
Sampling is usually much faster and can achieve accurate
results as well.

One of the most important questions when employing
sampling is to find out how many samples are sufficient to
find the correct result with high probability. This problem
was one of the driving factors for our demonstration. From
a statistics point of view, hypothesis tests serve this purpose.
In our framework, we employed the binomial test statistic.
With this technique it is possible to determine the probabil-
ity (confidence) that a given result, retrieved by sampling,
will deviate by more than a predefined threshold (the confi-
dence interval).

Visual tools developed for gaining insight into the sam-
pling process will be introduced in the following section.

3. FRAMEWORK DESCRIPTION

Framework Overview. The developed framework has
been built with extensibility in mind such that new queries

and corresponding result visualizations can be easily inte-
grated. A simplified overview is given in Figure 1. The
main part within the framework is of course the uncertain
graph itself. It is visualized and can be modified by the
graph visualizer. Additionally the graph visualizer, which is
the main graphical interface, lets the user choose an algo-
rithm, set the input parameters and start the sampling for
the specified graph algorithm via the corresponding visual-
izer. Each graph algorithm may only access edges of the
uncertain graph using the edge sampler. The edge sampler
on the other hand requests the edges and connected nodes
from the uncertain graph and uses Monte-Carlo sampling to
create a possible world for these edges. The edge sampler
has to memorize which edges that have already been sam-
pled during one run (resulting in one sample result) of the
algorithm and is reset when the algorithm terminates the
current run. Each graph algorithm is controlled by a cor-
responding result vizualizer which displays the accumulated
result after each sample run of the algorithm.

Supported Queries. A wide variety of queries from
traditional database research can be applied to graph struc-
tures. Furthermore, mathematical statistics over a graph
such as its diameter can provide useful insights into a par-
ticular topic. Due to space constraints, we only focus on an
informal definition of each query:

e kNN query: Given a query object @@ and several ob-
jects located on arbitrary nodes within the network, a
kNN query returns the k objects in the graph closest
to Q[4]." In our probabilistic setting, this query re-
turns, for each object, the probability of being in the
kNN set of object @@ . The query can, for example, be
employed in spatial networks to determine the gasoline
stations closest to a car.

e RENN query: The graph RENN query, defined in [3],
is the converse of a graph kNN query. Given a query
object @, we aim at determining the objects that have
@ as one of their k nearest neighbors. Again, this
query returns, for each object, the probability of being
in the RENN set of Q . A useful application of this
query is outlier detection.

e Shortest-Path-Query: This query computes the length
of the shortest path between two pre-defined nodes in
the network. In a probabilistic setting, the result is not
a single value but instead a distribution of the length
of shortest paths in all possible worlds.

e Connected Components: Our framework allows to com-
pute the number of connected components within the
graph and the size of its largest connected component.
Furthermore, after defining a starting node, one can
compute the size of the connected component contain-
ing the starting node.

e Diameter: The diameter of a graph is defined as the
maximum length of a shortest path between two arbi-
trary nodes within the network. Our framework allows
to compute the diameter of a probabilistic graph as the
largest non-infinite distance between any two nodes in
the network.

Visualizations. FEvaluated graphs and the correspond-
ing query results can be visually analyzed with a wide vari-
ety of tools. After creating a graph, the user has access to
a Node-Edge-Visualization of the graph, see Figure 2. The

'For the sake of simplicity, in contrast to [4] we only allow
objects to be located on nodes of the graph, not edges.
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Figure 2: The Graph Visualizer

user can decide whether edge weights should show the length
of an edge or its probability of existence, or whether object
IDs or vertex IDs are shown. If the aspired query expects
a start/end node as an input, the user can select them by
left-clicking. Objects for the kNN and RENN query can be
positioned and deleted in a dedicated edit mode.
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After performing a query resulting in a real-numbered re-
sult, such as the Shortest-Path-Query, the number of con-
nected components or the diameter of a graph, a user can
access the probability distribution of the result (see Figure
3). To allow the user an insight into the convergence of a
query, this probability distribution is shown directly after
drawing the first sample and updated continuously when-
ever new samples are drawn. This allows the user to gain
insight into the confidence of a result at a given number of
samples drawn from the graph.
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Figure 4: The Subgraph Visualization

Whenever a user performs a query that returns a set of
objects, such as the (R)kNN query, a ranking is shown that
shows, for each object, the probability of being within the
result set. Again, this result is updated continuously when
drawing samples from the graph. Figure 4 shows the result
of a largest-connected-component query.

Key Features. We want to highlight three key features
of the system which yield more efficiency on the on hand and

more intuitive understanding of the probabilistic results for
the user on the other hand.

Realtime-result-visualization means that during query pro-
cessing the result of each sample run is directly integrated
into the overall sampling result. As a consequence each sam-
ple run updates the result visualization and the user can
intuitively determine when certain probabilistic results con-
verge (meaning that the confidence of the current sampling
result being close to the exact result is very high).

On-the-fly-sampling [2] is a technique which is enforced
by the architecture of the framework. Each integrated algo-
rithm is required to only access the uncertain graph using
the sampler component which then samples the edges of a
node. In doing so, it is assured that each algorithm only
samples the part of the graph which is necessary for com-
puting the result. E.g. a shortest-path query between two
nearby nodes does not require to sample the whole graph,
which would otherwise yield a large computational overhead.

Integrated statistical tests give the user an additional as-
sistance when to stop the monte-carlo sampling procedure.
The tests are performed after each sample run of an algo-
rithm and are integrated into the result visualization.

4. PRESENTATION

During the demonstration we will describe some crucial
applications which require to represent the underlying model
as an uncertain graph and discuss the main motivations for
this system. We will show how synthetic and real-world un-
certain graphs can be created, loaded or modified into the
system. A major focus of the demonstration will lie on per-
forming different graph algorithms on the uncertain graphs.
We will show that the online-sampling approach yields an
interactive and intuitive way for the user to know when to
stop the query processing. Additionally we will present how
the decision to stop an algorithm can be facilitated by inte-
grated statistical tests. Using the on-the-fly sampling, which
is enforced for each algorithm in the framework it will be
demonstrated, that results converge very fast even for ex-
tremely large graphs, since only relevant parts of the graph
are sampled. Last but not least we will describe the differ-
ent result visualization techniques of the system and how
queries and corresponding visualizations can be modularly
integrated into the system.
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