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Abstract. The Nth order probability density function for pixels in a restricted neighborhood may be characterized by a set 
of N histograms (or some corresponding moments) computed along appropriately chosen axes. The projections on those 
axes are obtained from a local linear transform of the local neighborhood vector. This approach is closely related to filter 
bank analysis methods and gives a statistical justification for the extraction of texture properties by means of convolution 
operators or local matches. Optimal and sub-optimal linear operators are derived for texture analysis and classification. 
Experimental results indicate that the method is robust, flexible, and that it performs as well as standard co-occurrence based 
methods for texture classification. The proposed approach enables texture characterization with a lower number of features 
and it is also computationally more appealing. 

Zusammeafassung. Das Verfahren der Bildanalyse mit Hilfe lokaler linearer Transformationen erlaubt es, die N-dimensionale 
Verteilungsdichtefunktion der Punkte eines begrenzten Bildausschnitts durch N Histogramme anzun~ihern, die entlang geeignet 
gew~ihlter Achsen aufgestellt werden. Die Projektionen auf diese Achsen werden mit Hilfe einer linearen Transformation des 
sogenannten Nachbarschaftsvektors berechnet. Diese Ann~iherung entspricht der Analyse mit Hilfe einer Filterbank und gibt 
eine statistische Rechtfertigung fiir die Extraktion yon Eigenschaften der Bildtextur mit Hilfe lokaler Merkmalsfilter. Optimale 
und suboptimale Lrsungen fiir die Wahl derartiger linearer Filter werden vorgeschlagen fiir Texturanalyse and Klassifikation. 
Wie Experimente mit realen Bildtexturen zeigen, ist die Methode unempfindlich, anpassbar, und ebenso zuverl/issig wie 
Standardmethoden die Pixelpaarebeziehungen fiir Texturklassifikation verwenden. Die vorgeschlagene Methode ermrglicht 
Texturbeschreibungen mit weniger Parametern und benrtigt weniger Computeroperationen. 

R~umr.  La mrthode d'analyse de texture par transformation linfaire locale permet une caractfrisation partielle d 'une densit6 
de probabilit6 d'ordre N par N histogrammes calculrs selon des axes convenablement choisis. Cette approche est 6quivalente 

une analyse par banc de filtres et apporte une justification statistique quant au principe de l 'extraction de proprirtrs de 
texture par des masques de convolution. Des solutions optimales et sous-optimales pour le choix des filtres sont proposres 
pour l'analyse et la classification de textures. On montre exprrimentalement que la mrthode est robuste et flexible. Pour la 
classification de textures, elle permet d'atteindre des performances aussi bonnes que les m&hodes usuelles se basant sur des 
mesures de co-occurrences. De plus, elle donne lieu/l une caractrrisation des proprirtrs de texture avec un nombre moindre 
d'attributs; elle se prate 6galement h u n  calcul plus aisr. 

Keywords. Texture analysis~ texture classification, linear transform, linear operators, filter bank, Karhunen-Lorve transform. 

1. Introduction 

Texture is the term used to qualify the surface 
of a given object or phenomenon and is undoub- 
tedly one of the main features used in image pro- 
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Instrumentation Branch, Room 3W13, Building 13, National 
Institutes of  Health, Bethesda, MD 20892, U.S.A. 

cessing and pattern recognition. Texture must be 
regarded as a neighborhood property of an image 
point and has been widely studied during the last 
decade. A number of analysis methods which 
all try in some way to describe pixel neighbor- 
hood relationships have been suggested [16]. A 
fruitful approach, which has been studied by 
different authors, is to extract local neighborhood 
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information by means of linear filtering operators 
[1, 2, 11, 15, 24, 25, 31]. Thus, the local texture 
properties of a given region in an image can be 
characterized by a set of energy measures com- 

puted at the output of a filter bank; these convo- 
lution masks may be local detectors of elementary 
structures such as 'fiats', 'spots', or 'edges' [24, 25], 
directional filters which attempt to model the 
human visual system [ 11, 15, 31 ] or linear operators 
obtained from a principal component analysis of 
the underlying texture field ('eigen-filters') [1, 2]. 

This work presents a statistical vector space for- 
mulation of this problem which leads to an 
extension and a unification of  previous reported 
approaches. It suggests representing the Nth  order 
probability density function (PDF) of the pixels 
in a restricted neighborhood by a set of N his- 
tograms evaluated after suitable linear transforma- 
tion. The transform coefficients are computed over 
a slidhag window and the resulting structure is 
equivalent to filtering the image with a bank of 
filters. The choice of a statistical argumentation 
enables the definition of  optimal and sub-optimal 
linear operators for texture analysis and 
classification. This new formulation allows the 
comparison of various transforms (including 

Laws' set of  operators [24]) in their ability to 
extract valuable texture information. 

An important aspect of  this research is the 
experimental evaluation of the proposed method, 
which is presented in Section 4. First of all, it 
appears that the performance in texture analysis 
and classification is not very different among 
various sub-optimal transforms. Second, the com- 
parison with other well-known techniques indicate 
that equivalent--and sometimes improved--  
performance in texture classification can be 
obtained using the statistical information provided 
by channel histograms, instead of measures based 
on pairs of pixels (e.g., correlation coefficients, 
co-occurrence matrices). Concerning this last 
aspect, however, we question the experimental 
procedures and conclusions of some authors who 
state that "texture energy measures" used on their 
own are more powerful than measures based on 
Signal Processing 
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pairs of pixels, in that all possible pairwise 
configurations in the considered neighborhood 
were not accounted for [24, 25]. 

Another important point of the present formula- 
tion is that it established the link between a filter 
bank analysis method and the transform tech- 
niques for which a large variety of  fast algorithms 
are available. It should be emphasized, however, 
that the approach presented in this paper differs, 
in a number of ways, from the other digital trans- 
form methods that have previously been applied 
to texture analysis [5, 23]. The first and essential 
difference is that the statistics associated with 
individual transform coefficients are used as tex- 
ture descriptors instead of the coefficients them- 

selves (or some functions of  the coefficients). The 
second difference concerns the choice of a rela- 
tively small domain to transform (typically 3 x 3 
or 5 x 5). Finally, the transform coefficients are 
computed within a sliding window while in the 
other methods they are typically computed on non- 
overlapping square sub-images. 

2. Texture description 

Most statistical approaches to texture analysis 
provide a partial characterization of the joint prob- 
ability of the pixels in a restricted neighborhood. 
In this section, the problem of describing local 
texture properties is restated as that of finding an 
adequate statistical description of  the distribution 
of a random vector variable: the local neighborhood 

vector. This formation logically introduces a new 
method for texture characterization based on a 
local linear transformation of the local neighbor- 
hood vector. The motivation of such an operation 
is that it allows access to relatively compact statis- 
tical measures that are strongly related to the struc- 
ture of the texture as it will be shown here. 

2.1. Local neighborhood vector 

A discrete texture image defined on a K x L 
rectangular grid is denoted by {Xk.t}, ( k =  
1, 2 , . . . ,  K, ! = 1, 2 , . . . ,  L) and is considered to be 
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the realization of a bidimensional stationary and 
ergodic stochastic process. Since texture is a neigh- 

borhood property, it is practical to consider the 

pixels in a given neighborhood index by (k, l) as 
the components  of  a local feature vector. For sim- 

plicity, the coupling neighborhood is defined as a 
rectangular Nx x Ny domain centered on (k, l). The 

N components  of  the local neighborhood vector 
Xk, l = [ X ] , , . . ,  Xn] T are the sequentially ordered 

pixels belonging to the N x × N y  rectangular 
domain indexed by (k, l). This formalism trans- 
forms the original grey level image {Xkj} in a multi- 

variate sequence {Xk.t} (k = 1 , . . . ,  K, l = 1 . . . . .  L) 
as illustrated in Fig. 1. 

~k,1 = [XlX2..- XN ]T 

! . . . . . . . . . . .  i oo  o o o o o o o o o o o o  o o o  
o o o o o o o  o o o o  o o o  

o o o o o o o o o o o o o  o o o  
o o o o o o  o o o o o o o o  
o o o o o o ~ o o o o o  
. . . . . .  ~ o oj . . . . . . . .  
o o o o o o o o o o o o o o o o o  

o o o o o o o ~ o o o o o o o o o  
o o o o o o o o o o o o o o o o o  
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Fig. 1. Definition of the local neighborhood vector. 

Within this framework, most commonly used 

texture measurements may be viewed as estimates 
of  statistics associated with the local neighborhood 

vector. These statistics are usually estimated, by 
spatial averaging, from a large number of  realiz- 

ations of  the local neighborhood obtained from 
a region of  homogeneous texture in an image. 

These quantities can - - a t  least conceptual ly--be 
obtained by integration (or summation) of the 

N-dimensional  probability density function p(x).  

For example, the grey level histogram provides an 
estimate of  the first order PDFs of the individual 
components of  the neighborhood vector. Note that 
these distributions are all the same as a direct 
consequence of stationarity. Estimates of  the 
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second order PDFs associated with different pairs 
of  components of  the neighborhood are the well- 

known co-occurrence matrices [17]. Because of 

stationarity, the total number  of distinct second 
order PDFs for a Nx × Ny neighborhood reduces 

to 2 N x N , -  N x -  Nv. The fact that this type of 
representation measures all visually useful textural 

information has been demonstrated by Gagalowicz 

[ 14]. Measurements based on co-occurrence statis- 

tics between pairs of pixels have been used success- 

fully in a large number of applications. The main 
computational drawback of such methods is the 

requirement for large memory storage which 

depends on the second power of the total number 

of  grey levels. 

For practical reasons, it is almost impossible to 

estimate higher order PDFs unless a parametric 

model is used. The set of  second moments can be 
used to construct the spatial covariance matrix 

which is defined as 

Cx = E{(x  - E{x})" (x - E{x})X}, (1) 

and which provides a sufficient statistic for a multi- 

variate Gaussian model. This quantity is closely 
related to the spatial autocorrelation (or covari- 
ance) function of {xkj}. Because of stationarity, 

the components of  the local neighborhood mean 
vector are all the same and the covariance matrix 

exhibits a close-to-Toeplitz structure with only 

2 N~Ny - Nx - Ny + 1 different entries. This 

approach to texture characterization is more or 

less equivalent to autocorrelation methods or 
Fourier power spectrum approaches [7, 10, 14, 22, 
23, 27]. 

2.2 Local linear transform 

An interesting alternative to the previously men- 

tioned approaches is obtained from a linear trans- 
formation of the local neighborhood vector [28]. 
A local linear property extractor (or local linear 
transform) is defined by 

Yk, t = TN'xk.I, (2) 

where TN = I t , , . . . ,  tN] x is a nonsingular N x N 
square matrix. This equation may lead to the two 
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following interpretations. First of  all, it can be 
interpreted as a change of basis in the original 
pixel space: the yi's are the coefficients of the local 
expansion of the neighborhood vector obtained 
with N linearly independent signals defined from 
the columns of the inverted matrix T~'. When T N 

is an orthogonal matrix (orthogonal and normal- 
ized columns), this operation corresponds to a 
rotation or a reflection in the original pixel space. 
Secondly, the local linear transformation, being 
defined for every index (k, l), is equivalent to an 
N channel correlation (or convolution). The 
different rows of  the transform matrix TN define 

a set of masks that are used to filter the input 
texture {Xk.I} producing N output images {y~]} 
(i = 1 , . . . ,  N) .  The corresponding system is depic- 
ted in Fig. 2; it is equivalent to a bank of N finite 
impulse response filters. Every channel will extract 
a particular aspect of local texture property. As it 
will be shown below, the efficiency of this analysis 

method will depend on the choice of the transform 
matrix TN. 

M. Unser / Local transforms for texture measurements 

2.3. A new set of  texture measurements 

First order PDFs of the neighborhood vector in 
the original basis do not convey any information 
about local structure or spatial arrangement (this 
assertion is supported by the fact that the grey 
scale of an image can be modified, by nonlinear 
mapping, to fit almost any specified histogram 
without intrinsically changing the local texture 
properties). In addition, because of stationarity, 

these quantities are all the same. After transforma- 
tion, the first order PDFs of the components of 
y ~ ,  being strongly affected by the dependence 
relationships between pixels, will be noticeably 
different from one another. The statistics for both 
representation of the local neighborhood vector 
are related to each other by the following relation- 

ships, 

pr(y) = IT, A-'  .p (x -- T p  .y), (3) 

Cy = E{(y  - E{y}) • (y - E { y } )  T} = TNCxT T, 

(4) 

X 
k,1 

filtre I ] 

filtre n 

,,(1) 
"k,l 

:_ ,,(2) 
Jk,l 

~ .u(n) 
.Jk,l 

~ :. ,,(N) 
filtre N J k ,  ] 

Fig. 2. Bank of N FIR filters for the analysis of texture by local 
linear transform. 
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where px(x) and py(y) are the joint PDFs, and Cx 
and Cy are the covariance matrices of the neighbor- 
hood vector before and after transformation. 
Equation (4) shows that the variances along the 
new axes are heavily dependent upon the covari- 
ance structure of the texture field. It can therefore 
be suspected that first order statistics after suitable 
transformation must provide a useful texture 
description. These quantities, which are estimated 
by spatial averaging at the output of the filter bank, 
will result in a simplified characterization of an 
unknown multidimensional PDF by means of its 
measured projections on different preselected axes. 
The channel histogram corresponding to the trans- 
form coefficient y~ quantified with No-grey levels 
is an estimate of the set of probabilities {P<q~>} 

( q =  1 , . . . ,  N¢): 

P~q~> = Prob{y, = q} 

(i = 1 , . . . ,  N, q = 1 , . . . ,  No). (5) 

An equivalent characterization in terms of moment 
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estimates can be used. The theoretical channel 

variances are defined by 

o.~ = Var{y,} = E [ ( y , -  ElY, I) 2] 

=tTcxt~ ( i = l , . . . , N )  (6) 

and provide a sufficient description in the case of 
an underlying gaussian random field. The corre- 

sponding set of  measurements characterizes the 

energy distribution at the output of  the filter bank. 

The normalized and centered pth moments are 

defined by 

/ .~ ')  = E [ ( y , -  E[y,])']/o.p. (7) 

Of  practical interest are the third (skewness) and 

fourth (Kurtosis) moments  which respectively pro- 
vide useful measures of  the amount  of  skewness 
and peakedness in a distribution. 

3. Transform selection 

Local texture properties may be extracted using 
well-known transforms such as the discrete sine 

(DST), cosine (DCT),  Hadamard  (DHT) or 

Karhunen-Lo~ve (KLT) transforms. It will be seen 

here that the selection of  a given transform can be 
related to the neighborhood statistics of  the tex- 

tures to be treated. Two different problems for 
which optimal solutions will be derived are con- 

sidered next. The first one is concerned with texture 

analysis where one wishes to find a representation 

that describes as well as possible the local texture 

properties. From a statistical view point, this is 

equivalent in choosing the set of  first order statistics 
that provide the 'best '  characterization of the N th  
order PDF of the local neighborhood vector. The 

second problem is concerned with texture 

classification where the objective is to define a set 
of  operators that can discriminate as well as pos- 
sible between various texture fields. Of  practical 
interest is the existence of  sub-optimal transforms, 
which provide satisfactory results for both of these 
problems. 
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3.1. Optimal transform for texture analysis 

The selection of a transform that is the most 
suited for this problem has to be evaluated with 

respect to some performance criterion. In this sec- 

tion, the discussion is restricted to the class of  
energy preserving transforms satisfying the con- 

dition: 

tr( Cy = TN" Cx" T T) = tr(Cx) = No. 2, (8) 

where o .2 is the variance of the texture {Xk,~}. TWO 

different aspects of  optimality in the context of  

texture analysis are considered next. 
• Entropy criterion: As has been mentioned 

before, the first order statistics associated with the 

components of  the neighborhood vector, expressed 

in the usual basis, are all the same and therefore 

relatively uninteresting. Thus, we should choose 

the transform which produces first order statistics 

as 'different' as possible. This solution, which has 
the greatest difference in variance distribution, is 

the one that minimizes the entropy criterion [30] 

N 

H(TN) = - Y. 7, log(y,), (9) 
i = 1  

where the y,'s measure the relative channel energy 
contributions: 

y, = Var{y~}/tr(C~) = o',2./No. 2 

with 0 <~ y~ <~ 1. 

It also follows from the well-known properties of  

entropy measures that H(TN)  will be maximum 

when the 7ds are all equal; this least favorable 

case corresponds to the unity transform or any of 

its permutations: Hmax = H(IN) = log{N}. 
• Energy criterion: Another approach would be 

to choose the transform such that it produces non- 
correlated variables. This condition is fulfilled 
when the following energy criterion is maximized 
and equal to one: 

N 

E(TN) = Y~ var{y,}2/llCxll 2 
i = l  

N 

= E o.1111GII (10) 
i ~ 1  

Vol. 11, No. 1, July 1986 



66 

where II" II 2 represents the Hilbert-Schmidt norm 
(or energy) of a matrix and is invariant to any 
similarity transformation. As uncorrelatedness is 
a necessary condition---but not always sufficient-- 
for independence, the Nth  order PDF of  the local 
neighborhood vector may be approximated by a 
product of  first order PDFs obtained from this 
optimal representation. This approximation, which 
is exact in the case of a multivariate Gaussian 

distribution, has the same moments of degree 1 
and 2 (mean and covariances) and also the same 
projections along the principal axes. On the other 
extreme, criterion (10) is minimized in the initial 
basis which corresponds to the most correlated 
representation, as a direct consequence of  station- 
arity. 

Both criteria are particular cases of a more gen- 
eral criterion function that has been introduced in 
[29]. Under the constraint of  an energy preserving 
transform, it has been shown in [29] that the trans- 
form that optimizes this general criterion is given 
by UN = [U~,. . . ,  UN] x, where the u~'s are solution 
of the characteristic equation: 

Cx" ui = Ai" ui. (11) 

The optimal basis vectors are the eigenvectors of  
the spatial covariance matrix Cx and the optimal 
variances are the corresponding eigenvalues: 
(A,, i = I , . . . ,  N).  Thus, the optimal transform is 

the well-known Karhunen-Lo~ve transform 
(KLT) which enables a decorrelated data rep- 
resentation. On the other hand, the worst rep- 
resentation, with respect to the general criterion, 
is obtained when the variance along the axes are 
all the same, which is precisely the case for the 
initial representation xk,~ associated to the identity 
transform. An important consequence is that any 
nontrivial transform TN will always improve the 
efficiency when compared with the initial rep- 
resentation. 

The set of eigenfilters obtained from the prin- 
cipal axes of  the spatial covariance matrix has 
initially been proposed by Ade [1] for principal 
component analysis in the context of texture analy- 
sis. The ability of this set of  masks to extract the 
Signal Processing 
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different aspects and constituents of a given texture 
have been demonstrated in [2]. 

3.2. Optimal transform for texture classification 

It is reasonable to assume that the most efficient 
channels for the discrimination between two tex- 
tures to~ and to2 are those in which the correspond- 
ing energy contributions are as different as poss- 
ible. Following this idea, a performance criterion 
associated with a N x N '  transform matrix TN, = 
[ t l , . . . ,  tN,] T with N'<~ N is introduced as 

N '  

j = l  

N '  
2 2 2 = Y. ( o ' j ~ r 2 j + o % / c r , j - 2 ) ~ 0 ,  (12) 

j = l  

where cr~j and tr~j ( j  = 1 , . . . ,  N')  are the channel 

variances or energy contributions corresponding 

to texture a~ and to2, respectively. In equation 
(12), the term corresponding to the relative energy 
contribution in channel no. j is symmetrical--with 
respect to indexes 1 and 2 - -and  invariant to any 
scaling factor of the corresponding basis vector. 
This quantity is minimum and equal to zero when 
the variances o,2 and cr22j are the same; its import- 

ance grows as their respective values differ. Note 
that for a given N x N transform TN, the perform- 
ance criterion (12) is maximized for any N ' <  N 
when the row vectors t, are indexed as 

2 2 2 2 trn/o'21 + tr21/trH/--. • • 

2 2 2 2 
or i N / O ' 2  N "-~- Or2N/OrlN. 

It is shown in Appendix A that the optimal 
transform of  dimension N x N '  that maximizes the 
criterion function J~(N'), for N ' = I , . . . ,  N, is 
given by UN, = [Ua, • • •, UN'] T where the row vectors 
ul ( i=  1 , . . . ,  N)  satisfy 

Cxl" ui = ~/i" Cx2" ui (i = 1 , . . . ,  N) ,  (13) 

where Cxl and Cx2 are the texture spatial covari- 
ance matrices and where the eigensolutions of  this 
equation (ui, yi) (i = 1 , . . . ,  N)  are ordered in the 
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following manner: 

y ~ + l / y ~  > y 2 + 1 / y 2  ~ > . . . 1 > y N + l / y N .  (14) 

The corresponding maximum value of the criterion 

function J l (N ' )  is 

N '  

max{J~(S ' )}= ~ ( y , + 1 / % - 2 ) .  (15) 
i - -1  

A particular solution of equation (13) is obtained 
with a transform matrix VN of dimension N x N 
which simultaneously diagonalizes the two spatial 
covariance matrices Cx~ and Cx2. It is easily 
verified, by substitution, that the row-vectors of 
such a transform satisfy equation (13) and that the 
scalar values y~ (i = 1 , . . . ,  N)  are then determined 

by 

y~=A~I~/A~ 2~ ( i = l , . . . , N ) ,  (16) 

where A~ ~> and A~ 2> are the channel variances after 
transformation for texture to, and co2. It can be 
demonstrated that such a nonsingular transform 
matrix VN exists for any symmetrical matrices Cx~ 
and C~2. However, this matrix is generally non- 
orthogonal and therefore not unique. An interest- 
ing solution for the simultaneous diagonalization 
of two covariance matrices has been proposed by 
Fukunaga and Koontz [13]; it has the remarkable 
property of producing complementary eigenvalues 
such that A~1)+A~ 2)--- 1 (i = 1 , . . . ,  N).  

3.3. Sub-optimal transforms 

The optimal sets of masks introduced in the 
preceding sections are primarily of theoretical 
value. They depend on the covariance structure of 
the textures to be analysed or classified and are 
usually cumbersome to determine: both solutions 
require the estimation of spatial covariance 
matrices and the use of standard--computationally 
expensive--numerical eigenvectors extraction 
methods. In the texture analysis problem, the 
optimal solution given by the KLT will be generally 
different from one texture field to another. This is 
also true for the solution given by (13) which, in 
addition, is difficult to generalize when more than 
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two textures have to be considered. These 
approaches are therefore difficult to apply in prac- 
tical applications such as texture classification or 
image segmentation. For these reasons, sub- 
optimal transforms should be used which can 
considerably simplify the feature extraction pro- 
cedure. Another advantage is that fast algorithms 

are available for most of these transforms. 
Usually, separable transforms, such as the dis- 

crete cosine (DCT) [4], sine (DST) [19, 20], real 
even and odd Fourier (DREFT and DROFT) [29] 
transforms, provide a close approximation of the 
KLT for a wide sense stationary process. A direct 

consequence is that these transforms will approxi- 
mately diagonalize the spatial covariance matrix 

of a very large class of textures. It can therefore 
be suspected that their performance in texture 
analysis or classification is very close to the one 
that would be obtained with the optimal solutions 
given by (11) and (13), respectively. Furthermore, 
separable transforms can be computed by succes- 
sive filtering along the rows and columns. This is 

illustrated in Fig. 3, which shows a separable filter 
bank that computes a running DST (discrete sine 
transform) in a 3 × 3 neighborhood. 

The sets of masks associated with different trans- 
forms in the case of 3 × 3 are shown in Fig. 4. The 
set of  masks introduced by Laws [24] is also rep- 
resented. It is worthwhile to note the similarity of 
this particular set of operators and the sub-optimal 
DCT or DROFT with which it shares two basis 
vectors out of three. This fact is quite surprising 
as Laws followed a quite different reasoning than 
the one presented here and designed his filter bank 

empirically, using a combination of flat (11 2 11), 
spot (11-2 1]) and edge ([1 0 - 1  I) detectors; the 
corresponding basis vectors also define a local 
l inear--but  nonorthogonal-- transform as defined 
in Section 2.2. 

4. Experimental results 

This section presents an experimental evaluation 
of the proposed method. The first part is concerned 
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Xk.I 
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Yk.I 

Yk.I 

Yk,I 

Yk.I 

Fig. 3. Computation of a running 3 x 3 DST by successive row 
and column filtering. 

with texture analysis and provides an illustration 

of  the principle of  extraction of textural properties 

by local linear transformation. The second part 

presents a detailed evaluation in the context of 

texture classification. In a first step, local texture 

properties are characterized by a set of N channel 

variances only. The performances of different sub- 

optimal transforms are then compared for various 

neighborhood sizes (2 x 2 up to 5 x 5). The effects 

of adding features such as third and fourth 
moments are also taken into account. Finally, the 

proposed method is shown to compare favorably 
with other well-known techniques such as correla- 
tion and co-occurrence based methods. 
Signal Processing 

Fig. 4. Representation of the set of masks for various 3 × 3 
sub-optimal separable transforms. The definitions of the 
DREFT (discrete real even Fourier transform), DROFT (dis- 
crete real odd Fourier transform) and DEST (discrete even sine 

transform) are given in [29]. 

The 12 Brodatz textures that have been used in 

this study and which are displayed in Fig. 5 were 

taken from [6]. The original photographs were 

digitalized and converted into 256x256 picture 

arrays quantified into 256 grey levels. Spatial trans- 

ducer nonuniformities were compensated by a 

local normalization procedure over a 64 x 64 win- 

dow [28]. A standard histogram flattening pro- 

cedure was then performed producing output 

images with 32 equiprobable grey level values. The 

experimental data was therefore not distinguish- 

able on the basis of first order statistics only. 

4.1. Texture analysis 

In these series of experiments a subset of the 

initial data (labeled (A), (B), and (C) in Fig. 5) 

has been considered more extensively. In a first 

step, the spatial covariance matrices were esti- 
mated over a 2 x 2 neighborhood and the associ- 

ated KLT computed. The corresponding masks are 

shown in Fig. 6 and appear to be very similar to 

those obtained for the various sub-optimal trans- 

forms that have been mentioned previously, which 
in this case are all equivalent to a 2 x 2 discrete 
Hadamard transform (DHT). These sets of masks 
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d 

(1) (2) (3) 

(4) (s)  = (A) (6) 

(7) (8) = (B) (9) = (C) 

(10) ( i l )  (12) 

Fig. 5, Preprocessed Brodatz textures used for experiments (256x 256 pixels with 32 equiprobable grey levels). 
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I)tlT 2x2 

Ii 

KH" 2x2 (b )  KLT 2x2 ( c )  

Fig. 6. Sub-op t ima l  and  op t ima l  sets o f  masks  (2 x 2) for ana lys i s  

o f  textures  (A), (B), and  (C) in Fig. 5. 

are all formed from a 'flat' detector (lowpass filter 
usually associated with the first component) and 
various edge detectors in the vertical horizontal 
and diagonal directions. The images were then 
filtered by a running 2 x 2 DHT; the result of  this 
processing for texture (A) as well as the channel 
histograms are shown in Figs. 7 and 8, respectively. 
Also shown are the channel variances and the 
corresponding eigenvalues. From this experiment, 
it appears very clearly that the 2 x 2 DHT provides 
an excellent substitute for the KLT for a 2×2  
neighborhood. This fact has also been verified by 
the testing of  other textures. The quality of the 
approximation of the KLT have been measured 
by computing the quantities defined in equations 
(9) and (10). For both entropy and energy criteria, 
a relative performance measure has been defined as 

~'*- ~'(TN) 
r/(TN) (17) 

~ ' * -  ~'(IN) ' 

where ~*, ~'(TN), and ~'(I:v) are the criterion values 
obtained with the KLT, the transform matrix TN 
and the identity matrix, respectively. In the case 
of 2 x 2 neighborhood, typical values from 99.6% 
up to 100% have generally been obtained. 

Various sub-optimal transforms were also com- 
pared with the optimal KLT for larger neighbor- 
Signal Processing 
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hoods (3 × 3 up to 5 x 5). Table 1 gives the results 
of this computation in the case of a 3 × 3 neighbor- 
hood for textures (A), (B), and (C) in Fig. 5; more 
detailed results may be found in [28]. For these 
textures, the DST was always found to perform 
better than the other transforms and nearly as good 

KLT 2x2 ~a) as the optimal KLT. A coefficient close to 100% 

indicates that the channel variances are as 
I differently distributed as possible as well as the 

transform coefficients being nearly decorrelated. 
The good performance of the DST in data rep- 
resentation is not surprising, as it is well known 
that this transform provides a good approximation 
of the KLT of a separable first order Markov when 
p/> 0.5 (see, for example, [29]), that is, when the 
process is essentially highpass. 

Table  1 

En t ropy  and  energy  cr i ter ions c o m p u t e d  on textures  (A), (B), 

II 

and  (C) for var ious  3 × 3 local  l inear  t rans forms  

Texture (A) 

Transform H(T) h(T) E(T) e(T) 

Identity 3x3  2.197 0.0% 40.298% 0.0% 
DCT (DREFT) 3 x 3 1.598 91.738% 94.541% 90.856% 
DEST (DROFT) 3x3  1.676 79.811% 89.035% 81.633% 
DST 3 ×3 1.553 98.559% 99.491% 99.148% 
KLT 3x3  1.544 100% 100% 100% 

Texture (B) 

Transform H(T) h(T) E(T) e(T) 

Identity 3 x3 2.197 0.0% 49.994% 0.0% 
DCT (DREFT) 3 ×3 1.805 90,840% 94.878% 89.758% 
DEST (DROFT) 3 x3 1 .851 80.182% 90.221% 80.444% 
DST 3×3 1.779 97.009% 98.481% 96.963% 
KLT 3x3  1.766 100% 100% 100% 

Texture (C) 

Transform H(T) h (T) E(T) e(T) 

Identity 3 x3 2.197 0.0% 56.634% 0.0% 
DCT (DREFT) 3x3  1.904 94.730% 97.690% 94.687% 
DEST (DROFT) 3 x3 1 .951 79.657% 90.347% 77.724% 
DST 3 × 3 1.893 98.4411% 99.2094% 98.1756% 
KLT 3 x 3 1.888 100% 100% 100% 

This method has also been applied successfully 
to thecontrol  of textured surfaces and the detection 
of  defects in textiles [3]. In this last study, it was 
found that sub-optimal transforms such as the DST 
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Fig. 7. Sub-optimal  2 x 2 D H T  processing of  texture (C): local t ransform coefficient images. 

performed as wel l - -and sometimes bet ter - - than 
the KLT for the detection of defects in materials. 
Very similar results were obtained with all sets of  
masks that have been tried; this indicates that the 

method is robust. 

4.2. Texture classification 

For classification purposes, the twelve textures 
images shown in Fig. 5 were then divided in square 
regions with 50% overlap. The experimental data 

set for each class consisted of 961 texture samples 
of dimension 16 x 16, 225 samples of  dimension 
32 x 32, and 49 samples of  dimension 64 x 64. 

An optimal Bayesian decision rule was used to 

classify the texture samples, based on their 
measured feature values. The class conditional 
probability density functions of  the M- 
dimensional feature vector z were assumed to 
be multivariate Gaussian distributions with mean 
vectors and covariance matrices: (#i, Ci) ( i =  
1 , . . . ,  12). Under such an assumption, the Bayes 
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~ l  = 14996 

0 2 = 14996 
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/~1 = 12813 ~1 = 12034 

0 2 = 1 2 8 0 4  0 2 = 1 2 0 3 3  

h2 = 3410 

° 2  = 3387 

~'2 = 5072 

0 .2 = 5036 

h3 = 3748 

°92 = 3749 

~3 = 3053 

° 2  = 3078 

~k 3 = 2529 

0 2 = 2566 

~2 = 4137 

°2 : 4,36 

~4 = 698 I I I ~4 = 1440 

o~ 598 ~ o,~:~44~ A ~4 ~ 1908 

0 2 = 1906 

A B C 

Fig. 8. Sub-optimal 2 x 2 DHT processing of textures (A), (B), and (C) in Fig. 5: channel histograms. 

classif ier ,  w h i c h  m i n i m i z e s  t he  to ta l  p r o b a b i l i t y  o f  

e r ror ,  is e q u i v a l e n t  to  ass ign  a t ex tu re  s a m p l e  wi th  

f ea tu re  v e c t o r  z to the  class  w i th  m i n i m u m  d i s t a n c e  

v a l u e  [12]: 

d , (z)  = ( z - / z i )  T. C / 1 ,  (z - J ~ i ) +  log{Ic, I} 
( i =  1 , . . . ,  12). (18) 

F o r  e a c h  p a t t e r n  tha t  has  b e e n  tes ted ,  the  t r a in ing  

was  p e r f o r m e d  on  the  r e m a i n i n g  s a m p l e s  ( ' l e av ing -  

o n e - o u t  m e t h o d ' )  u s ing  m a x i m u m  l i k e l i h o o d  

e s t ima te s  o f  the  d i s t r i b u t i o n  p a r a m e t e r s .  

4.2.1. Classification with channel  variances 

Var ious  s u b - o p t i m a l  loca l  t r a n s f o r m s  h a v e  b e e n  

c o m p a r e d  in the i r  ab i l i ty  to d i s c r i m i n a t e  b e t w e e n  

the  twe lve  t ex tu res  in Fig.  5. T h e  de f in i t i on  o f  the  

c o r r e s p o n d i n g  bas is  vec to r s  m a y  be  f o u n d  in [20, 

26, 29]. T h e  s tat is t ics  o f  N - d i m e n s i o n a l  loca l  

n e i g h b o r h o o d  v e c t o r  w e r e  c h a r a c t e r i z e d  by  a set  

o f  N e s t i m a t e d  c h a n n e l  va r i ances .  T h e  

c lass i f i ca t ion  resul ts  fo r  d i f fe ren t  n e i g h b o r h o o d  

sizes are  s h o w n  in T a b l e s  2, 3, 4 a n d  5. As can  be  

su spec t ed ,  c l a s s i f i ca t ion  b e c o m e s  m o r e  a c c u r a t e  as 

the  size o f  t he  t ex tu re  s a m p l e s  increases .  F o r  a 

g iven  size o f  t he  loca l  n e i g h b o r h o o d ,  the  p e r f o r m -  

ances  o f  t he  t r a n s f o r m s  tha t  h a v e  b e e n  c o n s i d e r e d  

Table 2 

Classification of the twelve textures in Fig. 5 using channel 
variances estimated after a local linear sub-optimal transform 
in a 2 x 2 neighborhood. M is the number of features, Pc the 
percentage of correct classification, and N¢ the number of 
samples that have been correctly classified 

Transform M Size Pc N¢ 

DHT 2x2 4 16x16 81.86% 9440outot 11532 
DHT 2 x 2 4 32 x 32 94.85% 2561 out of 2700 
DHT 2 x 2 4 64 x 64 99.49% 585 out of 588 

Table 3 

Classification of the twelve textures in Fig. 5 using channel 
variances corresponding to various sub-optimal transform in a 
3 x 3 neighborhood 

Transform M Size Pc N¢ 

DST 3 x 3 9 16 x 16 88.66% 
DCT 3x3 9 16x16 88.58% 
LAWS 3x3 9 16x16 88.45% 
DROFT 3x3 9 16x16 88.41% 

DST 3 x 3 9 32 x 32 98.26% 
DCT 3x3 9 32x32 98.18% 
LAWS 3x3 9 32x32 98.18% 
DROFT 3x3 9 32x32 98.18% 

DST 3x3 9 64x64 100% 
DCT 3x3 9 64x64 100% 
LAWS 3x3 9 64x64 100% 
DROFT 3x3 9 64x64 100% 

10224 out of 11 532 
10216 out of 11 532 
10200 out of 11 532 
10 195 out of 11 532 

2653 out of 2700 
2651 out of 2700 
2651 out of 2700 
2651 out of 2700 

588 out of 588 
588 out of 588 
588 out of 588 
588 out of 588 

Signal Processing 
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Table 4 

Classification of the twelve textures in Fig. 5 using channel 
variances corresponding to various sub-optimal transform in a 
4 x 4 neighborhood 

Transform M Size Pc Nc 

DREFT 4x4  16 16x16 90.78% 10469 out of 11532 
DROFT 4x4  16 16x16 90.61% 10 450 out of l1532 
DST 4x4  16 16× 16 90.56% 10444 out of 11532 
DCT 4×4 16 16x16 90.41% 10426 out of 11532 
DEST 4x4  16 16x16 90.30% 10413 out of 11532 

DREFT 4x4  16 32x32 99.07% 2675 out of 2700 
DCT 4×4 16 32x32 98.96% 2672 out of 2700 
DEST 4x4  16 32x32 98.93% 2671 out of 2700 
DST 4x4  16 32x32 98.77% 2667 out of 2700 
DROFT 4x4  16 32x32 98.74% 2666 outof2700 

DREFT 4x4  16 64x64 100% 588 out of 588 
DCT 4x4  16 64x64 100% 588 out of 588 
DEST 4×4 16 64x64 100% 588 out of 588 
DST 4x4  16 64×64 100% 588 out of 588 
DROFT 4x4  16 64x64 100% 588 out of 588 
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are  ve ry  s imi la r ;  this  t e n d s  to  i n d i c a t e  t ha t  the  

m e t h o d  is qu i t e  robus t .  I n  the  case  o f  3 x 3 a n d  

5 x 5 n e i g h b o r h o o d s  the  bes t  resul t s  a re  o b t a i n e d  

wi th  the  s ine  ( D S T )  a n d  c o s i n e  ( D C T )  t r a n s f o r m s .  

T h e  g o o d  p e r f o r m a n c e  o f  t he  4 × 4 D R E F T ~ w h i c h  

in this  p a r t i c u l a r  case  is e q u i v a l e n t  to  a 4 x 4  

H a d a m a r d  t r a n s f o r m - - i s  qu i t e  su rp r i s ing ;  this  can  

be  o f  p rac t i ca l  in te res t  b e c a u s e  o f  the  ava i l ab i l i t y  

o f  very  fast  c o m p u t a t i o n  a lgo r i t hms ,  T h e  d e t a i l e d  

resul ts  ( c o n f u s i o n  ma t r i ce s )  o f  the  c lass i f i ca t ion  o f  

32 x 32 t ex tu re  s amp le s  fo r  v a r i o u s  size o f  the  loca l  

D S T  are  g i v e n  in T a b l e  6. T h e  effect  o f  i n c r e a s i n g  

the  size o f  the  n e i g h b o r h o o d  is to i m p r o v e  the  

c lass i f i ca t ion  resul ts  w i t h o u t  i n t r o d u c i n g  n e w  

errors .  It  is a lso w o r t h w h i l e  to  n o t e  tha t  

c lass i f ica t ion  e r rors  u s u a l l y  o c c u r  in a s y m m e t r i c a l  

way,  b e t w e e n  t ex tu re  pa i rs  w h i c h  are  the  m o s t  

diff icul t  to  d i s c r i m i n a t e  v i sua l ly .  

Table 5 

Classification of the twelve textures in Fig. 5 using channel 
variances corresponding to various sub-optimal transform in a 
5 x 5 neighborhood 

Transform M Size Pc Nc 

DST 5x5 25 16x 16 92.03% 
DCT 5×5 25 16x 16 91.96% 
DREFT 5x5 25 16x 16 91.94% 
DROFT 5x5 25 16x16 91.93% 
DEST 5x5 25 16x16 91.78% 
LAWS 5x5 25 16x16 91.45% 

DST 5x5 25 32x32 99.63% 
DREFT 5x5 25 32×32 99.63% 
DCT 5x5 25 32x32 99.59% 
DROFT 5x 5 25 32x32 99.59% 
DEST 5x5 25 32x32 99.56% 
LAWS 5x5 25 32x32 99.48% 

DST 5x5 25 64x64 100% 
DREFT 5x5 25 64x64 100% 
DCT 5x5 25 64x64 100% 
DROFT 5x5 25 64x64 100% 
DEST 5x5 25 64x64 100% 
LAWS 5x5 25 64x64 100% 

10613 out of 11 532 
10605 out of 11 532 
10602 out of 11 532 
10601 out of 11 532 
10584 out of 11 532 
10546 out of 11 532 

2690 out of 2700 
2690 out of 2700 
2689 out of 2700 
2689 out of 2700 
2688 out of 2700 
2686 out of 2700 

588 out of 588 
588 out of 588 
588 out of 588 
588 out of 588 
588 out of 588 
588 out of 588 

4.2.2. Classification with second, third, and 

fourth moments  

In  the  p r e s e n t  f o r m u l a t i o n ,  the  use  o f  s e c o n d  

o r d e r  m o m e n t s  o r  c h a n n e l  v a r i a n c e s  is o n l y  an  

in t e re s t ing  a l t e rna t ive  to o t h e r  w e l l - k n o w n  tech-  

n i q u e s  w h i c h  are  b a s e d - - - i n  a m o r e  o r  less exp l i c i t  

w a y - - o n  m e a s u r e m e n t s  t ha t  a re  d i rec t ly  r e l a t ed  to 

the  spa t ia l  c o v a r i a n c e  mat r ix .  Th is  c a t e g o r y  

i n c l u d e s  al l  m e t h o d s  tha t  m a k e  use  o f  p o w e r  

o r  ene rgy  m e a s u r e m e n t s  in  t he  spa t ia l  [24, 25] o r  

spec t ra l  d o m a i n  [7],  as  we l l  as a u t o r e g r e s s i v e  

o r  p r e d i c t i v e  m e t h o d s  [10, 22, 27]. T h e s e  t ech-  

n i q u e s  a re  e spec i a l l y  wel l  su i t ed  fo r  the  ana lys i s  

a n d  c lass i f i ca t ion  o f  G a u s s i a n  p roces se s .  

U n l i k e  t he  p r e v i o u s  m e n t i o n e d  a p p r o a c h e s ,  t he  

p r o p o s e d  m e t h o d  e n a b l e s  the  m e a s u r e m e n t  o f  

s o m e  h i g h e r  o r d e r  s tat is t ics .  A f iner  d e s c r i p t i o n  o f  

the  loca l  t ex tu r e  p r o p e r t i e s  m a y  be  o b t a i n e d  by  

c o m p u t i n g  a d d i t i o n a l  f ea tu re s  such  as the  esti-  

m a t e d  n o r m a l i z e d  s k e w n e s s  a n d  kur tos i s  de f i ned  

on  the  c h a n n e l  h i s t o g r a m s  ( e q u a t i o n  (7)).  T h e  

c o r r e s p o n d i n g  c lass i f i ca t ion  resul t s  a re  s h o w n  in 

T a b l e  7 in the  case  o f  a 2 x 2 n e i g h b o r h o o d .  T h e  

a d d i t i o n  o f  the  th i rd  o r  f o u r t h  m o m e n t s  i m p r o v e s  

the  p e r f o r m a n c e s  s igni f icant ly .  As can  be  

e x p e c t e d ,  the  best  resul t s  are  o b t a i n e d  in us ing  
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Table 6 

Confusion matrices for the Classification of the twelve textures in Fig. 5 using channel variances estimated after 
a running 2 x 2, 3 x 3, and 4 x 4 discrete sine transform (DST) 

1 2 3 4 5 6 7 8 9 10 11 12 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6 
7 

8 

9 

10 

11 

12 

225 0 0 0 0 0 0 0 0 0 0 0 

0 217 0 0 0 0 0 0 0 8 0 0 

0 2 219 0 0 4 0 0 0 0 0 0 

0 0 0 225 0 0 0 0 0 0 0 0 

0 0 0 0 215 0 0 0 0 0 10 0 
0 0 2 0 0 213 0 0 0 7 0 3 

0 0 0 0 0 0 225 0 0 0 0 0 

0 0 0 0 0 0 0 225 0 0 0 0 

1 0 0 0 0 0 0 1 219 0 0 4 
0 4 0 0 0 16 0 0 0 184 0 21 

0 0 0 0 26 0 0 0 0 0 199 0 

0 0 0 0 0 12 0 0 5 13 0 195 

out of 2700. DST 2 x 2: Correct classification 2561 

Total score = 94.85%. 

1 2 3 4 5 6 7 8 9 10 11 12 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 225 0 0 

2 0 224 0 

3 0 0 223 
4 0 0 0 

5 0 0 0 

6 0 0 3 
7 0 0 0 

8 0 0 0 

9 0 0 0 

10 0 1 0 

11 0 0 0 

12 0 0 0 

DST 3 x 3: Correct classification 2653 

Total score = 98.26%. 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 2 0 0 0 0 0 0 
225 0 0 0 0 0 0 0 0 

0 225 0 0 0 0 0 0 0 

0 0 218 0 0 0 2 0 2 
0 0 0 225 0 0 0 0 0 

0 0 0 0 225 0 0 0 0 

0 0 0 0 0 225 0 0 0 

0 0 6 0 0 0 200 0 18 

0 0 0 0 0 0 0 225 0 

0 0 1 0 0 1 10 0 213 

out of 2700. 

1 2 3 4 5 6 7 8 9 10 11 12 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

9 
10 

11 
12 

1 225 

2 0 

3 0 
4 "0 

5 0 

6 0 

7 0 
8 0 

0 

0 
0 

0 

0 0 0 0 0 0 0 0 0 0 0 

224 0 0 0 0 0 0 0 1 0 0 

0 225 0 0 0 0 0 0 0 0 0 

0 0 225 0 0 0 0 0 0 0 0 
0 0 0 225 0 0 0 0 0 0 0 

0 1 0 0 223 0 0 0 0 0 1 

0 0 0 0 0 225 0 0 0 0 0 
0 0 0 0 0 0 225 0 0 0 0 
0 0 0 0 0 0 0 224 0 0 1 

0 0 0 0 3 0 0 0 205 0 17 
0 0 0 0 0 0 0 0 0 225 0 

0 0 0 0 0 0 0 1 8 0 216 

out of 2700. DST 4 x 4: Correct classification 2667 

Total score = 98,77%. 
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M. Unser / Local transforms for texture measurements 

Table 7 

Classification of the twelve textures in Fig. 5 using channel 
variances as well as third and fourth moments estimated after 
a local linear sub-optimal transform (DHT) in a 2 x 2 neigh- 
borhood 

Transform M Size Pc Nc 

2nd order moments 
DHT 2x2 4 16×16 81.86% 9440 out of 11 532 
DHT 2 × 2 4 32 x 32 94.85% 2561 out of 2700 
DHT 2x2 4 64x64 99.49% 585 out of 588 

2nd and 3rd order moments 
DHT 2 x 2 8 16 x 16 86.17% 9937 out of 11 532 
DHT 2×2 8 32x32 98.33% 2655 out of 2700 
DHT 2x2 8 64x64 100% 588 out of 588 

2nd and 4th order moments 
DHT 2x2 8 16x 16 84.23% 9713 out of 11 532 
DHT 2 x 2 8 32 x 32 98.04% 2647 out of 2700 
DHT 2x2 8 64×64 100% 588 out of 588 

2nd, 3rd, and 4th order moments 

DHT 2x2 12 16x16 87.63% 10105 out of 11 532 
DHT 2x2 12 32x32 99.19% 2678 out of 2700 
DHT 2x2 12 64x64 100% 585 out of 588 

con jo in t ly  second ,  th i rd ,  and  four th  moments .  This 

shows very c lear ly  tha t  the  textures  used in these 

exper imen t s  are n o n - G a u s s i a n  and  that ,  in such a 

case, there  is an  advan tage  in using h igher  o rde r  

s tat is t ical  i n fo rma t ion  to improve  the results  in 

classif icat ion.  

Var ious  n o n n o r m a l i z e d  momen t s  have also been  

tes ted on the i r  own. It was found  that  even 

m o m e n t s - - t h e  set o f  channe l  var iances  be ing  the 

most  p o w e r f u l - - a l w a y s  p e r f o r m e d  be t te r  than  o d d  

moments .  

4.2.3. C o m p a r i s o n  with  corre la t ion  m e t h o d s  

Equa t ion  (6) shows tha t  the  knowledge  of  the 

spa t ia l  covar iance  mat r ix  enables  the de te rmina-  

t ion o f  the  p o w e r  at the  ou tpu t  o f  any F I R  filter, 

as long as its suppor t  is ent i re ly  con ta ined  in the 

region def ining the local  ne ighborhood .  This is 

also true when these quant i t ies  are es t imated  by  

spat ia l  averaging.  Therefore ,  the  s tat is t ical  infor-  

ma t ion  conveyed  by  the set o f  all cor re la t ion  

coefficients shou ld  be more  comple t e  than  the one 

assoc ia ted  to the channe l  var iances .  Fo rma l ly ,  

these desc r ip t ions  are only  equiva lent  when the 
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local  l inear  t rans form d iagona l izes  the spa t ia l  

covar iance  matr ix.  It is a lso impor t an t  to ment ion  

that  the channe l  var iances  p rov ide  a more  c ompa c t  

desc r ip t ion  o f  second  o r d e r  s tat is t ical  i n fo rma t ion  

( N  channel  var iances  versus 2 ( N - x / N )  corre la-  

t ion coefficients for a x / N  x ~ ne ighborhood) .  

I n ' o r d e r  to measure  the loss o f  i n fo rma t ion  due  

to sub-op t ima l  t rans form process ing,  the texture  

samples  have been classif ied based  on measure -  

ments  of  the  cor re la t ion  coefficients.  These  quan-  

tit ies were no rma l i zed  with respect  to the texture  

var iance;  this last feature  is meaningless  for our  

pu rpose  owing  to the p rep rocess ing  which i m p o s e d  

the same first o rder  stat ist ics for  all test  images.  

These  results  are shown in Table  8 and  must  be 

cons ide red  as a u p p e r  b o u n d  o f  what  can be 

achieved by  means  of  s econd  o rde r  stat ist ics only.  

As would  be expec ted ,  the  pe r fo rmances  are 

s l ightly be t te r  than  those  based  on measurement s  

o f  channel  var iances  (Tables  2 and  3). However ,  

this difference is very small ,  espec ia l ly  for a 2 × 2 

ne ighborhood .  In the case o f  3 × 3 ne ighbo rhood ,  

the loss o f  pe r fo rmance  when using channel  vari- 

ances is on ly  of  the o rde r  o f  1%, which is a very 

good  resul t  if  one takes  in account  that  nine 

features  are  used  ins tead  o f  twelve. This demon-  

strates expe r imen ta l ly  tha t  the sub-op t ima l  t rans-  

forms that  have been  cons ide red  are near ly  as 

powerfu l  as a hypo the t i ca l  so lu t ion  that  would  be 

o p t i m a l - - i n  the sense o f  equa t ion  ( 1 3 ) - - f o r  all 

poss ib le  pai rs  o f  textures  in Fig. 5. Fur the rmore ,  

it appea r s  that  the results  ob ta ined  in Sect ion 4.2.2, 

using h igher  o rde r  moments ,  are much bet ter  than  

what  cou ld  have been  ob t a ined  by means  of  s econd  

order  s tat is t ical  measures  only.  

4.2.4. C o m p a r i s o n  wi th  co-occurrence  m e t h o d s  

Spat ia l  grey-level  d e p e n d e n c e  or  co-occur rence  

matr ices  are one of  the most  p o p u l a r  and  power fu l  

sources  o f  features  for  texture  charac te r iza t ion  

[17]. These  matr ices  are  usua l ly  cons ide red  as 

in te rmedia te  measures  and  are used  to define more  

g loba l  tex ture  features  such as cor re la t ion ,  con- 

trast,  etc. I f  one cons iders  a local  n e i g h b o r h o o d  

o f  d imens ion  N =  N x x  Ny, it is poss ib le  to 
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Table 8 

Classification of the twelve textures in Fig. 5 using the different correlations coefficients associated 
to a 2 x 2 and 3 x 3 neighborhood 

Features M Size Pc Arc 

2 x 2 Correlation coefficient 4 16 × 17 81.93% 

2 x 2 Correlation coefficient 4 32 x 32 96.04% 

2 × 2 Correlation coefficient 4 64 x 64 99.49% 

3 x 3 Correlation coefficient 12 16 x 16 89.65% 

3 x 3 Correlation coefficient 12 32 x 32 99.37% 

3 x 3 Correlation coefficient 12 64 x 64 100% 

9448 out of 11 532 

2593 out of 2700 

585 out of 588 
10 338 out of 11 532 

2683 out of 2700 
588 out of 588 

compute 2 N x N y  - Nx  - Ny  different co-occurrence 
matrices, each of them corresponding to a given 

relative displacement, which is usually specified 

by a distance value d and an orientation 0. These 

matrices provide estimates of  the joint probability 
density functions for all different pairs of  pixels 

in the considered domain. Obviously, this type of 

statistical characterization is more powerful than 
the corresponding set of  correlation coefficients. 
The main drawback of  this type of approach is its 

requirement for excessive memory storage and 
computation time. 

In this study, we have restricted ourselves to a 
2 x 2 neighborhood. The four corresponding sym- 

metric co-occurrence matrices (d = 1 and 0 = 0, 45, 

90, 135 degrees) have been computed on every 
texture sample and used to evaluate two different 

sets of  features. The first set consists of  the most 

commonly used features, namely Haralick et al.'s 

'energy',  'entropy' ,  'correlation' ,  and 'inertia'  [17]. 

The second set of  features, namely, 'cluster shade',  

'cluster prominence ' ,  'homogeneity ' ,  ' inertia' ,  and 

'correlation' ,  has been proposed more recently by 
Conners et al. [8, 9]. As a matter of  fact, both of  

these texture descriptions are more complete than 

the one that would be obtained measuring second 
moments only. The results in texture classification 

are given in Table 9 and have to be compared with 

the values in Table 7 obtained by local linear 

transformation. It is not surprising that co-occur- 
rence features are more powerful than correlation 

or texture energy measures alone. However, it is 
worthwhile noticing that the percentages of  correct 

classification obtained with the 2 x 2 DHT, using 

second, third, and fourth moments,  compare favor- 

ably with those achieved with set no. 1. This is 
even more remarkable since the number  of  
features--as  well as the computational effort--is 

Table 9 

Classification of the twelve textures 

co-occurrence matrices defined in a 

in Fig. 5 using co-occurrence features computed from the four 

2 x 2 neighborhood 

Features M Size Pc Nc 

Set 1 (d = 1, 0 = 0, 45, 90, 135 °) 16 16 × 16 88.82% 
Set 1 (d = 1, 0 = 0, 45, 90, 135 °) 16 32 x 32 97.74% 

Set 1 (d = 1, # =0 ,  45, 90, 135 °) 16 64×64 99.83% 

Set 2 (d = 1, 0 =0 ,  45, 90, 135 ° ) 24 16x 16 91.19% 

Set 2 (d = 1, 0 = 0, 45, 90, 135 °) 24 32 x 32 99.63% 
Set 2 (d = 1, # = 0, 45, 90, 135") 24 64 × 64 100% 

10243 out of 11 532 
2639 out of 2700 

587 out of 588 

10516 out of 11 532 

2690 out of 2700 
588 out of 588 
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significantly less important in the first case. The 
excellent results of set no. 2 are not surprising if 
one takes in account the effort that many research- 
ers have spent, during the last decade, to improve 
feature ext,'action based on co-occurrence 
matrices. It is believed that a similar improvement 
could be achieved with an optimized set of 
measurements based on a linear transformation of 
the local neighborhood vector. 

From these last experiments, it can be concluded 
that the proposed approach, providing that higher 
moments are computed, is almost as efficient for 
texture discrimination as methods based on co- 
occurrence measurements. Moreover, it seems pre- 
ferable, in practical applications, to extract local 
texture properties using local linear transforms 
rather than co-occurrence matrices, for the follow- 
ing reasons: 

(i) It enables a more compact description of 
local texture properties. It is also easy to adapt for 
various sizes of  the local neighborhood. 

(ii) The evaluation of  the channel histograms 
or some associated moments is computationally 
less demanding. 

(iii) Because of its parallel structure, this 
algorithm is especially suited for an implementa- 
tion on a specialized parallel image processor; it 
is therefore easily applicable in the context of real 
time image processing. 

(iv) The principle for the extraction of texture 
features by linear filtering is in agreement with 
recent physiological and psychological findings 

on the visual system [18,21]. Furthermore, 
classification errors generally occur between tex- 
tures that are the most difficult to differentiate 
visually; this is not necessarily the case when co- 
occurrence measurements are used. 

5. Conclusion 

It has been shown that local linear transforms 
can efficiently be applied to texture analysis and 
classification. The proposed method gives access 
to higher order statistical information by means of 
simple histogram or moment computation along 
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selected axes in the space of pixel values in a 
specified neighborhood. Optimal sets of masks 
have been derived for texture analysis and two 
class texture classification. The practical import- 
ance of sub-optimal transform processing has been 
emphasized as it considerably simplifies computa- 
tion and is applicable to cases where more than 
two textures have to be considered (N  class texture 
classification problem or segmentation). 

From experimental evaluation and comparison 
with other well-known techniques, texture 
measurements obtained from the channel his- 
tograms appear to have the following advantages 
which should make them useful in most practical 
applications: 

• Good performance: Channel variances alone 
were found to be almost as powerful as the corre- 
sponding set of correlation coefficients. If higher 
order statistics are also extracted, using third and 
fourth moments, the resulting set of features yields 

as good a classification as standard co-occurrence 
measures based on pairs of pixels. 

• Compactness o f  the description: Usually, the 
proposed approach uses less features than methods 
based on pairs of pixels. The number of channel 
histograms is always smaller than the number of 
different correlation coefficients or co-occurrence 

matrices than can be defined for the same neigh- 
borhood (for example, sixteen channel variances 
vs. twenty four correlation coefficients for a 4 × 4 
neighborhood). 

• Robustness: Performance in texture analysis 
or classification is not greatly affected by the exact 
shape of the masks which indicates that the method 
is robust. 

• Flexibility: The quality of the texture descrip- 
tion can be improved, according to the needs, by 
simply increasing the size of the local neigh- 
borhood. 

• Simple algorithmic structure: Very fast and 
efficient algorithms are available for most sub- 
optimal transforms that have been considered. 
In addition, because of its vectorial form, the 
method is especially well suited for parallel 
implementation. 
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Appendix A. Optimal transform for two class texture 
classification 

A generalized form of the performance criterion 
defined by equation (12) with a N x  N' ( N ' ~  < N )  
transform matrix T = [ U l , . . . ,  UN'] T is given by 

N' 
J =  E 2 2 2 2 G{o2J trl s + o ' J  cr2j}, (A.1) 

j=l  

where G{x} is an increasing function for x I> 2. 
Clearly, the term corresponding to the transformed 
coefficient j is minimum for cr~s = tr22s. The more 
variances will differ from each other, the easier it 
will be to distinguish between textures COl and co2. 
From this point of view, the most favorable trans- 
form is the one that maximizes J(N' ) .  

The optimal basis vectors are solutions of 

3J/Ouj=O ( j = l , 2 , . . . , n ) .  (A.2) 

Because of the condition that aG{x}/Ox>O for 
x I> 2, the evaluation of the partial derivatives of 
J ( N )  yields: 

Cx, . us/(u T. G , .  "s) = G 2 .  u J ( u  T. Cx2. us) 

(j = 1, 2 , . . . ,  N) 

which is equivalent to 

Cx~ " us = ys" Cx2" u s 

(A.3) 

( j =  1 , 2 , . . . ,  N). 
(A.4) 

This is easily verified in multiplying this expression 
by u T. Thus, the value of )'s is given by 

~'s = ( uT" G ,  " us ) / (u f  . cx2 .  us) 

(j = 1 , 2 , . . . ,  N),  (A.5) 

which is in agreement with equation (A.3). 
The optimal criterion value is found by substitu- 

tion in (A.1) of the quantities given by equations 
Signal Processing 

(A.3) and (A.5): 
N' 

max{J(N')}= Y~ G{39+l/yj} 
j=l  

N' 
= E G{"T'(c;~ 'Cx2 

j - I  

q' -Cx 1° Cxl) ' / . / j} ,  (A.6)  

where the solutions (uj, yj) ( i=  1 , 2 , . . . ,  N) are 
ordered according to equation (14). 
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