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Abstract. In this paper we propose a flexible method for analyzing the rele-
vance of input variables in high dimensional problems with respect to a given di-
chotomic classification problem. Both linear and non-linear cases are considered.
In the linear case, the application of derivative-based saliency yields a commonly
adopted ranking criterion. In the non-linear case, the method is extended by intro-
ducing a resampling technique and by clustering the obtained results for stability
of the estimate. The method was preliminarly validated on the data published by
T.R. Golub et al. on a study, at the molecular level, of two kinds of leukemia:
Acute Myeloid Leukemia and Acute Lymphoblastic Leukemia (Science 5439-
286, 531-537, 1999). Our technique indicates that, among the top 20 genes found
by the final cluster analysis, 8 of the 50 genes listed in the original work feature
a stronger discriminating power.

1 Introduction

In pattern recognition the problem of input variable selection has been traditionally
focused on technological issues, e.g., performance enhancement, lowering computa-
tional requirements, and reduction of data acquisition costs. However, in the last few
years, it has found many applications in basic science as a model selection and discov-
ery technique, as shown by a rich literature on this subject, witnessing the interest of
the topic especially in the field of bioinformatics. A clear example arises from DNA
microarray technology that provides high volumes of data for each single experiment,
yielding measurements for hundreds of genes simultaneously.

The problem statement is as follows. We are given a two-class labeled training sam-
ple

{
x ∈ <d

}
of n observations. On the basis of the analysis of the decision surfaces, we

want to assign an importance ranking to each individual input variable xi with the aim
of pointing out which input variables contribute most to the classification performance.
This ranking can be used for the actual selection step.



2 Linear case

We assume that the normalization parameters for the data are known with sufficient
statistical confidence. This is not always true, although in the case of microarray data
accurate normalization is part of the standard preparation of data [3].

Let r = g(x) ∈ < be the discriminant or decision function, the discrimination cri-
terion being y = sign(r). We assume a classifier r = g() capable of good generalization
performance. We adopted Support Vector Machines [5], which provide optimal solu-
tions with a minimum of parameter tuning.

To analyze what input variables have the largest influence over the output function,
we evaluate the derivatives of r with respect to each variable, to point out which one is
responsible, for a given perturbation, of the largest contribution to sign inversion (which
denotes switching from one class to another). This is the so-called derivative-based
saliency. It is a way to assess the sensitivity of the output to variations in individual
inputs, and has been used in many contexts.

Since we are interested in zero crossings, the analysis should be done in a neigh-
borhood of the locus {x|g(x) = 0}, and of course requires g() to be locally differentiable.
The latter assumption is reasonable (obviously, on a local basis) since smoothing is
required by the discrete sampling of data. However, the more complex the decision sur-
face {x|g(x) = 0}, the smaller the regions in which this assumption holds around any
given point.

Standard input selection criteria [14] justify the application of the above technique
to linear classifiers, although some small-sample issues, such as the previous consider-
ation on normalization, are often overlooked. This technique is described for instance
in [4] and [16]. In the linear case, r = g(x) = w · x and ∇r = w. The single feature r
discriminates between the two classes (r > 0 and r < 0). This feature is given by a linear
combination of inputs, with weights w. Thus, by sorting the inputs according to their
weights, the “importance” ranking is directly obtained. In the analysis, we examine rel-
ative importances, t = w/maxi {wi} (wi components of w). The approach can be justified
from many perspectives: statistical, geometrical, or in terms of classification margin.

3 Non-linear case

In the general, non-linear case, it is not possible to define a single ranking which holds
in any region of the input space. A global approach employing statistical saliency evalu-
ation based on data [13] requires large datasets which are not generally affordable, espe-
cially with DNA microarrays. Our approach involves partitioning the decision function
g(), and performing local saliency estimates in sub-regions where g() can be approxi-
mated with a linear decision function. To this end we apply a Voronoi tessellation [1],
defined by drawing a set of points (termed Voronoi sites). Each Voronoi site defines a
localized region in the data space, that is the locus of points in the data space for which
that site is the nearest of all sites.

We can identify empty regions (with no data points); homogeneous regions (with
points from one class only); general regions (with points from both classes).



Table 1. Random Voronoi Ensemble method for feature selection

(1) Establish a random Voronoi partitioning of the data space;

(2) Discard homogeneous and empty Voronoi cells;

(3) Compute a linear classifier on each remaining Voronoi cell;

(4) Store the obtained saliency vector along with the cell site;

(5) Repeat steps 1-4 until a sufficient number of saliency vectors

are obtained;

(6) Perform joint clustering of the saliency vectors and cell

centers;

(7) Retrieve cluster centers and use them as estimated local

saliency rankings.

In the simplest approach, local linearization is made on the basis of an arbitrary
partitioning (local subsampling) of the data space; to perform random partitioning, the
Voronoi sites are drawn randomly. Homogeneous and empty regions are then discarded.
Within each general region, a local linear classifier is built. Thus a single random
Voronoi tessellation defines a set of classifiers, each performing a local analysis.

This basic method has several drawbacks: lower confidence of classifiers (trained on
sub-samples); artifacts from Voronoi borders superposed to the separating surface; lack
of a criterion for the number of regions; need to combine saliency rankings obtained in
different regions.

To address all these issues, we propose a method we term “Random Voronoi En-
semble” since it is based on random Voronoi partitions as described above; these parti-
tions are replicated by resampling, so the method actually uses an ensemble of random
Voronoi partitions. Ensemble methods are described for instance in [6]. The method is
outlined in Tab. 1.

Since a purely random partition is likely to generate many empty regions, the Voronoi
sites are initialized by a rough vector quantization step, to ensure that sites are placed
within the support of the data set. Subsequent random partitions are obtained by pertur-
bation of the initial set of points. Within each Voronoi region, a linear classification is
performed using Support Vector Machines (SVM) with a linear kernel.

To build a classifier ensemble, a resampling step is applied by replicating the basic
procedure. The subsequent clustering step acts as the integrator, or arbiter: its role is
to integrate the individual outcomes and to output a global response. It results in a
set of “prototypical” saliency patterns, corresponding to different local classification
criteria. These patterns are “prototypical” in the same sense as the centroids of k-means
partitions [7] are representative of the respective clusters.

Resampling helps in smoothly covering the whole data set and, by averaging, con-
tributes to the stability of the outcomes. Unfortunately, it is difficult to obtain theoreti-
cal guidelines on how many replications are required. Theoretical results on stability of
Voronoi neighbors are available only for low dimensions [17], and typically cannot be
generalized to higher dimensions.



Table 2. Relevant inputs for the Leukemia data

Gene description Gene accession Correlated Sign of
number class saliency

GPX1 Glutathione peroxidase 1 Y00787 AML −
PRG1 Proteoglycan 1, secretory granule X17042 AML −
CST3 Cystatin C (amyloid angiopathy and
cerebral hemorrhage)

M27891 AML −

Major histocompatibility complex
enhancer-binding protein mad3

M69043 AML −

Interleukin 8 (IL8) gene M28130 AML −
Azurocidin gene M96326 AML −
MB-1 gene U05259 ALL +

ADA Adenosine deaminase M13792 ALL +

To integrate the outcomes of the ensemble, we use the Graded Possibilistic Clus-
tering technique to ensure an appropriate level of outlier insensitivity ([12]). This tech-
nique is a generalization of the Possibilistic approach to fuzzy c-Means clustering of
Keller and Krishnapuram [10][11] in which cluster membership can be constrained to
sum to 1 (as in the standard fuzzy clustering approaches [2]), unconstrained (as in the
Possibilistic approach), or partially constrained. Partial constraints allow the implemen-
tation of several desirable properties, among which there is a user-selectable degree of
outlier insensitivity. The number of cluster centers is assessed by applying a Determin-
istic Annealing schedule [15] to the parameter β, which directly influences the width of
clusters and is a measure of the “resolution” of the method.

4 Experimental results

The method was preliminarily validated on the data published in [8], a study, at the
molecular level, of two kinds of leukemia, Acute Myeloid Leukemia (AML) and Acute
Lymphoblastic Leukemia (ALL). Data were obtained by an Affymetrics high-density
oligonucleotide microarray, revealing the expression level of 6817 human genes plus
controls. Observations refer to 38 bone marrow samples, used as a training set, and 34
samples from different tissues (the test set).

In this experiment, we used only the training data to discriminate ALL from AML.
Classes are in the proportion of 27 ALL and 11 AML observations. Parameters: 4
Voronoi sites; β from 0.1 down to 0.01 in 10 steps, exponential decay law; uniform
perturbation of maximum amplitude 0.5, independent on each input coordinate; 100
perturbations resulting in 400 random partitions of which 61% useful (general).

Results are summarized in Tab. 2, comparing the most important genes with those
obtained by the original authors. Genes that were indicated both in [8] and by our
technique are listed with the sign of their saliency value. Our technique indicates that,
among the top 20 genes found by the final cluster analysis, 8 of the 50 genes listed in the
original work feature a stronger discriminating power. We restrict the analysis to few



genes, since a good cluster validation step is not included in the method yet. However,
the results may indicate that not all of the genes found by Golub et al. contribute to the
actual discrimination to the same extent.

5 Discussion and conclusions

We have described a flexible method for analyzing the relevance of input variables in
high dimensional problems. The method, which is in an early phase of development,
has nevertheless shown the ability to tackle dichotomic problems even in the presence
on non-linear separating surfaces. Its behavior has also been validated by comparing
the results obtained on a real microarray data set with those published by the original
authors.

We can underline some issues can we plan to addressed in the future work. For
example, the number of Voronoi sites is an important parameter, since it is related to
the scale of the tessellation (size of cells). Large cells will tend to contain segments of
the separating surface which are difficult to linearize, while small cells will lead to ex-
cessively small data subset cardinality, and therefore to low generalization ability. The
selection of the number of sites can be based on estimates of the problem complex-
ity such as those proposed in [9], which are based on geometrical characterization of
the data rather than the more usual statistical or information-theoretical consideration.
However these must be combined with estimates of generalization to account for the
trade-off outlined above.

Moreover, we have based our analysis on decision surfaces. This implies that the
most natural setting of the problem is given by dichotomic (two-class) cases. Any poly-
chotomic problem can be stated as a set of dichotomic problems, and this is what is
usually done when using Support Vector Machines for classification. However a possi-
ble development of the method could imply the analysis of multi-class decision criteria,
such as soft-max.

We point out that the proposed method for feature selection is especially well suited
to parallel implementation at many levels, since the various steps can be pipelined, the
subsamples can be processed in parallel, and the Voronoi resampling and clustering
phases themselves can be implemented in parallel. All these steps involve very reduced
communication. For instance, parallel resampling can be implemented by completely
independent random partitions, and communication of subsamples for parallel analysis
can be obtained by passing the index of selected patterns. Therefore a Beowulf-type
workstation cluster may be proficiently used with limited adaptation effort.

The technique to generate the random perturbations themselves can be also opti-
mized, to reduce the number of empty/homogeneous regions, since the data sets are
expected to be extremely sparse in the data space. Perturbations can therefore be lim-
ited to a subspace, for instance by constraining them to the directions spanned by the
versors of the data patterns (e.g., referring to the leukemia data, this is a basis which
spans a 38-dimensional subspace of the 6817-dimensional data space).



6 Acknowledgements

Work funded by the Italian National Institute for the Physics of Matter (INFM) and by
the Italian Ministry of Education, University and Research (“Prin2002”).

References

[1] F. Aurenhammer, Voronoi diagrams-a survey of a fundamental geometric data structure,
ACM Computing Surveys, 3 (23) (September 1991), 345-405.

[2] J.C. Bezdek, Pattern recognition with fuzzy objective function algorithms, Plenum, New
York (1981).

[3] M. Bilban, L.K. Buehler, S. Head, G. Desoye, V. Quaranta, Normalizing DNA microarray
data, Curr Issues Mol Biol, 4 (2) (2002) 57-64.

[4] J. Brank, M. Grobelnik, N. Milic-Frayling, D. Mladenic, Feature selection using linear
support vector machines, Tech. Rep. MSR-TR-2002-63, Microsoft Research (June 2002).

[5] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge
Univ. Press (2000).

[6] T.G. Dietterich, Machine-learning research: Four current directions The AI Magazine 4 (18)
(Winter 1998) 97-136.

[7] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, John Wiley and Sons, New
York (USA) 1973.

[8] T.R. Golub et al., Molecular classification of cancer: Class discovery and class prediction
by gene expression monitoring, Science 5439 (286) (1999) 531-537.

[9] Tin Kam Ho and Mitra Basu, “Complexity measures of supervised classification problems”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 289–
300, March 2002.

[10] R. Krishnapuram, J.M. Keller, A possibilistic approach to clustering, IEEE Trans. on Fuzzy
Systems, 2 (1) (May 1993) 98-110.

[11] R. Krishnapuram, J.M. Keller, The possibilistic c-Means algorithm: insights and recom-
mendations, IEEE Trans. on Fuzzy Systems, 3 (4) (August 1996) 385-393.

[12] F. Masulli, S. Rovetta, Soft transition from probabilistic to possibilistic fuzzy
clustering, DISI Technical Report DISI-TR-03-02, Department of Computer
and Information Sciences, University of Genoa, Italy (April 2002). URL:
http://www.disi.unige.it/person/RovettaS/research/techrep/DISI-TR-02-03.ps.gz.

[13] C. Moneta, G. Parodi, S. Rovetta, R. Zunino, Automated diagnosis and disease characteri-
zation using neural network analysis, in Proc. of the 1992 IEEE Int. Conf. on Systems, Man
and Cybernetics, Chicago USA (October 1992) 123-128.

[14] B.D. Ripley, Pattern recognition and neural networks, Cambridge Univ. Press (1996).
[15] K. Rose, Deterministic annealing for clustering, compression, classification, regression, and

related optimization problems, Proceedings of IEEE, 11 (86) (November 1998) 2210-2239.
[16] V. Sindhwani, P. Bhattacharya, S. Rakshit, Information theoretic feature crediting in multi-

class support vector machines, in 1st SIAM Int. Conf. on Data Mining, Chicago, USA. (April
2001) SIAM, Philadelphia.

[17] F. Weller, Stability of Voronoi neighborhood under perturbations of the sites, in Proc. of
Ninth Canadian Conf. on Computational Geometry, Kingston, Ontario, Canada (August
1997).


