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ABSTRACT

In this work, the application of two different techniques to the analysis of coronal time series is investigated. The
first technique, called empirical mode decomposition, was developed by Huang and coworkers and can be used to
decompose a signal in its characteristic timescales, allowing, among other applications, efficient filtration of the
signal. The second technique, called complex empirical orthogonal function (CEOF) analysis, is an extension of
the well-known principal component analysis, to which the Hilbert transform has been added. The CEOF analysis
allows identification of the dominant spatial and temporal structures in a multivariate data set and is thus ideally
suited to the study of propagating and standing features that can be associated with waves or oscillations. Here we
apply both methods to time series obtained from a coronal loop and obtain detailed two-dimensional information
about a propagating and a standing wave with periods around 5 and 10 minutes, respectively.
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1. INTRODUCTION

In recent years the detection of oscillations in the solar at-
mosphere has provided a new tool for determining unknown
coronal parameters. Measuring the properties of waves and
oscillations, that is, finding out more information about the
periods, wavelengths, amplitudes, temporal and spatial sig-
natures, etc., together with the theoretical modeling of the
wave phenomena, can be used as a seismic tool. In particular,
coronal seismology has been widely developed in the context
of the study of structures such as loops or prominences. In
addition, the high spatial and temporal resolution of current
satellite missions such as TRACE (Handy et al. 1999) or SOHO
(Domingo et al. 1995) has allowed further development of the
study of wave phenomena in the solar atmosphere. However, in
order to obtain the maximum benefit from the data provided by
satellites and ground-based instruments, it is necessary to ap-
ply suitable techniques to the analysis of coronal wave phe-
nomena, and, in this respect, there are some key points that
must be considered. The first issue is the noisy and nonsta-
tionary behavior of the time series, and the second issue is the
two-dimensional (projected) character of propagating features.

Very often, signals of solar origin have a low signal-to-noise
ratio, and sometimes to increase this ratio a new data set is
created by summing over consecutive times, with a consequent
reduction in the time resolution. Moreover, it is also common
to integrate the signal over several neighboring points, which
results in a decrease in spatial resolution. Finally, to emphasize
the time variability of the analyzed data, a running-difference
image is created by subtracting different frames with a thresh-
old time step. Examples of the application of some of these
methods to the analysis of solar coronal data can be found in
Aschwanden et al. (2000) and De Moortel et al. (2000, 2002c).
Although the final data can still retain some of the relevant
features in the original signal, they are just averaged data with
reduced temporal and spatial resolution. In order to try to avoid
some of the previous shortcomings, an alternative approach
consists in trying to separate the different timescales in the
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signal. Hence, if noise can be efficiently isolated, it is possible
to deal with the denoised signal without a temporal or spatial
resolution sacrifice.

Another common feature of coronal time series is that they
do not show stationary behavior. Oscillations are usually
detected during a few periods and have a finite lifetime. As
a consequence, Fourier spectral analysis (which requires the
data series under study to be stationary) is of limited use. The
Fourier spectrum of a signal requires many additional har-
monic components to simulate nonstationary behavior, thus
spreading the energy over a wide frequency range, and is
unable to provide information about the lifetime of oscilla-
tions. Another limitation is that in this technique a linear su-
perposition of trigonometric functions is used, so additional
harmonics are needed to simulate deformed wave profiles
associated with nonlinearity. On the other hand, wavelet anal-
ysis provides time localization of the frequency components,
especially if the data show gradual frequency changes. Wavelet
analysis has become popular and in recent years has been
extensively applied to the analysis of different solar atmo-
spheric oscillations (see Ofman et al. 2000; Banerjee et al.
2000; De Moortel et al. 2000, 2002a; O’Shea et al. 2001 for
recent applications).

A very new and attractive method was recently developed by
Huang et al. (1998, 1999). This statistical tool can be used to
decompose a signal in its intrinsic timescales, which is par-
ticularly useful in dealing with nonstationary and even with
nonlinear data and therefore satisfies the requirements for
the analysis of solar time series. These authors show that the
new method, whose key part is the empirical mode decom-
position (EMD), can even overcome some of the limitations of
the wavelet analysis, such as leakage and low time-frequency
resolution. For these reasons, here we propose this method as
a new tool for the analysis of coronal time series in order to
isolate and study wave motions.

On the other hand, techniques designed to identify the
dominant spatial and temporal structures in a data set are
desirable, especially if one is interested in investigating
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propagating and/or standing features that could be associated
with waves. One of the simplest standard ways to detect a
propagating disturbance in a field is to choose a particular path
and then to plot, for different times, the values of the field along
this path to obtain a time-distance image. The presence of one or
more diagonal stripes in this image is a sign of coherent changes
in position and time and consequently indicates propagation
along the path, where the slope of the diagonal ridges in the
image gives a measure of the propagation velocity of the fea-
ture. This method has been applied, for instance, to the analysis
of propagating waves in loops (see Berghmans & Clette 1999;
De Moortel et al. 2000, 2002b; Robbrecht et al. 2001), in
plumes (see DeForest & Gurman 1998), and in prominences
(see Terradas et al. 2002). However, the method provides only
a partial picture of the motion, which is in general two-
dimensional, allowing us to obtain information just along the
particular selected path. An alternative approach to studying
two-dimensional propagation is to compute the Fourier phase at
each point in the data set and then to analyze its spatial distri-
bution. Smooth changes of phase with position indicate the
presence of a propagating wave, and the method produces sat-
isfactory results if the wave shows a strong monoperiodic
character (see Terradas et al. 2002). However, in most coronal
signals there are several superposed oscillatory features that in
some cases can be related to propagating and/or standing pat-
terns, and hence, the application of the above-mentioned simple
techniques can result in misleading conclusions. For these
reasons, it is necessary to apply other adequate tools of analysis
in order to obtain reliable information.

In this respect, there are statistical methods that have been
developed and are routinely used in other areas of physics,
such as climate and meteorological research, which include
techniques of spatial and temporal pattern detection in multi-
variate data sets. These methods attempt to exploit the infor-
mation available in spatially distributed data sets and involve
eigenvalue decompositions. The most traditional technique
is empirical orthogonal function (EOF) analysis, also known
as principal component analysis. The goal of EOF analysis is
to provide a compact description of the spatial and temporal
variability of data series in terms of orthogonal functions or
statistical “‘modes.” Usually, most of the variance of the spa-
tially distributed time series is in the first few orthogonal
functions, whose patterns may then be linked to possible dy-
namical mechanisms. EOF analysis only allows us to detect
standing oscillations, but some extensions of this technique are
very well suited to investigating propagating features, since
they retain phase information in the decomposition. Complex
empirical orthogonal function (CEOF) analysis in the time
domain is an attractive and relatively simple alternative that
allows for efficient detection of propagating features, espe-
cially when the variance is spread over a number of frequen-
cies, and has provided satisfactory results in climate research
(see Wallace & Dickinson 1972; Horel 1984).

The main purpose of this work is to describe and show the
basic properties of the EMD method and CEOF analysis and to
describe how they can provide valuable diagnostic information
for coronal seismology. The EMD and CEOF techniques are
explained in §§ 2 and 3, respectively. A real application of both
tools to the analysis of loop oscillations is given in § 4, and
finally, the main conclusions are drawn in § 5.

2. EMPIRICAL MODE DECOMPOSITION

EMD is based on the simple assumption that any data set is
the sum of different simple intrinsic modes of oscillation. The
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EMD method gives a decomposition of the signal into essen-
tially band-limited components by using information from the
signal itself instead of prescribing basis functions with fixed
frequency, such as in Fourier analysis, or imposing a particular
set of basis functions, as is the case with wavelet analysis. At
the core of the EMD method is the idea that any data set is the
sum of a few intrinsic mode functions (IMFs), since such a data
set is the outcome of just a few physical processes intervening
in the course of data generation and acquisition. (It must be
emphasized, however, that there is no one-to-one correspon-
dence between the physical processes and the IMFs obtained
with the EMD method, since, for example, a nonlinear mech-
anism can give rise to the presence of different timescales in
a signal, which would then be separated as different IMFs.)
The next key idea is that each IMF has its very own timescale
of variations, with oscillations that are symmetric about the
local zero mean. These topics have been discussed at length in
Huang et al. (1998, 1999), where further information, exten-
sive discussions on the foundations of this technique, and
many applications to synthetic and natural signals can be found
(see also Komm et al. 2001).

2.1. Method

From their definition above, the intrinsic mode functions
must fulfill the following restrictions:

1. For each IMF, the number of extrema and the number of
zero crossings must either be equal or differ at most by 1.

2. For each IMF, the mean value of the envelope defined by
the local maxima and the envelope defined by the local minima
must be zero for all times.

The first condition is a global narrowband requirement,
which ensures that periods that are too different are not mixed
together in an IMF. The second restriction adds the local re-
quirement that oscillations are about the zero level. Strange as
these properties may seem, they are fulfilled by the well-known
Fourier and wavelet basis functions: they are monoperiodic
and have zero mean (and thus satisfy conditions 1 and 2, re-
spectively.) With this definition, an IMF component is char-
acterized by a single pair of amplitude and period values,
which usually change in time. In this regard, the EMD method
is a generalization of decomposing a stationary signal into
trigonometric functions, which have constant amplitudes and
frequencies.

For a given signal, X(¢), the EMD decomposition is per-
formed in the following steps:

1. First, all local extrema are identified, and then the local
maxima are connected by a cubic spline line, which gives the
upper envelope.

2. This procedure is repeated for the local minima to obtain
the lower envelope.

3. The mean of the upper and lower envelopes is designated
m(t), and the difference between the data and this mean is the
first component, 4, (¢), that is,

hi(f) = X(£) — my (). (1)

Ideally, 4,(¢) should be an IMF because the construction of
hi(t) described above should have made it satisfy all the
requirements of an IMF. However, overshoots/undershoots and
“riding waves” are common in real signals and can generate
new extrema. These and other effects are discussed at length by
Huang et al. (1998), who indicate that the above procedure
must be repeated several times until a true IMF is extracted. A
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“sifting” process is then set up by which £ () is treated as the
data and the above steps are repeated by taking

hi1(6) = () — my(0). (2)

After repeated sifting, say, up to & times, we finally end up
with Ay () = hl(kfl)(t) — myy(f), which is a true IMF. Then,

ci(t) = hi(t) (3)

is the first IMF component in the signal.

The sifting process must be applied with care, since the
requirement that the local mean has to be zero can drive the
process toward a pure frequency-modulated IMF with con-
stant amplitude. To guarantee that the IMF components retain
enough physical meaning with respect to both amplitude and
frequency modulations, a stopping criterion for the sifting
process must be introduced. Huang et al. (1998) suggest using
a sort of standard deviation calculated from two consecutive
siftings,

(4)

1y (@) — hlkmﬁ]

=0 R n(®

and stopping the iterative process when o is smaller than a
given value, oy, that Huang et al. (1998) suggest can be set
between 0.2 and 0.3. In our application of the method to the
analysis of coronal data (§ 2.2) we have found that smaller
values of this parameter (between 0.1 and 0.2) generally yield
better results.

The first IMF, ¢ (), contains the finest scale, or the shortest
period component of the signal. We can separate c¢(¢) from the
rest of the data by computing the residue, 7;(?),

ri(0) = X(0) — c1(0). (5)

Since this residue still contains longer period components, it is
treated as new data and is subject to the same sifting process
as described above. This procedure can be repeated to obtain
all the subsequent 7;(¢) and c;(¢), and the result is a series of
residues and IMFs given by

ra(t) = ri(t) — e (2), (6)
r3(t) = (1) — e3(2), (7)
}",,(l) = 7’,,,1(1‘) - Cn(t). (8)

The process of extracting the IMF components can be finally
stopped by any of the following predetermined criteria: either
when the maximum of |¢,(?)| or of |r,(?)] becomes so small that
itis less than a predetermined value or when the residue 7, (¢) be-
comes a function from which no more IMFs can be extracted.
This happens when the residue is either a constant or a func-
tion with long-term variations compared with the time span.
This second condition translates into counting the number of
extrema of the residue and stopping the iterations when that
number is equal to 2 at most.

From equations (5)—(8), the original signal can now be
reconstructed as

n

X0 = ¢t)+ (). )

Jj=1
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Thus, a decomposition of the data into n empirical modes is
achieved, with a final residue, (f) = r,(¢), which is simply the
mean trend of the signal. Hence, the EMD method can effec-
tively subtract the trend or mean value from the original series
without any distortion in the information contained in the
remaining data.

From the numerical point of view, the EMD decomposition
is, in principle, quite clear and simple. However, the extension
of the time series at the end points must be addressed. Upper
and lower values for the envelopes at those particular points
must be computed using the spline fitting. If these points are
left unattended, cubic splines can diverge and show large
swings. These swings can propagate inward and corrupt the
data, especially if the data series is short. In order to avoid this
problem, extra extrema must be added at each end of the signal,
a possible solution being to extend the original data series by
using a characteristic wave method. Huang et al. (1998, 1999)
do not give many details as to how this extension must be
implemented, so we have followed this approach: the maxi-
mum and minimum closest to the beginning or the end of the
series are identified, and the characteristic wave period is de-
fined as twice the time between them. Then, three more max-
ima and minima are added outside the time range of the signal
with a time spacing given by the previously determined char-
acteristic period. Note that since splines are fitted only to the
extrema of the signal, this extension must be performed only
with maxima and minima.

One of the biggest benefits of the EMD method is that it can
be used as a novel filter. Traditionally, filtering is carried out in
frequency space only, but there is a great difficulty in applying
the frequency filtering when the data are either nonlinear,
nonstationary, or both, and in general, harmonics are generated
at all frequencies. By performing the EMD decomposition, the
different coexisting modes of oscillation in the signal are sep-
arated, and so, for example, a low-pass filtering of the signal
can be obtained by performing the sum of the last components
and the trend in equation (9). Similarly, summing only the first
IMF components results in a high-pass—filtered series, while
performing the sum in equation (9) without the first and last
components and the trend results in a bandpass-filtered time
series. The advantage of this time-space filtering is that the
results preserve the full nonlinearity and nonstationarity.

2.2. Application of EMD to Coronal Data

In order to show the advantages of the EMD method, we
have analyzed some time series that are part of the data set
studied in § 4. Since the data are described in more detail later,
it suffices to mention here that the duration is 1240.8 s and that
the time step between successive observations is 8.8 s, so there
are a total of 141 values. The time series and its IMF compo-
nents are shown in Figure 1; it can be appreciated that the
signal is quite noisy but still some of the IMFs show oscillatory
features with different timescales and amplitudes. The EMD
method decomposes this signal in just six functions, namely,
the six IMF's ¢ (¢) to ¢5(#) plus the trend r(¢), instead of the tens
of modes (141 in this particular example) that would be re-
quired had a Fourier expansion been used to represent the
whole data set. Moreover, this technique separates the data
into locally nonoverlapping timescale components that display
oscillations about the zero level. The first component, ¢,
contains only small timescales with large amplitudes, which
are characteristic of noise in this particular signal. Components
cy—cy4 have larger periods, roughly in the range 1-4 minutes.
However, the most noticeable IMF component is ¢s, which is
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Fic. 1.—Top panel displays the signal analyzed with the EMD method,
while the next five panels show the resulting IMF components, c;(t)—cs(?).
Each component has its own characteristic amplitude and its own timescale,
which is small for ¢;(f) and becomes increasingly larger for the subsequent
IMFs. The bottom panel shows r(¢), which is not truly an IMF but is merely
the trend. In the decomposition of the signal, an IMF is accepted during the
sifting process when o defined in eq. (4) becomes smaller than oy,,x = 0.2.

quite symmetric and has a period around 10 minutes. Note that,
although this component has a small amplitude in comparison
with the first, noisy component, it is nevertheless decomposed
as an IMF.

Once the IMF components have been computed, we can
easily reconstruct the original signal. In Figure 2a we have
plotted the original data and the long-term residual trend.
When the last component, cs, is added to the trend, the fitting to
the original data is improved and part of the oscillatory char-
acter of the signal is recovered (see Fig. 2b). By successively
adding more IMF components with smaller periods, the results
shown in Figures 2¢—2f are obtained. Note that by adding
components up to c3 we have recovered practically all the
original signal, while the rest of the components essentially add
short-term variability but little more information. From these
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results it is clear that the EMD method is a useful tool for
analyzing a signal and isolating the different timescales, which
may be associated with different physical processes. Therefore,
those components that seem to have a particular physical
meaning can be extracted from the signal and a detailed
analysis of each of them can be performed separately.

Finally, the EMD is a useful filtering tool, since one can
confidently “clean” the noise in the signal by removing its first
IMFs and also subtract the trend by removing the residue. It is
quite striking that, for our loop data, by changing o, between
0.05 and 0.3, both ¢ (¢) and () remain practically unchanged,
while the details in the other components may differ between
the various decompositions. Therefore, the EMD method is
quite robust in getting the right noise and trend despite using
different values of o, in the stopping criterion. This is the
reason why the EMD is used in the task of noise and trend
removal in the preparation of the data set in § 4.

3. COMPLEX EMPIRICAL ORTHOGONAL
FUNCTION ANALYSIS

The complex EOF analysis is a multivariate technique de-
vised to obtain the dominant spatial patterns of variability in a
statistical field. As the CEOF approach has considerable po-
tential for being widely used to analyze propagating phenom-
ena and is not a common technique in the analysis of solar data,
we give in the following a brief overview of the method. For
further details the reader is referred to Wallace & Dickinson
(1972), Horel (1984), and von Storch & Zwiers (1999). It
should be mentioned that the last authors refer to this tool as
Hilbert EOF analysis.

3.1. Method

The purpose of classical EOF analysis is to identify patterns
that characterize variations in the current “state” of a scalar
field, which means that the technique does not efficiently take
into account the time evolution of the analyzed field. A means
of accounting for such time evolution is to quantify the time
series in terms of complex numbers by adding to it its Hilbert
transform, which gives information about the rate of change of
the field, as an artificial imaginary part. The result is that the
information contained in the Hilbert scalar field is greater than
that in the original field.

Let X(x, ¢) be a scalar field representing a time series, where
x corresponds to spatial position and ¢ to time. At a particular
location x; this field can be written as

X(@;,0) = aj(w) cos (wi) + bw)sin (wf),  (10)

where a;(w) and b;(w) are the Fourier coefficients and the sum
is carried over all Fourier frequencies. In order to describe the
propagating features in the scalar field the original data set is
written in terms of the complex representation

Uxj, f) = > ci(w) exp (— iwr), (11)

where ¢;(w) = a;(w) + ibj(w). An expansion of the exponential
term in equation (11) yields

Uxj, )= _ {[aj(w) cos (wi) + by(w) sin (wi)]

+ i[bj(w) cos (wr) — aj(w) sin (wr)] }
=X(x;,0) + iX (x;, 8), (12)
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FiG. 2—Reconstruction of the original data from the IMF components shown in Fig. 1. (a) Data (thin line) and the trend (thick line). (b) Data and the sum of the
trend and the last component, ¢s. (c—f") Same as (b) with an additional IMF component added in each plot.

where the real part is simply the original data array and the
imaginary part is its Hilbert transform and represents a filtering
operation upon X (x;, f) in which the amplitude of each Fourier
spectral component is unchanged while its phase is advanced
by 7/2.

Next, the covariance matrix, C, is defined by means of

Ci]' = <U*(xi,t)U(xj7t)>t, (13)

where the asterisk denotes complex conjugation and (. . .),
indicates time averaging. Here C represents the cross-spectral
matrix and by construction is Hermitian and possesses m real,
nonnegative eigenvalues, 4,, and complex eigenvectors, E,(x),
n=1,2,...,m. Once the spatial eigenvectors are calculated,
their corresponding time evolution is given by the time series
A, (%), which is obtained by projecting the complex data series

U(x, ?) onto the proper eigenvector E,(x) and summing over all
locations

An(t) = U(xj, DE (X)), (14)
J

By definition, the nth CEOF mode consists of a spatial part,
i.e., the pattern E,(x), and a temporal part, the principal com-
ponent A4,(¢), such that the product E,(x)4,(¢) corresponds to a
representative oscillatory component present in the field. As a
consequence, the spatial and temporal behavior of the nth
mode can then be derived by taking the real part of £, (x)A4,(¢).
The original complex data field, U(x, 7), can be totally recon-
structed by adding this product over all modes,

Ux, 1) = zm:E;‘(x)A,,(t). (15)
n=1
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Therefore, the field has been decomposed in a sum of em-
pirically derived basis functions that represent different fea-
tures present in the data. And even more important, there is a
simple way of quantifying the contribution of each mode to
the total field, since the nth complex EOF is associated with a
fraction of the total field variance given by

Jon
- 16
Z;nzl Zi (16)

With the above decomposition, if there are several coherent
oscillatory structures propagating in a field, each wave pattern
will be separated into its own eigenmodes by the CEOF
analysis. The most dominant pattern in the data set will have
the largest eigenvalue, i.e., the largest fraction of the total
variance, and since the eigenvalues are sorted for convenience
in descending order, the largest eigenvalue corresponds to the
first one.

Since the terms in equation (15) are complex numbers, the
field U can be expressed as

Ule,) = Syx)e @R, ()¢, (17)
n=1

and four measures that define possible moving features in
X(x,?) can be defined immediately without any assumption
about the field:

1. Spatial amplitude function.—This measure shows the
spatial distribution of variability associated with each eigen-
mode and may be interpreted as in normal EOF analysis. The
definition of the spatial amplitude function associated with the
nth eigenmode is

Su(x) = [EJ@)E; )] (18)

The spatial distribution of S, gives a measure of spatial ho-
mogeneity, by mode, in the magnitude of the X field.

2. Spatial phase function.—This function shows the relative
phase fluctuation among various spatial locations where X is
defined. This measure varies continuously between —7 and m,
and as such, it is no longer restricted to the two possible values it
can take in standard EOF analysis (namely, 0 or 7). The spatial
phase associated with the nth eigenmode is defined as

Im (En(x))]

Re (E,(x)) (19)

0,(x) = arctan [

3. Temporal amplitude function—A measure of temporal
variability in the magnitude associated with the nth eigenmode
in the X field is obtained from

R(t) = [A,(043(0)]' (20)

and may be interpreted as the principal component in standard
EOF analysis.

4. Temporal phase function.—Finally, the temporal phase
describes the temporal variation of the phase of the nth ei-
genmode associated with periodicities in the field X and is
defined as

¢,(f) = arctan {Re(A,,(t))
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One of the limitations of the CEOF analysis is related to the
end effects in the time series when the Hilbert transform is
computed, which can be especially significant for long-period
modes. Another feature of the method related to the Hilbert
transform is the tendency to emphasize modes that oscillate at
the Fourier frequencies. On the other hand, the CEOF analysis
is particularly useful when the signal shows a stationary or
weakly nonstationary behavior. Otherwise, this technique can
introduce extra modes, with similar variances, to explain
nonstationarity (see § 4), but even in this case it is still possible
to extract useful information from the analyzed field.

3.2. Example

In order to show the basic properties of the CEOF analysis
and to help interpret the above-mentioned four measures, we
apply this technique to the following synthetic two-dimensional
field (the data set consists of a time series of 300 samples over a
grid of 21 x 21 points):

X t X t
X5, = |4 sin2 (g5 sin2(55) + 2sin 25— 55) |
x,y,0) sin 27 G sin 27 100 + 2sin 27w 5”30

s e l0710/4F 4 gy, (22)

This simple example represents the superposition of a standing
wave and a propagating wave in the x-direction. Both waves
have different amplitudes, periods, and wavelengths and are
confined in the y-direction around y = 10 by a Gaussian pro-
file. The standing and the propagating waves have amplitudes,
in arbitrary units, of 4 and 2, periods of 100 and 30, and
wavelengths of 15 and 6, respectively. In addition, white noise
uniformly distributed between —1.5 and 1.5, N(¢), has been
added to the field.

The application of the CEOF method to the field X allows
the signal to be decomposed in several modes with different
variances. From equation (16), the first two modes account for
25% and 12% of the total variance, respectively. The variance
of the first mode doubles that of the second mode, since the
ratio of their amplitudes is 4 : 2. The rest of the modes, which
are associated with the simulated noise, contribute smaller
variance (less than 1% each) to recover 100% of the total
variance of the field. In Figure 3 we have plotted the temporal
and spatial amplitude and phase functions, i.e., R(¢), ¢(¢),
S(x,y), and 0(x, y), for the first two modes. For both modes we
can see that the temporal amplitude does not change consid-
erably in time; i.e., R(¢) is approximately constant and shows
small-scale variations introduced by the noise, which can in
principle be eliminated if the initial field is filtered (for ex-
ample with the EMD method). We can also see that the tem-
poral phase varies linearly in time; i.e., |¢(¢f)] = wt. Hence, the
time derivative of ¢(¢) is a measure of the “instantaneous”
frequency, which is different for these two modes. Estimations
of the period, computed from a linear least-squares fit to the
phase, give values of 100 and 30 for the first and second
modes, respectively, as expected. Note that from the definition
of temporal (and spatial) phase, these measures take values
between —m and 7 and therefore the phases must usually be
corrected, i.e., unwrapped, in order to have smooth spatial or
temporal variations, free of inconvenient jumps of 27 rad. We
have applied specific algorithms to correct the phases, but in
some cases this problem is difficult to solve, especially for
noisy signals.

Regarding the spatial amplitude, S(x,y), of the first mode,
we can see that it is different from zero in a region localized
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frequency for each mode. The spatial information, contained in S(x,y) and 6(x, y), has a rather different behavior for the two modes. For the first one, the amplitude
shows the location of nodes and antinodes, while the phase has a jump of 7 between the antinodes as corresponds to a standing wave. For the second mode, which
represents a traveling wave, the spatial amplitude is simply the Gaussian function in the y-direction and the spatial phase increases linearly in the x-direction, its
gradient being the wavevector. [See the electronic edition of the Journal for a color version of this figure.]

around position y = 10, where the structure of nodes and
antinodes that corresponds to a standing wave becomes evi-
dent. The wavelength can be calculated in this case as the
distance between the first and third maxima of the amplitude,
which gives a value of 15. As the first mode corresponds to the
standing wave, its spatial phase 6(x) shows a jump of 7 rad
between the antinodes in the region 7 <y < 13, while it takes
random values elsewhere. On the other hand, the second mode,
which corresponds to the propagating feature, shows rather
different behavior. The spatial amplitude is roughly constant in
x and delineates the Gaussian profile in the y-direction, while
the spatial phase varies linearly with distance, i.e., 0(x) = kx,
for 7<y < 13. Thus, the spatial derivative of #(x) provides a
measure of the “local” wavenumber, the variation of the spatial
phase with position being a consequence of the traveling
character of the wave. The estimation of the wavelength gives a
value of 6. Therefore, the main features of the signal have been
efficiently determined in spite of the large amount of noise
present in the data. In addition, the sum of the first two modes
in the form given by equation (15) allows one to reconstruct the
meaningful spatial patterns in our synthetic signal.

4. APPLICATION TO LOOP OSCILLATIONS

The EMD method is applied to TRACE 171 A (Fe 1x) inten-
sity observations of active region AR 8496 on 1999 March 23,

in which De Moortel et al. (2000) found short-period propa-
gating waves originating at a footpoint of a large loop. The
sequence consists of 141 512 x 512 pixel images with 8.8 s
cadence and total duration of 20.68 minutes. The pixel size is
1”, and the intensity values are given in DN (digital number).
We have restricted the analysis to the large loop structure
located far from the active region (see Fig. 4a and the top
panel of the associated mpeg, Movie 1, available in the online
Journal). No flare occurred near the time of the observations,
and the loop did not show significant changes in its structure,
although the image underwent a slight drift toward the right
because of solar rotation. However, because of the short du-
ration of the time series, the rotation effect is very small and has
not been corrected. The data reduction was carried out using
the standard TRACE IDL SolarSoftWare utilities (see Freeland
& Handy 1998).

We first performed the EMD analysis of the temporal series
at each spatial point in Figure 4a. As a consequence, we have a
collection of several IMF components and the residual trend at
each spatial location. In order to analyze the results of the
decomposition, we have built a movie of the temporal evolu-
tion of the whole region with just the contribution of the
computed trend (see Movie 1, bottom panel). The movie
shows a smooth temporal evolution of the structure in which
low-period components have been efficiently eliminated,
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resulting in a highly denoised image compared with the orig-
inal data. Next, a movie of the contribution of the rest of the
IMF components with periods greater than 2 minutes (below
this period noise is highly dominant) has also been constructed.
To this end, the fast Fourier transform of all the IMFs at each
point were computed, and those components whose largest
power peak lies below 2 minutes were discarded. The rest of
the IMFs were added up to get a “filtered” time series with no
noise and no long-term variations (see Fig. 5a and the top panel
in Movie 2, its associated mpeg, available in the online Jour-
nal). This movie shows several interesting features, the most
relevant ones being a strong periodicity, with large amplitudes,
at the footpoint of the loop together with some wave propa-
gation along the loop from its footpoint and the presence of
some coherent features in the structure. Note the small am-
plitude of these variations in comparison with the loop inten-
sity (compare Figs. 4 and 5). The small amount of spikes
present in the data set do not make a significant contribution to
the noise of the signal. The most important contribution to the
noise is produced by the instrument, which according to the
Poisson statistics is around (0.087 +2.8)1/ 2, with I the ob-
served intensity expressed in DN (see Aschwanden et al. 2000;
Robbrecht et al. 2001). For typical intensity values in the loop
center (~340 DN) this formula gives an error in the intensity of

45 DN. Although some of the components of the EMD can
have intensity fluctuations similar to this value, it is possible to
discard, on the basis of their timescales, those that are directly
related to noise from those that can have a physical meaning.
For example, from Figure 1 we see that the first IMF compo-
nent of the decomposition (c;) is certainly related to noise
because of its short-timescale variations and its amplitude of
about 4 DN; nevertheless, the component ¢4 has similar am-
plitude but a much longer characteristic time of oscillation,
which suggests that this component represents some real
mechanism. In fact, as we show later this component is related
to the propagating feature in the data set.

In order to investigate these phenomena we have performed
a CEOF analysis of the “filtered” data set, which reveals the
presence of oscillations with rather different properties. The
temporal modulus and phase of the first five CEOF modes are
shown in Figure 6; in all cases, the temporal modulus varies
strongly in time, and although the phase is rather constant in
time, this points out the presence of nonstationary variations in
the data. On the other hand, these five modes account for al-
most 71% of the total variance contained in the filtered signal,
so we discard all other modes and concentrate on these. We
next performed a reconstruction of the spatial and temporal
structure of each CEOF mode by computing the product
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E(x)A4,(¢); this shows the presence of two outstanding oscil-
latory features that are described next.

4.1. Oscillations with Period ~5 minutes

Here we start with a visual inspection of the temporal evo-
lution of the CEOF modes with periods of 5.3 and 4.3 minutes,
which account for 20.9% of the total variance of the “filtered”
signal. It turns out that they both correspond to the propagating
perturbation originating at the footpoint of the loop that can be
appreciated in the “filtered” signal (Movie 2, top panel). For
this reason, the two modes are part of the same physical phe-
nomenon, but just because this phenomenon is probably non-
stationary, the CEOF technique splits it into more than one
mode. It is thus clear that these two CEOF modes must be
considered together.

Thus, we next construct a movie with the temporal variation
of the two modes together. The results can be seen in the
bottom panel of Movie 2 (see also Fig. 5¢) and in Figure 7, in
which some frames of the movie for different times are dis-
played. These frames show that large intensity variations are
located mainly in the loop and around its footpoint, while in-
tensity variations outside the structure are much fainter. Or-
ganized intensity changes seem to be generated at the footpoint
of the loop, then propagate along its length, and finally dis-
appear around position x = 40. Note also the alternation be-
tween positive and negative intensity values, which is clear
evidence of the existence of a propagating wave instead of a
flow pattern along the loop. These oscillations are distributed
over practically the entire projected width of the loop.

The periodic intensity changes are especially noticeable
during the first half of the observational time. During the

second half, coherent oscillatory structures are more difficult to
identify, which reflects the nonstationary character of the sig-
nal. Further support for this conclusion comes from the tem-
poral information contained in the two CEOF modes (shown in
Fig. 6): the first one displays a temporal amplitude with a
global decrease in time, whereas the amplitude of the second
mode oscillates in time. Since the range of variation of R(¢) is
similar for both modes, the above implies that at a given time
one of the two modes may dominate over the other. This must
be interpreted as a consequence of the weak nonstationary
character of the wave propagation pattern. It is to be noted that,
owing to the small amplitude of intensity perturbations with
respect to the background loop intensity, nonlinearity cannot
be claimed here as the cause of this behavior.

On the other hand, the spatial amplitude and phase of the two
CEOF modes also provide useful information. As we can see in
Figures 8a and 8b, the spatial distribution of amplitudes is
similar for the two CEOF modes and shares some interesting
properties: large amplitudes are found close to the footpoint in
both modes, whereas outside the loop and inside it but far from
the footpoint the amplitudes are negligible. Moreover, the
spatial modulus displays a clear decrease along the loop and is
roughly uniformly distributed across the loop for the two
modes, although the second one shows some signs of struc-
turing. Thus, this pair of modes effectively captures the spatial
distribution of the propagating disturbance inside the loop.

The spatial phase of the two modes is shown in Figures 8¢
and 8d; outside the loop the phase displays the expected ran-
dom, small-scale variations that had already been found in the
analysis of the synthetic signal (§ 3.2). On the other hand,
inside the loop the phase shows some gradual variations,
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increasing from the footpoint of the loop and delineating its
shape. This is in perfect correspondence with the results shown
in Figure 3 for the mode, which explains the propagating
part of the synthetic signal. Note that in principle, from the
CEOF analysis the phase gradient allows to calculate the two-
dimensional wavevector field corresponding to the propagating
feature. Nevertheless, as we can see in Figures 8¢ and 8d,
although the spatial phase shows a global increase, it also dis-
plays small-scale variations, so the computation of the gradient
results in a rather random wavevector field. For this reason, we
have calculated the wavelength by estimating the derivative of
the phase with position along two particular paths. The selected
paths, one for each of the two CEOF modes, originate at the
footpoint of the loop and extend along it (see the dashed lines
in Figs. 8¢ and 84). In Figure 9 we can see the spatial phases for
the different paths, together with a linear fit that has been used
to estimate the wavelengths, which are 24,000 and 33,000 km
(this procedure gives only a lower limit of the wavelength
because of projection effects along the line of sight). It is
possible to carry out an estimation of the phase velocity with
the usual expression vy, = A/P, which by using a period of 5.3
and 4.3 minutes for the third and fourth modes gives phase
velocities of 78 and 125 km s~!, respectively. Such a difference
in the phase speed for the two paths is mostly a consequence of
the nonstationary behavior of the propagating feature. Note
also that the “noisy” character of the phase can also produce
differences in the estimation of the phase speed for the two
paths.

4.2. Oscillations with Period ~10 minutes

The CEOF mode with a period of 10.6 minutes accounts for
26.8% of the total variance of the “filtered” signal. We have
proceeded as in the previous section and have constructed a
movie with the spatiotemporal variation of this mode, shown in
the middle panel of Movie 2. The movie shows large intensity
fluctuations at the footpoint of the loop, although the most
interesting feature is that oscillations seem to be located in
narrow (around 2”) and long structures. Figure 10 displays
some frames of the movie for different times, and it is possible
to identify some of these thin threads inside the loop. Note that
they oscillate coherently with a period that is ~10 minutes and
seem to be quite stationary in time. These thin structures have
their origin at the footpoint and from this position extend to
large distances along the loop. The typical separation between
these structures is 2”.

The temporal information contained in this CEOF mode (see
Fig. 6) indicates that the amplitude takes its maximum value at

about one-half the observational time, while at the beginning
and end of the temporal series it has lower values, which arise
from the end effects in the estimation of the Hilbert transform.
The temporal phase, on the other hand, clearly indicates a
strong periodicity and allows estimation of the period of
oscillation of this mode, which is 10.6 minutes. The spatial
amplitude distribution (see Fig. 11a) delineates a filamentary
structure inside the loop that is especially clear in the center
(around x = 30, y = 30). Note also that larger amplitudes are
found only on the lower edge of the loop and in the region
around the footpoint of the structure. Moreover, the spatial
phase reveals (see Fig. 11b) that the phase difference between
both edges of the loop is 7, which may be a signature of a
standing wave motion (see § 3). This issue is discussed in more
detail in the next section.

5. DISCUSSION AND CONCLUSIONS

The main aim of this paper is to demonstrate the potential of
the joint application of the EMD and CEOF techniques in the
analysis of coronal oscillations. The EMD analysis technique
effectively isolates the different timescales in temporal series,
and its application as a filter allows us to determine with great
detail, even for noisy signals, the spatial distribution of oscil-
latory motions with no sacrifice in spatial or temporal resolu-
tion. It has also been shown that with the help of the CEOF
technique the global features of a data set that correspond to
standing and propagating patterns can be isolated and that,
more importantly, quantitative data about waves, such as the
period, wavelength, two-dimensional spatial distribution of ampli-
tudes, etc., can be obtained. In this respect, the two-dimensional
study of oscillations in loops has not been addressed in previous
works, but we have shown that it is possible to obtain interesting
information in two dimensions and in consequence to gain fur-
ther insight from observational data.

Regarding the analysis of the loop, we have found oscil-
lations with a period of ~5 minutes. They originate at the
footpoint and clearly propagate outward along the loop. This
result is similar to that found by Berghmans & Clette (1999),
Robbrecht et al. (2001), and De Moortel et al. (2000), in the
latter case for the same loop. The CEOF analysis gives a de-
composition of this feature in two modes that account for more
than 20% of the variance of the field and provide, for the first
time, two-dimensional information about the spatial distribu-
tion of the amplitude inside the loop. Large amplitudes occur
close to the footpoint, and the CEOF method indicates the
existence of a strong correlation between the periodicity found
there and the propagating feature along the loop. This is also in
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agreement with Berghmans & Clette (1999), who found that
many of the traveling disturbances along open field lines
originate from weak EUV brightenings at the footpoints.

The third and fourth modes decomposed with the CEOF
technique have allowed us to compute the wavelength associ-
ated with the propagating feature. This magnitude has been
estimated to have a value of 29,000 km (mean value of the two
paths considered), while the phase velocity is approximately
100 km s~! (this is a lower limit because of projection effects).
As intensity variations can be associated with density fluctua-
tions, the propagating disturbances seem to be of a compres-
sional nature. Moreover, since the traveling features propagate
at a speed of the order of the typical coronal sound speed, which
is 166 km s~! for a fully ionized plasma with 10° K tempera-
ture, the detected propagating perturbations can be interpreted
as slow magnetoacoustic waves (see De Moortel et al. 2000).

We have also found intensity fluctuations with a period of
10.6 minutes and a rather different behavior. Oscillations with
this period show a strong stationary character, such as has been
confirmed by the application of the CEOF technique. The
spatial distribution of the amplitude of this mode indicates that
large values are located at the edges of the loop but also in thin
and long structures in the loop center. Although the main
motivation of this paper is not to interpret these features, it is
worth making a comment on these stationary oscillations. The
fact that the edges of the loop show large intensity variations
can indicate that it oscillates as a whole transversally around
the equilibrium position in the so-called fundamental kink
mode of oscillation (see Edwin & Roberts 1983). For this os-
cillation mode, strong periodic intensity variations are pro-
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duced precisely at the position of the unperturbed edge, while
the intensity remains almost unchanged at the loop center. In
addition, with the CEOF analysis we have found that there are
« phase differences between the edges of the loop, which further
supports the hypothesis of the standing kink mode being re-
sponsible for the 10.6 minute oscillations. Nevertheless, one
should not forget that density fluctuations are also localized in
thin and long structures originating at the footpoint and dis-
tributed over the loop width. A possible explanation is that
these thin structures are the consequence of a radial harmonic
of the kink mode of oscillation. For such a mode, additional
density fluctuations to those located at the edges of the loop are
present in concentric layers of the tube. However, further
analysis is necessary to test this hypothesis, since the effects of
projection and integration along the line of sight can have a
strong influence on the possible detection of this mode. An-
other possible interpretation of this kind of localized fluctua-
tions is that they are associated with the internal structure of the
loop. Although the loop apparently shows a bright and com-
pact shape, it may be formed by several thin tubes, in slightly
different physical conditions, that delineate the magnetic field
lines (see Reale & Peres 2000). Thus, these oscillations may
reflect the multithread structure of the loop.
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