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Abstract

We study the response due to a point scatterer in a
rather general case of bistatic surveys. We derive the
relative time - space function, that we call Flat Top
Hyperbola. The complexity of this curve motivates
the reduction of a general bistatic survey to a mono-
static one, following the techniques used in seismic data
processing. The scatterers correspondent to a single re-
ceived pulse in a bistatic configuration are located on
the intersection of the ground plane with an isochronal
ellipsoid that has source and receiver as foci. These
scatterers are then considered as targets of a monosta-
tic configuration. Thus, we reduce a bistatic configu-
ration to a monostatic one, by identifying an approxi-
mate space varying transfer function between the two
configurations. This paper, sequel to other recently
published, addresses also the problem of motion com-
pensation, in that the first survey could also be mono-
static, and the location of the second monostatic survey
is at choice. The use of a Digital Elevation Model is
shown to be essential for the correct determination of
the transfer function in the general case. It is not nec-
essary if source and receivers have a constant distance
and follow the same trajectory.

Introduction

In these last years there has been an impressive growth
in the interest in bistatic radar [1]. In the field of
Synthetic Aperture Radar, constellations of multiple
spaceborne sensors like the Cartwheel should be avail-
able in the next future [2], [3], while first bistatic air-
borne SAR acquisitions have been completed with suc-
cess [4], [5], [6]. As a consequence, a growing literature
is appearing on bistatic focusing. Depending on the
geometry, the bistatic configuration, the antenna aper-
ture and the bandwidth, the processing of such systems
can be as simple as a tuning of a monostatic processor,

or a real challenge [7]. Several papers approach the
”stationary” case, with parallel orbits and same ve-
locity, either by exploiting proper approximations, like
small antenna apertures [8], [9], or by exact solutions
[10], [11].

Other
papers approach the more general case of different

orbits and velocities, apart from the exact, but com-
putational expensive backprojection technique in [12],
this case is still taken again to a monostatic approach
by a proper, approximated pre-processing [7], [13]. De-
spite this rich literature, the development of an efficient
phase preserving focusing scheme is still a challenging
issue due to the requirement for massive data process-
ing on one side and the design of wide-aperture, wide-
bandwidth SAR on the other.

This paper, read in part at the 2004 EUSAR Meet-
ing,

comes after
paper [11], where introductory remarks on the tech-

nique of transforming bistatic into monostatic surveys
are discussed. We will refer to [11], [14], and [15] for a
proper understanding of the geophysical approach, the
terminology, and the general modeling. With respect
to [11] where the constant offset case between source
and receiver was discussed, there is here a significant
innovation in that the 3D character that is peculiar
to more general bistatic SAR surveys is taken into ac-
count.

We remind that the technique that we shall discuss
here is usual in geophysics, where up to 6000 (six thou-
sand!) receivers can operate simultaneously, and where
normally the surveys have a full 3D character. We re-
fer to the recent work by Fomel [15] for a complete and
thorough discussion of the approximations implicit in
this approach. The approximation is weaker for non
uniform media where the velocity changes are signifi-
cant in the volume shared by the two acquisitions. This
situation is in general far from those encountered with
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SAR, unless localized atmospheric or ionospheric ar-
tifacts change significantly the velocity of the rays of
one survey with respect to the other.

The motivation of this work is to establish a general
framework to categorize the bistatic surveys transform-
ing them into a monostatic one.

Bistatic surveys may use opportunity transmitters,
and thus the surveying geometry might be rather un-
usual. Therefore, it is useful to find a general tool
(space variant, indeed) that applies to all bistatic
geometries, naturally space variant, transforming them
into the space invariant monostatic geometry, indicat-
ing the instances where the transformation proposed
in [11] could not be applied. Sure enough, in many
cases, extreme squints, and unlikely geometries can be
avoided. However, there will also be cases where the
opportunity source and the position of the receiver will
be such that this work could be of interest. Thus we
decided not to enter into the discussion of synthetic
cases, that would anyway be biased towards a specific
geometry, not necessarily the one of interest in the case
to be studied.

We begin with a short discussion of the problem of
focusing, in the case of rather general bistatic surveys,
and we provide the travel time curve (called the Flat
Top Hyperbola FTH) that gives, for a preassigned po-
sition of a point scatterer located on the ground plane,
the total travel time from source to the scatterer and
then back to the receiver as a function of the positions
of the source and receiver. Then, focusing can be car-
ried out as usual by combining (say with a weighted
sum) the received data at the times correspondent to
the FTH so that we can estimate the reflectivity of
the scatterer. This technique could be computation-
ally expensive. Furthermore, it does not characterize
fully the inherent differences between a bistatic and a
monostatic configuration.

Successively, we introduce a different approach to fo-
cusing: we identify first an ellipse on the ground plane,
intersection of it with the isochronal ellipsoid that has
as foci source and receiver. One single received pulse
in the bistatic survey is what we would have seen if we
had scatterers nowhere else but along that ellipse. The
illumination function provided by the directivity of the
transmitter and of the receiver obviously would limit
this ellipse to a small part.

Then, we can suppose to carry out a monostatic sur-
vey onto this elliptical distribution of scatterers; fur-
ther, we evaluate the outcome of such a survey.

So, we will be able to carry out a transformation
from any received pulse in a general bistatic configu-
ration into a travel time curve (the generalized smile)
in a monostatic one, i.e. we will identify the transfer
function between the two configurations. The peculiar-

ities of the generalized smile are useful to appreciate
the impact of the bistatic configuration. Finally, we
will deal with the case of motion compensation, where
both configurations are monostatic but different. Short
conclusions will follow.

1 The bistatic geometry

Before discussing the general geometry of a bistatic sur-
vey, let us first appreciate its differences with the mono-
static case. In a monostatic situation with straight or-
bit, the acquisition has rotational symmetry - the axis
being the orbit itself, - and the survey may be consid-
ered 2D, rather than 3D. This compaction from a 3D
space to a 2D one cannot happen, for curved orbits, or
in a general bistatic survey where source and receiver
follow different paths. Thus, the non stationarity of
the 3D geometry along azimuth has to be character-
ized, necessarily complexifying any focusing technique.

Let us consider a general bistatic geometry as in Fig.
1, where the target P is imaged by the bistatic system
composed of the sensors S1 and S2:

- v1 and v2 are the velocity of the two sensors on
their trajectory, assumed rectilinear,

- rz1 and rz2 are the closest approach distances of
the target with respect to the two sensors

- τz1 and τz2 are the azimuth times at which each
sensor is in the closest approach with respect to the
target

We can assume S1 to be transmitting and S2 re-
ceiving, and define τ as the azimuth, slow-time. The
sensors - target - distances at any time τ are then:

r1(τ ;P ) =
√

(τ − τz1)
2
v2
1 + r2z1 (1)

r2(τ ;P ) =
√
τ2v2

2 + r2z2, (2)

where we assumed, without loss of generality, that the
origin for τ axis is such that τz2 = 0. The bistatic
range is obtained by adding (1) and (2):

rb =
√

(τ − τz1)
2
v2
1 + r2z1 +

√
τ2v2

2 + r2z2 (3)

φb =
2π
λ
rb. (4)

The expression (3), usually defined as ”Double Square
Root” (DSR) summation, describes the bistatic curve
known as ”Flat Top Hyperbola” (FTH). The bistatic
Doppler Phase History, φb(P ) in (4), is proportional
to the bistatic delay, and depends upon 5 parameters
(v1, rz1, τz1, v2, rz2). Eventually we rearrange the DPH
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as follows:

φb =
2πv1
λ

(√
(τ − τz1)

2 +
r2z1

v2
1

+

√
τ2
v2
2

v2
1

+
r2z2

v2
1

)

=
2πv1
λ

(√
(τ − τz1)

2 + τ2
1 +

√
µτ2 + τ2

2

)
, (5)

where we have introduced the three normalized para-
meters:

τ1 =
rz1

v1
; τ2 =

rz2

v1
; µ =

v2
2

v2
1

.

We notice that the general shapes of both the DPH
and FTH depend upon four parameters {τ1, τ2, µ, τz1},
and a scale factor. In the constant offset case [11],
µ = 1 and we have three parameters; whereas only
one parameter is needed in the monostatic case, where
τ1 = τ2; µ = 1; τz1 = 0.

2 Small Aperture

Although the non-stationary, bistatic DPH (5) is quite
more complicated than a monostatic one, we can still
approximate it by quadratic expansion, at least for very
small azimuth apertures, to get a simplified focusing.
Let us start from the DPH in (5), and evaluate first
the instantaneous frequency:

fτ =
1
2π

∂φb

∂τ
=
v1
λ

 τ − τz1√
(τ − τz1)

2 + τ2
1

+
µτ√

µτ2 + τ2
2

 ,

(6)
and then the second derivative, the fm-rate:

k = f ′
τ =

v1
λ

 τ2
1√(

(τ − τz1)
2 + τ2

1

)3
+

µτ2
2√

(µτ2 + τ2
2 )3

 .

(7)
We finally assume the fm-rate to be constant, k(τ0),
where τ0 is the time when the target is at the center of
the antenna beam, to allow azimuth focusing by means
of any monostatic technique, like the Range Doppler.
The non-stationary behaviour could then be handled
by tuning the fm-rate with azimuth in block-like fash-
ion (provided that its variation is smooth).

The limit of this technique depends both on the time
span of the observed DPH, and the actual slope of its
second derivative, i.e. k′(τ0). In order to appreciate
visually this second aspect, we have drawn in Fig.
2 the DPH and its derivative in an extreme case of
a system that is both strongly bistatic and strongly

non-stationary. We used (5) by assuming: τz1 = 0.4,
τ1 = 0.34, τ2 = 0.7 ·τ1, µ = 2. The figure draws in dash
and dotted lines the two Monostatic Hyperbolas (MH),
corresponding to the two square roots in (5), together
with the resulting DPH, in continuous line, whereas its
first derivative, φ′

b(τ), is plotted below. We wish that
φ′

b(τ) approximates that of a monostatic system, there-
fore we need it to be nearly linear, and this assumption
appears reasonable only when τ is far from the vertices
of the two MH, where we have fast changes of slope.
When τ approaches either τz1 (= 0 in our case) or τz2,
the monostatic-based focusing fails, unless the band-
width is reduced to a very small value. In that case, as
well as in the case of wide bandwidth, we need to de-
velop a different methodology, and this motivates this
paper.

We remark that the example has been exaggerated
just to provide a visual understanding of the problem:
the vertices of the two MH have been made quite sharp
by using small values of τ1, τ2. In practical space-
borne or airborne systems, these values are two orders
of magnitude larger than those used. Notwithstand-
ing, the impact of a non-stationary Doppler rate on
the focused impulse response could still be apprecia-
ble, particularly for high resolution SARs. In a general
case, we expect that the vertex of the DPH is somewhat
between the vertices of the two MH (just in the middle
for the constant offset), its location has been derived in
close form in the appendix and can be used, together
with (7), to appreciate the validity of the monostatic
approach in the worst case.

3 Reduction of general bistatic
to monostatic surveys

In the previous section we have seen a simple approach
to focus bistatic surveys. However, the shape of the
FTH is close to singular in several cases. It is interest-
ing, at least for comprehension, to transform a bista-
tic survey into a monostatic one in order to character-
ize their real differences. On one side, the monosta-
tic survey is azimuth invariant; oppositely, the bistatic
surveys can well be azimuth varying. We need an az-
imuth varying tool that transforms the bistatic surveys
into monostatic ones to characterize this change. The
approach that we will follow is simple and discussed
systematically in the paper [11]. If the input (bista-
tic) data set is made just by a single pulse, this im-
plies that we have scatterers on the ground plane only
on the intersection between the ground plane and the
isochronal ellipsoid that has foci at the positions that
the source and the receiver had when the pulse was
emitted. Then, we revisit this ground distribution of
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scatterers with a monostatic survey. The result of this
survey, namely a distribution of arrivals in time and
space, will correspond to the space varying 2D trans-
fer function between the bistatic and the monostatic
survey. Its characteristics will elucidate the non sta-
tionarity of the bistatic survey and will allow us to
understand the changes with respect to a monostatic
one. The same analysis goes for the case of motion
compensation: the data are acquired from a trajectory
and transferred to another. This will allow us to dis-
cuss the case when the synthetic aperture is wide with
respect to the variation of the fm-rate, and the DPH
cannot be approximated with a second order curve as
previously suggested. In this case, we shall see that,
given the DEM, it is possible to derive a generalized
smile [11]. Another point that should be considered
is that with this way of operation, it will be easy to
accommodate for the antenna pointing at the receiver
and transmitter ends to evaluate any amplitude effects.
Furthermore, in the case of a strong scatterer, its cor-
rect amplitude will be recovered combining together all
the arrivals; however, we refer to [15] for studies on the
correct distribution of amplitudes and illumination.

3.1 The need of a Digital Elevation
Model

Before entering simple geometrical analyses, we would
like to show how it comes that focusing bistatic sur-
veys may be dependent on the information about the
location of the scatterers in the 3D space. This effect
is clarified in the example shown in Fig.3. Two dif-
ferent bistatic configurations are there shown: in case
(a) the two sensors move along the same track, with a
proper displacement. In case (b), they follow two par-
allel tracks. Two targets Pa and Pb, are drawn; they
are seen at the same (bistatic) time when the midpoint
between source and receiver is at azimuth τ = 0, since
they belong to the same isochronal ellipsoid with these
foci. In the case (a) of aligned tracks, the two targets
(and any target on a circle C centered on the track)
will have the same (delay, Doppler) coordinates in the
data space, hence the same FTH would result for both
targets. In this case the data would span a 2D space,
like for monostatic SAR, and a DEM characterizing the
position of the targets on the circle C would be useless.
On the opposite, in the case (b) when the axis of the
ellipsoid is no longer aligned with the sensor track, the
third dimension becomes relevant, as each target along
the circle C generates a different FTH in the (t, τ) do-
main. Then, the 3D spatial imbedding is important
and a DEM would be required to reconstruct both the
shape and the position of each FTH, in order to per-
form a proper focusing. An incorrect Digital Elevation

Model would lead to defocusing (in that, using an in-
correct FTH, we would neglect to pick up and com-
bine some of the available Doppler components and we
would pick up and combine some components contain-
ing only noise).

These considerations may appear finicky, but with an
increasingly wider relative bandwidth of the SAR data,
like the unprecedented PAMIR SAR [16], the quality
of the focusing has to be greater and greater, reaching
the limit when the relative bandwidth approaches 2.

3.2 Focusing using the pull technique

We will provide here an example of focusing a bistatic
survey, with no constraints at all on the antenna aper-
ture, under the following assumptions: (1) targets lay
on the flat ground; (2) orbits are straight and paral-
lel to the ground (but not necessarily parallel to each
other), and coplanar (same altitudes for both tracks).
We assume that sensors may have different velocities.
Although the case is pretty general, it is not the most
general we can conceive. However, we shall see in the
next section that the procedure proposed here is flexi-
ble and can be extended to all the other cases.

Let us assume the geometry sketched in Fig. 4. The
figure shows the two sensors, S1 and S2, their track,
and the track of their mid-point. We assume a refer-
ence system with the x-axis oriented like the mid-point
along-track (azimuth), O(τ), the z-axis perpendicular
with respect to ground (here assumed flat) and the
x−axis perpendicular to the yz plane, as usual.

Let us apply the linear superposition to the input
data (in the data space), and let us suppose that we
have a single spike, at azimuth, range time (τ = 0, t =
tb). This spike corresponds to a distribution of scatter-
ers located on an ellipsoid that has foci in the position
of the sensors at the acquisition time (τ = 0). No-
tice that the axis of symmetry of the ellipsoid is, in
general, not parallel to the x-axis. We assume that lo-
cally it slants at an angle ψ, shown in the figure. The
equation of the ellipsoid can be written in the local ref-
erence (x′, y′, z) that is rotated of ψ with respect to the
reference (x, y, z) (the x′ axis is shown in the figure as
well):

x′2

a2
e

+
y′2

b2e
+
z2

b2e
= 1 (8)

ae =
ctb
2

h =
√
a2

e − b2e ⇒ be =

√(
ctb
2

)2

− h2.

The sensor location at τ = 0, that corresponds to the
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foci is written in the same reference as

S1 {x′ = h, y′ = 0, z = hs} ; S2 {x′ = −h, y′ = 0, z = hs}

We suppose that the scatterers lie on the
ground plane. Therefore, for each spike in the data
space, a uniform distribution results in the model space
of scatterers along an ellipse as shown in the figure:

x
′2

a2
e

+
y′2

b2e
= 1− h2

s

b2e
(9)

x′2

a2
+
y′2

b2
= 1

a = ae

√
1− h2

s

b2e

b = be

√
1− h2

s

b2e
=
√
b2e − h2

s, (10)

which corresponds to an impulse in the data. The fo-
cusing is then carried out by means of the ”pull” tech-
nique, summing along each flat top hyperbola corre-
spondent to each point of the ground plane. To check
the correctness of this approach, we can now model
back the scatterer along an ellipse in the data space by
means of a tomographic approach. For each of the scat-
terers in the model space, that compose the ellipse, we
backproject (spread, push) a FTH in the data-space.
The sum of all these FTH reproduce the spiky data set,
as shown in Fig. 5.

3.3 Generalized smile

The way we convert a generalized bistatic system into
a monostatic one plus a proper pre-processing step fol-
lows closely the derivation in [11].

The geometry now is much different, in that the tar-
gets are located on a plane in a 3D space (the flat earth
spanned by azimuth, and ground range) and no more
in the azimuth, slant range reference. This situation
is far from the constant-offset case (coincident orbits,
equal velocity).

As said in [11], we map the distribution of scatterers
onto a monostatic survey, correspondent to a spike in
the initial bistatic survey. Then, focusing will corre-
spond first to the convolution of the initial data with
the generalized smile, i.e. the ellipse in the ground
plane back as seen from the monostatic trajectory of
choice, to be followed by the usual monostatic focusing.
In a following section we will also show how even mo-
tion compensation can be seen under this perspective,
leading to an intrinsic identification of motion compen-
sation and bistatic focusing.

As the ground plane imprint of any monostatic SAR
is a circle, we decompose the elliptically-shaped reflec-
tor on the ground as a superposition of many circular-
shaped reflectors, each of them tangent to the ellipse:
the idea is explained in Fig. 6 .

The geometry is detailed in Fig. 7: the target P on
the ground belongs both to the ellipsoid coming from
bistatic survey and to the circle coming form the mono-
static survey with center in M . We represent the el-
lipse (9), intersection of the initial ellipsoid (8) with the
ground plane of the scatterers, with an envelope (super-
position) of circles. We have to impose a common tan-
gent between the ellipse and the generic circle. For each
target on the ellipse P (x′ = a cosφ, y′ = b sinφ, z = 0),
the tangent angle is

dy′

dx′ = −b cosφ
a sinφ

,

and the equation of the normal to the tangent in P (the
line P-C in Fig. 7.b) is then:

η − b sinφ =
a sinφ
b cosφ

(ξ − a cosφ)

aξ sinφ −
(
a2 − b2

)
sinφ cosφ = bη cosφ,

the center of the circle, C is the intersection with the
line η = ξ tanψ. The coordinates of C are thus:

C(x′ = ξ0, y
′ = ξ0 tanψ, z = 0) (11)

ξ0 =

(
a2 − b2

)
sinφ cosφ

a sinφ− b cosφ tanψ
.

The monostatic delay is proportional to the radius
of the sphere centered in M (see Fig. 7.a):

M(x′ = ξ0, y
′ = ξ0 tanψ, z = hs),

and passing through P :

P (x′ = a cosφ, y′ = b sinφ, z = 0).

The delay is thus:

tm =
2
c
|P −M | (12)

t2mc
2

4
= (a cosφ− ξ0)

2 + (b sinφ− ξ0 tanψ)2 + h2
s,

and thus we get a distribution of spikes to be added
to the monostatic survey in positions located along the
x-axis with abscissa equal to the distance |C −O′|:

x = ξ0/ cosψ ⇒ ξ0 = x cosψ. (13)

We can finally write the expression of the generalized
smile in the azimuth, time domain (in the data-space):

t2mc
2

4
= (a cosφ− x cosψ)2 + (b sinφ− x sinψ)2 + h2

s

(14)
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where the dummy variable φ should be removed by
exploiting (11) and (13):

ξ0 =

(
a2 − b2

)
sinφ cosφ

a sinφ− b cosφ tanψ
= x cosψ (15)

and the parameters describing the ellipse, a, b, should
be derived from the acquisition geometry, namely the
sensors distance, h (slow time variable, now) and the
bistatic time, tb, according to (8) and (9):

be =

√(
ctb
2

)2

− h2 (16)

a =
ctb
2

√
1− h2

s

b2e

b =
√
b2e − h2

s, (17)

As an example, Fig. 8.a plots different smiles corre-
sponding to different values of the rotation, ψ. Notice
that the parameters of the generalized smile require
information about the DEM.

3.4 Discussion; constant offset

It is interesting to look at these generalized smiles to
try to identify their message. It is evident that if the
antenna pattern is such that only a small part of the
ellipse in the ground plane is illuminated, these com-
plex shapes may simplify to the usual chunks of hyper-
bolas and thus simple second order approximations of
the FTH (the usual smiles, then, maybe slightly tilted)
could do in most of the cases. However, we also see
that in some situations, namely correspondent to the
cusps of the generalized smile, the second order expan-
sion would fail and we have to move to more complex
descriptions. In some cases, that is, the bistatic con-
figuration does not lead to a simple representation as a
monostatic one. We notice that these cusps exist also in
the case of constant offset, namely in the usual smile as
discussed in the paper [11]. However, in that case, the
cusps correspond to energy backscattered from points
that are approximately along the survey line, i.e. with
extreme squint, and therefore not illuminated with the
usual antennas radiation patterns. The possibility of
opportunity bistatic surveys, where the geometry is to-
tally random, may make these observations useful.

Another point that we just mention here has also
been well discussed in geophysics [17]. This is the az-
imuth resolution enhancement, made possible by com-
bining multiple bistatic surveys. In fact, combining
different transfer functions, one could increase resolu-
tion as with multiple sampling, thus gaining the equiv-
alent advantage of an increased PRF. This result has

been independently rediscovered in the SAR commu-
nity, pointing out the advantages of a split receiver
antenna for the reduction of the azimuth ambiguities
[3], [18].

Finally, a point that should be better analyzed, is the
impact of the precision of the DEM on focusing. From
the equation 15, within a well defined geometry, some
conclusions might be drawn, that however are much
too geometry and resolution dependent to be discussed
here where we only would like to establish a general
framework.

For better clarity, let us now verify that the smile
derived in [11] is a particular case of the generalized
smile here derived, for the constant offset case. We
have parallel tracks, hence ψ = 0, and (15) can be
easily inverted:

x =

(
a2 − b2

)
cosφ

a
(18)

cosφ =
ax

a2 − b2
,

that combined with (14), yields:

t2mc
2

4
=
(
a

ax

a2 − b2
− x

)2

+ b2 sin2 φ+ h2
s (19)

= − b2x2

a2 − b2
+ b2 + h2

s

= − b2ex
2

a2
e − b2e

+ b2e,

where we have expressed the parameters of the ellipse
on the ground as a function of the ellipsoid parameters
by exploiting (8) and (9). We furthermore notice that
h2 = a2

e − b2e and, from (16):

t2m =
(
t2b −

4h2

c2

)(
1− x2

h2

)
= t20

(
1− x2

h2

)
,

that is the smile, an ellipse in the (tm, x) domain. The
smile is the plot for ψ = 0 in Fig. 8.a.

3.5 The generalized smile in k-t coordi-
nates

Using the same technique that we have used in [11], we
can now move the generalized smile into the wavenum-
ber time domain, simply by parameterizing the smile
in terms of the time derivative

kx =
dtm
dx

=
∂tm
∂φ

· ∂φ
∂x
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rather than in terms of the abscissa x. The resulting
function is again double valued and can be easily de-
termined from the previous considerations. As an ex-
ample, (18) and (19) have been exploited to compute
the frequency domain expression of the delays:

tm(kx) = tm(x(φ)) + x(φ) · kx(φ)

represented in Fig. 8.b.

4 Motion compensation as bista-
tic focusing

As observed in the previous sections, we can also cover
in the same way the case of motion compensation, i.e.
the transfer of the data from one initial trajectory
where they had been acquired, to any other, where
they have to be focused. The geometry is shown in
Fig. 9. The large circle on the ground underneath the
sensor corresponds to the uniform distribution of scat-
terers that contribute to the initial survey with a single
impulse at fast time t0. Its radius is:

a =

√(
ct0
2

)2

− z2
0 , (20)

z0 being the sensor height. We assumed that only an
arc, marked as a thick line in the figure, is effectively il-
luminated by the antenna beam. The other two circles
represents two uniform distributions of scatterers that
contribute as two impulses in the second monostatic
acquisition along the reference track. Their delays, to
be compensated by the generalized smile, are propor-
tional to the distances r1 and r2, in general: r(x). The
monostatic delay is then:

ctm
2

=
√
z2
1 + p(x)2, (21)

where p(x) is the horizontal projection of r(x), and can
be computed basing on the geometry of Fig. 10.a. The
figure compares with Fig 7.b, now the single circular
reflector centered on O, is to be replaced by the enve-
lope of circles centered on the ground projection of the
reference track, the line y = d. The distance p(x) in
(21) is either |P ′−C| or |P −C|, depending on the sign
of y, i.e. the right/left looking of the sensor. We get:

p(x) = a±
√
x2 + d2

to be combined with (20) and (21) to derive the gen-
eralized “smile”, plotted in Fig. 11. We notice that
these kernels may have either the shape of a smile or
of a frown. This second case comes from the arc corre-
sponding to y > d, as Fig. 10.b shows.

As a conclusion of this short section, we have shown
that motion compensation, i.e. to use the geophysical
jargon, the continuation of the data from one sensor’s
trajectory to any other can be carried out by convolving
with a generalized smile, as shown in Fig. 11. Notice
that, also in the case of motion compensation, the pa-
rameters of the generalized smile require information
about the DEM.

5 Conclusion

In this paper we have discussed bistatic SAR surveys
focusing and the possibilities to transform a bista-
tic survey into the more usual monostatic one. We
have shown how to extend and generalize the con-
cept of smile (the transfer function between a bistatic
and a monostatic survey) to non stationary acquisition
geometries and to motion compensation; the structure
of these generalized smiles shows the existence of cusps
that indicate that for given illumination patterns and
directions of flight such a reduction might be difficult.
The cusps exist also in the constant offset case, but
then they are limited to extreme squints and therefore
not usually illuminated. However, in opportunity sur-
veys, the geometry could be out of control, and there-
fore such situations may arise. We have also shown
that a Digital Elevation Model is useful to focus bista-
tic data (but only if the offset is not constant and along
the flight path) and in the case of motion compensa-
tion. The impact of the DEM imprecision, being it too
dependent on the bistatic geometry and the resolution,
is a priori unpredictable.
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A Zero Doppler bistatic delay
distance

In this appendix we compute the vertex of the DSR
equation described by (5) in a very general case. The
minimum of the DSR corresponds to the zero of fτ ,
from (6):

τ − τz1√
(τ − τz1)

2 + τ2
1

= − 1√
µτ2 + τ2

2

µτ (22)

(τ − τz1)
√
µτ2 + τ2

2 = −µτ
√

(τ − τz1)
2 + τ2

1 .
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We square both terms, getting a 4th order equation.
Care should be taken as solutions of the squared equa-
tion are not necessarily solutions of (22):

τ4
(
µ2 − µ

)
−2τz1τ

3
(
µ2 − µ

)
+τ2

((
µ2 − µ

)
τ2
z1 − τ2

2 + µ2τ2
1

)
+2ττz1τ

2
2−τ2

z1τ
2
2 = 0.

Notice that the solution degenerates for the constant
offset case: µ = 1, however we do not care of this case,
as there is already a closed form solution. We can make
the replacements:

x = τ/τz1

m =
τ2
2

(µ2 − µ) τ2
z1

k = 1− τ2
2

(µ2 − µ) τ2
z1

+
µ2τ2

1

(µ2 − µ) τ2
z1

,

and the expression further simplifies as a function of
two parameters:

x4 − 2x3 + kx2 + 2mx−m = 0.

The solution is actually function of two parameters.
We have a 4th order equation with 4 solutions, of which
two are real, and only one is consistent with (22).
The solutions are:

x1 =
1
2
− 1

6

√
3g +

1
6

√
3

√
6fg − 4kfg − gf2 − gk2 + 12

√
3fm+ 6

√
3fk − 6

√
3f

fg

x2 =
1
2
− 1

6

√
3g − 1

6

√
3

√
6fg − 4kfg − gf2 − gk2 + 12

√
3fm+ 6

√
3fk − 6

√
3f

fg
,

where

p =
√

81m2k2 + 162m3k − 162m2k + 3mk4 + 81m4 − 162m3 + 3m2k3 + 81m2 − 3mk3

f = 3
√

54mk + 54m2 − 54m+ k3 + 6p

g =

√
3f − 2kf + f2 + k2

f
.
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Figure 1: Generic bistatic geometry.
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Figure 2: The Flat Top Hyperbola FTH. Up: The
phase corresponds to the bistatic experiment, and thus
is described by the Double Square Root expression cor-
respondent to the sum of two monostatic terms. Down:
the phase derivative.
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Figure 3: Left : Two targets, Pa and Pb in different
locations are imaged by two bistatic systems where the
sensors are: (a) aligned along the same orbit, or (b):
fly on parallel orbits. Right: In the first case focusing
is actually 2D (DEM independent) as the same FTH
results from both Pa and Pb. Not so in the second case.
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Figure 4: Geometry of the generalized bistatic acquisi-
tion: the sensors orbits are parallel to the ground.
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Figure 5: Using the push operator, we model back to
the data space an elliptical distribution of scatterers
(originally, a spike in the data space and thus an el-
liptical distribution of scatterers on a plane). For each
scatterer in the model space belonging to the ellipse we
associate a flat-top hyperbola in the data-space. The
envelope of these hyperbolas reconstructs the spike. An
extreme geometry (shown in the middle) has been as-
sumed, to show the deformation of the FTH coming
from different targets.

Figure 6: A spike in the data-space is the result of the
illumination of the elliptic reflector on the left, intersec-
tion of the bistatic isochronal ellipsoid and the ground
plane. This elliptic reflector can be modeled as a su-
perposition of circles, each of them correspondent to a
spike in the monostatic acquisition on the right. The
radius of the sphere is proportional to the monostatic
delay.
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Figure 7: Geometry for the reduction of the bistatic
survey to monostatic in the general case.
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Figure 8: Plot of different generalized smiles, for dif-
ferent values of the ellipse rotation, ψ (a) in the (t, x)
data domain, (b) in the (kx, t) data domain.
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Figure 9: Geometry for the derivation of the motion
compensation operator as a generalized smile.
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Figure 10: (a) Derivation of the motion compensation
kernel, to be compared with Fig. 7. (b) The delays
from the portion of the target y > d decrease with |x|,
generating a frown-like shape.
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Figure 11: Smiles, upper plot (marked as ’+’), and
frowns, lower plots (marked as ’o’) correspondent to
the motion continuation case, for different distances
with respect to the reference track, d.
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