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Abstract—Image tampering is nowadays at everyone’s reach.
This has determined an urgent need of tools capable of revealing
such alterations. Unfortunately, while forgeries can be operated
in many different ways, forensic tools usually focus on one specific
kind of forgeries. Therefore, an effective strategy for tampering
detection and localization requires to merge the output of many
different forensic tools. In this paper, we propose an algorithm
for image tampering localization, based on the fusion of three
separate detectors: i) one based on PRNU, working when we
have at least a few of pictures shot with the same camera; ii)
one based on PatchMatch; iii) one exploiting image phylogeny
analysis, in case we have a set of near-duplicate images to analyze.
The method is validated against the dataset released by the IEEE
Information Forensics and Security Technical Committee for the
First Image Forensics Challenge. Results show that the proposed
algorithm can beat the challenge with the highest score achieved
at paper submission time.

Index Terms—image forensics, tampering localization, PRNU,
near duplicates, PatchMatch

I. INTRODUCTION

Thanks to the increasing availability of cheap portable
devices, such as cameras and smartphones, the acquisition of
multimedia digital contents is at everyone’s reach. Moreover,
the development of user-friendly image editing software, en-
ables anyone to easily alter digital images creating realistic
forgered images able to fool human eyes. In fact, any content
downloadable from multimedia sharing platforms (such as
Flickr, YouTube, etc.) has been possibly tampered with.

The widespread diffusion of altered media has severe im-
plications on many social and legal aspects. As an example,
fake images diffused by newscasts convey false information
that could manipulate the public opinion. From these premises,
there is a urgent need of forensic tools that are able to uncover
the history and prove the authenticity of a digital content.

In the last few years, the multimedia forensics community
has developed a series of algorithms to deal with any kind
of multimedia objects, and especially images [1]. Many of
these algorithms rely on the fact that every non-invertible
operation leaves peculiar footprints on multimedia objects.
These footprints, or fingerprints, are exploited as an asset by
forensic detectors enabling the identification of the applied
operation.
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Among the algorithms developed to uncover the history
of still images, are those aiming at revealing the presence
of tampering. These methods can be broadly split into two
categories: i) tampering detection algorithms that aim to detect
whether an image has been modified, or it is authentic [2]; ii)
tampering localization algorithms that aim to detect which
region of the image has been tampered with [3].

Many of the proposed algorithms focus on detecting traces
left by a specific operation. As an example, [4] shows how
to localize a forged region detecting inconsistencies in the
Photo Response Non Uniformity (PRNU) pattern, i.e., the
characteristic noise left by the acquisition sensor on images.
In [5], the authors propose an algorithm capable of estimating
the Color Filter Array (CFA) interpolation strategy, to detect
local tampering. In [3], tampering localization is performed
exploiting traces left by JPEG coding. Alternatively, [6] and
[7] report methods to uncover a global resampling operation.
Copy-move forgeries can be detected using [8].

However, tampering can be operated using many different
techniques together on the same picture. For this reason,
an analyst cannot rely on a single detector. Instead, a more
reliable way to proceed is to merge the output of different
detectors [9]. This strategy was followed by [10], where the
authors used a fusion technique on three different forgery
localization detectors: i) one based on PRNU; ii) one based
on PatchMatch for copy-move forgery detection [11]; iii) one
based on a statistical method [12]. It is worth noting that the
approach in [10] was validated against the dataset released
by the IEEE Information Forensics and Security Technical
Committee (IFS-TC) for the First Image Forensics Challenge1,
leading the authors to the win.

In this paper, we propose a multi-clue image tampering
localization algorithm inspired by the work in [10]. We use a
fusion strategy to merge results obtained from three detectors.
The first one is a PRNU-based detector developed to be
unsupervised. The second one is a PatchMatch-based detector
as the one proposed in [10]. The third one is based on near-
duplicate image detection, exploiting concepts borrowed from
the image phylogeny research field [13].

The proposed method is validated against the IEEE IFS-TC
First Image Forensics Challenge as [10]. Note that, on this
dataset, techniques based on JPEG compression artifacts do
not work due to the kind of operated forgeries. Experimental

1http://ifc.recod.ic.unicamp.br/
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Fig. 1: A forged image (a), the PCE-field (b), the PCE-field binarized with a not optimized threshold (c), MPRNU obtained with the proposed
approach (d), and the ground truth mask (e). Notice that choosing a wrong threshold to binarize the PCE-field may lead to a bad tampering
mask. Dark colors represent low values.

results show that we are able to reach a very high localization
accuracy, enabling the proposed algorithm to beat the chal-
lenge with the highest score at paper submission time.

The rest of the paper is structured as follows. Section II,
Section III and Section IV present the proposed image forgery
localization algorithms based on PRNU, PatchMatch and near-
duplicates, respectively. In Section V we show how to merge
all the obtained information in order to effectively localize the
tampering. Section VI reports the conducted experiments and
the achieved results. Finally, in Section VII we draw some
conclusive remarks.

II. PRNU-BASED APPROACH

Camera sensors are greatly affected by the presence of
noise. A significant non-random contribution to this noise is
given by the Photo Response Non Uniformity (PRNU). Note
that PRNU is pretty much stable over a camera lifetime, and is
unique to each camera instance. These facts make it a robust
fingerprint to identify a specific acquisition device [14].

More formally, let us consider an image I, whose pixels are
denoted as I(i, j), generated by a digital camera. For the sake
of simplicity, let us consider I to be either gray scale or a
single color component from a color image. This image can
be modeled as

I = Io + KIo + Θ, (1)

where Io is the ideally acquired noise-free image, Θ is an
additive noise term, and the multiplicative term K is the
PRNU.

The estimation of K is usually problematic, since we cannot
easily separate Io from I. PRNU is then typically extracted
from a set of images I = {In}, n ∈ 1, ..., N , acquired
with the same camera. To this purpose, let us define the noise
fingerprint of each image as

Wn = In −D(In), (2)

where D is a denoising operator [15]. The PRNU is estimated
as

K =

∑N
n=1 WnIn∑N
n=1 I2n

. (3)

To detect whether an image In has been acquired with a
specific camera, a correlation test is performed between K
and Wn. As an example, in [16] this is done by computing a

measure called Peak to Correlation Energy ratio (PCE) and
comparing it to a threshold. Images whose PCE is higher
than the threshold are detected as acquired with the camera
associated to K.

However, PRNU can be also used for tampering localiza-
tion. To this purpose, a typical approach is to block-wise
perform the correlation test between K and Wn, and populate
a PCE-field. This field is thresholded, and pixels whose PCE is
lower than the threshold are considered fake. Many algorithms
are based on slight modification of this pipeline [4], [10], [16].

The method we propose is based on the same rationale (i.e.,
block-wise PRNU compatibility check), but we also exploit
information given by blocks correlation offsets.

Let us consider an image I, and the PRNU K that we
associate to the same camera. We assume the image and the
PRNU to be pixel-wise aligned, i.e., no scaling or cropping
operations have been applied. The image I is split into
overlapping blocks Ib, b ∈ {1, ..., B}, each one centered on
pixel coordinates (ib, jb). If the image is pristine, each block
Ib must pass the PRNU correlation test only when centered
on PRNU pixel in coordinates (ib, jb).

To verify this condition, we compute for each block the
noise fingerprint Wb according to (2). We then compute the
phase-correlation with the PRNU as

Rb(i, j) = F−1
(
F(Wb)F(IK)∗

|F(Wb)F(IK)∗|

)
, (4)

where F is the Discrete Fourier transform (zero-padded if
needed), F−1 is its inverse, ∗ denotes the complex conjugate,
and the PRNU K is multiplied by the image pixels I as
suggested in [17]. Notice that Rb is a 2D map, showing
the correlation between the PRNU and the b-th block shifted
of i and j pixels in the horizontal and vertical dimensions,
respectively. Therefore, we can compute the offset estimate
between K and Ib as

(̂ib, ĵb) = argmax
(i,j)

(Rb(i, j)) . (5)

If (̂ib, ĵb) = (ib, jb), the b-th block is compatible with the
underlying PRNU, hence the block is considered pristine. On
the other hand, if (̂ib, ĵb) 6= (ib, jb), the b-th block is not
aligned with the PRNU, thus it is considered tampered with.
This condition is usually not considered in baseline PRNU-
based algorithms, which are based on thresholding PCE (or
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Fig. 2: A forged image (a), E (b), D (c), MPM obtained with the proposed approach (d) and the ground truth mask (e). Dark colors represent
low values.

correlation) values. The proposed PRNU tampering mask is
then built as

MPRNU =

{
1, if (̂ib, ĵb) = (ib, jb),

0, otherwise,
(6)

where 1 denotes a pristine pixel, and 0 a forged one.
Fig. 1 shows the comparison between MPRNU and the

PCE-field used by many methods [4], [10], [16]. Notice
that the proposed approach has an inherent advantage over
PCE-based approaches. This is, MPRNU does not need any
training, since no thresholds must be defined. Opposite, PCE-
based approaches need some training images to chose a good
threshold to compute a binary mask from the PCE-field.
A wrong threshold choice may severely degrade tampering
localization accuracy.

III. PATCHMATCH-BASED APPROACH

A common way to perform an attack is to clone part of
an image over another region of the same image. This can be
either done with simple copy-move techniques,i.e., replicating
an object or small patches from the same image with some
optional additional filtering to minimize the discontinuity
between original and copied pixels.2 If the copied object or
patch is big enough, SIFT-based copy-move forgery detectors
[8] achieve good results. On the other hand, if cloned patches
are very small, SIFT-based methods are not effective. In order
to be able to detect both small and big replicated regions,
we rely on the PatchMatch algorithm presented in [11] and
used also in [10]. PatchMatch enables to detect whether a
small patch (e.g., a 7 × 7 pixels block) can be replaced with
another small patch found in the same image, at a very low
computational complexity.

More formally, an image I is split into non overlapping 7×7
pixels blocks Ib, b ∈ {1, ..., B}, each one centered on pixel
coordinates (ib, jb). For each block Ib, PatchMatch returns the
block that is most similar to it as

Îb = argmin
Iβ∈B

E
(
Ib, Iβ

)
, (7)

where E is a certain distance metric (mean squared error in our
experiments), and B is a set of possible Îb candidates selected
by PatchMatch to avoid full-search and patches too close to
Ib.

2An example of copy-move with small patches is the Healing Brush Tool
of the Photoshop software [18].

We then store the information about the matching patches
into two matrices: i) D is a map of the distances between
the centers of each matching pair 〈Ib, Îb〉; ii) E is a map
of the Mean Squared Error (MSE) introduced if we actually
substitute a patch with its matching one. These maps are built
as

D(ib, jb) = |[ib, jb]− [̂ib, ĵb]|, (8)

E(ib, jb) = MSE
(
Ib, Îb

)
, (9)

where |·| is the L2-norm, [ib, jb] and [̂ib, ĵb] are vectors col-
lecting the coordinates of Ib and Îb central pixels respectively,
and MSE(·, ·) compute the MSE between two patches. Fig. 2
shows an example of these two maps computed on a picture
forged using Healing Brush [18].

To compute the binary tampering mask MPM, we segment
D in regions with the same D value. These are areas that can
be substituted with pixels at a fixed distance. Among these
areas, we select only those larger than a given size (fixing
the smallest tampered block we want to detect) and with a
low E value. The mask MPM can be optionally refined using
morphological operators. Fig. 2 shows an example of MPM
compared to the ground truth mask. It is worth noting that
MPM suffers of ambiguity problems when copy-move attack
is used, i.e., it is not possible to disambiguate between the
original and copied objects. If more sophisticated attacks are
used (e.g., Healing Brush), this problem is less pronounced.

IV. NEAR-DUPLICATE-BASED APPROACH

When dealing with user-generated content distributed on-
line, forged objects are seldom created starting only from
undistributed original material [19]. In fact, a common image
tampering pipeline is to collect and reuse pictures found on
different media sharing platforms. A typical example is that
of image copy-paste forgery operated to substitute the face of
a person (e.g., a friend of the forgery creator) with that of
another (e.g., a famous artist). In Fig. 3a, this kind of attack
has been used to replicate a window. It is then possible to
search for near-duplicate copies of the image under analysis
(i.e., versions of the same image differing due to processing
operations, or pictures of the same scene captured from a
slightly different point of view) and compare them to find
the differences. This search can be either performed via Web
crawling, or in the dataset under analysis. An example of a
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Fig. 3: A fake image coming from the IFS-TC dataset (a) and a
near-duplicate version of it found online (b). The analysis of the
differences reveals the tampering.

fake picture coming from the IEEE IFS-TC dataset and a near-
duplicate version found online is shown in Fig. 3.

The idea of studying the relationship between pairs of near-
duplicate images to find which one has possibly been used
to generate the others is at the base of the image phylogeny
research field [13], [20], [21]. Starting from this idea, we
propose a near-duplicate-based image tampering localization
approach.

The first step consists in determining which images are
actually near-duplicates. To this purpose, let us consider a
set of images to analyze. We describe each image by means
of a robust hash, obtained modifying the hash proposed for
near-duplicate video matching in [19]. To build the hash,
we resize each image In to a fixed dimension (256 × 256
pixels in our experiments). We then compute Yn as the 2D
Discrete Cosine Transform (DCT) of the resized image. We
select a given number of DCT coefficients (in our experiments
256 coefficients Yn(i, j), i ∈ {2, ..., 17}, j ∈ {2, ..., 17}
discarding horizontal and vertical components whose i = 1
or j = 1). The selected coefficients are binarized with respect
to their median value to obtain the binary hash hn (a 256
bit string in our case, composed by 128 zeros and 128 ones).
Hashes are then pairwise compared by computing hamming
distance between each pair. If this distance is below a threshold
(4 in our experiments), the images related to the compared
hashes are considered near-duplicates.

After we identify a near-duplicate Im of an image In under
analysis, we compare them pixel-wise to find the differences.
To this purpose, we register Im to In in order to compensate
for geometrical transformations such as cropping and resizing.
This is done using SIFT matching as suggested in [13]. Then
we subtract In to the registered version of Im obtaining a
difference map. Notice that differences between In and Im
are due to the presence of tampering, the presence of noise
introduced by processing operations such as JPEG compres-
sion, and errors introduced in the registration step. For this
reason, the estimation of the binary tampering localization
mask MND requires thresholding the difference map and
optionally processing it with some morphological operators.
Fig. 4 shows an example of near-duplicate images, and the
obtained MND mask. Note that, if both the compared images
contain tampered areas, MND suffers of ambiguity problems
as MPM. If we find K near-duplicates of a reference image, we

obtain a set Mk
ND, k ∈ {1, ...,K} of masks (i.e., one for each

near-duplicate) that can be merged to solve the ambiguity.

V. FUSION

For each image In we can estimate a set of different tam-
pering masks (i.e., MPRNU, MPM and Mk

ND, k ∈ {1, ...,K}),
each one set to zero to denote forged pixels, and to one to
denote pristine pixels. In order to reach a final decision, we
must merge these masks into a single one MFUS. To this
purpose, let us take into account the inherent properties of
each kind of masks.

MPRNU reveals many kind of tampering, and revealed forged
areas are unambiguous. In other words, we can strongly trust
areas detected as tampered with. On the other hand, MPRNU
hardly reveals forgeries smaller than the block size used to
analyze In during the PRNU analysis. For this reason, some
forged areas may not be revealed by MPRNU.

MPM is tailored to a specific kind of attack (i.e., copy-move-
like), moreover it presents ambiguous regions. The ambiguity
is due to the fact that both the original and copied patches are
detected (e.g., if an object is replicated, both replicas appear
in MPM).

Mk
ND reveals many kind of forgeries (as MPRNU), nonethe-

less it suffers from ambiguity problems (as MPM). Indeed,
each Mk

ND contains information about forgeries on both com-
pared images (i.e., In and its near-duplicate).

Since each mask embeds information that might not be
present into the others, a natural method to merge them is
the use of the AND operator [10]. However, due to ambiguity
in certain masks, this is a suboptimal choice. The pipeline
we propose for mask fusion is then the following: i) we
solve the ambiguity problem where possible (i.e., for MND);
ii) we select which masks (i.e., MPRNU, MPM and MND) to
merge with the AND operator, according to a confidence value
obtained evaluating the masks on a training set.

Ambiguity. When dealing with masks Mk
ND, k ∈ {1, ...,K},

the ambiguity problem can be solved. Indeed, if K > 1, we
can resolve this ambiguity by comparing all the Mk

ND masks.
Each mask reveals the forged area in both In and a near-
duplicate version of it, therefore the only forged region that
appears in every mask is attributed to In. More formally, we
compute the binary mask MND = M1

ND ∨M2
ND ∨ ... ∨MK

ND,
where ∨ is the OR operator.

Mask selection. We define a setM of possible masks obtained
according to different strategies. In our experiments M =
{{MPRNU}, {MPM}, {MND}, {MPRNU ∧ MPM}, {MPRNU ∧
MND}, {MPM ∧ MND}, {MPRNU ∧ MPM ∧ MND}} =
{Mp}, p ∈ {1, ..., 7}, where ∧ is the AND operator. Notice
that different sets can be defined as well.

We consider a training set Strain of forged images In, n ∈
{1, ..., N}, whose ground truth tampering mask MGT

n is
known. For each image In ∈ Strain, we compute the set of
possible masks Mn = {Mp

n}. Notice that some strategies
cannot be applied on some images (e.g., in case of unknown
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Fig. 4: Reference image In (a), near-duplicate Im (b), difference between reference and registered near-duplicate (c), MND (d), and ground
truth mask. Dark colors represent low values.

PRNU), thus resulting in a different cardinality of Mn for
each image.

For each image In, we select the strategy that gives the best
estimated mask as

pn = argmax
p
R
(
Mp

n,M
GT
n

)
, (10)

where R(·, ·) is a metric of similarity between the compared
masks (in our experiments we used the F-measure score
adopted for the Image Forensics Challenge described in Sec-
tion VI). We then compute a confidence value for each strategy
as

Cp =
|{In ∈ Strain : pn = p}|
|{In ∈ Strain : ∃Mp

n}|
, p ∈ {1, ..., 7}, (11)

where the numerator represents the number of images for
which the p-th strategy is the best one, and the denominator is
the number of images on which the p-th strategy could actually
be applied.

When a new image Im 6∈ Strain is evaluated, we use the
strategy

p̂ = argmax
p

(Cp | ∃Mp
m) , (12)

which is the strategy associated to the mask Mp̂
m (among those

that can be computed for Im) that maximizes the confidence
Cp̂. We refer to the mask obtained with the fusion procedure
as MFUS.

VI. EXPERIMENTAL RESULTS

In order to validate the proposed approach, we tested it
on the dataset distributed for the IEEE IFS-TC First Image
Forensics Challenge. This dataset is composed by four sets of
images: i) S f

train composed by 450 tampered images whose
ground truth mask is known; ii) Sp

train composed by 1050
pristine images; iii) S1test composed by 5713 images, both fake
and pristine, without annotation; iv) S2test composed by 700
fake images without annotation, actually used to officially test
tampering localization methods submitted to the challenge.
The total number of images in S = {S f

train∪S
p
train∪S1test∪S2test}

is 7913, of which 1500 annotated (i.e., we know whether
they are pristine or fake, and the tampering masks are known
too). A large amount of images is 1024 × 768 pixels each,
nonetheless other image sizes (either smaller or bigger) are
present. Notice that we present results for S f

train (that can be
evaluated thanks to the available ground truth) and S2test (that

TABLE I: Comparison between PRNU-based forgery localization
methods.

TPR TNR FPR FNR ACC
MPCE (supervised) 61.36% 82.51% 17.49% 38.64% 71.93%
MPRNU 68.44% 74.39% 25.61% 31.56% 71.41%
MPRNU (supervised) 82.82% 68.45% 31.55% 17.18% 75.63%

can be evaluated submitting masks to the challenge system,
which only returns one F-measure score a day). The other
datasets are used to search for near-duplicates and PRNU
estimation.

In order to compute MPRNU, we first needed the reference
PRNU for each image. Considering a specific image In, we
selected all the images Im ∈ S of the same size of In. We
computed the noise fingerprint Wm for each one of them using
(2). We computed the PCE between every pair of fingerprints
〈Wn,Wm〉, keeping n fixed. We selected all the images Im
with PCE greater than 50 and fingerprint Wm aligned with
Wn as images taken from the same camera used for In. Then
we computed the PRNU Kn related to the n-th image using
(3), considering all the images Im associated to In.

With this procedure, we identified the PRNU for the 45%
of images in S f

train and more than the 54% in S2test, just
using 1024 × 768 images. For these images, we computed
both MPRNU using the proposed method, and a PRNU-based
tampering mask MPCE obtained by thresholding the PCE-field
as suggested in [10]. We evaluated both techniques in terms
of: i) True Positive Rate (TPR) as the fraction of fake pixels
correctly identified; ii) True Negative Rate (TNR) as the frac-
tion of pristine pixels correctly identified; iii) False Positive
Rate (FPR) as the fraction of pristine pixels identified as fake;
iv) False Negative Rate (FNR) as the fraction of fake pixels
identified as pristine; v) Accuracy (ACC) as (TPR+TNR)/2.

This evaluation was carried on only on S f
train, since we

only have the ground truth for this set, and the submission
system (working on S2test) does not provide such statistics.
Notice that the PCE threshold for MPCE was chosen as the
optimal one for the used dataset, therefore reported results
can be considered as an upper bound of MPCE performance.
On the other hand, MPRNU is completely unsupervised. In
order to give an upper bound to MPRNU results too, we also
used a supervised version, whereby we optimized on S f

train the
use of morphological opening. Table I shows results obtained
comparing these strategies. Notice that, in terms of TPR, both
supervised and unsupervised versions of MPRNU beats MPCE.



TABLE II: Percentage of computed tampering masks.

S f
train S2

test
MPRNU 45% 54%
MPM 45% 48%
MND 22% 29%
MFUS 64% 66%

TABLE III: F score for the obtained masks. Scores are presented for
the whole dataset (global) and averaging it only on the number of
effectively computed masks (per image).

S f
train S2

test
per image global per image global

MPRNU 45.14% 24.83% 33.17% 25.35%
MPM 45.41% 25.63% 41.90% 27.84%
MND 76.03% 26.79% 84.48% 33.31%
MFUS 55.52% 38.53% 56.69% 45.33%

In terms of accuracy, supervised MPRNU achieves better results
than the other techniques.

After validating the proposed PRNU-based approach, we
focused on the challenge evaluation. Table II shows how many
masks we obtained with each method on each dataset. Notice
that after fusion, we have a mask estimate for the 64% and
66% of images in S f

train and S2
test, respectively.

According to the challenge rules, tampering localization
methods are evaluated according to F-measure defined as

F =
2 TPR

2 TPR + FNR + FPR
, (13)

which is zero if evaluated masks are all white (i.e., every pixel
is detected as pristine). This fact allowed us to evaluate the
masks in two different scenarios: i) per image - computing the
score only for images we could actually obtain a mask for (see
Table II); ii) global - computing the score on all the images
in each set, setting as black the masks not available. The first
criterion is an estimate of masks’ goodness. The second one
is obtained as the official Challenge score, taking into account
the fact we could not estimate a mask for each image. Table III
shows these results. Global results are higher on S2

test than on
S f

train because we actually estimated more masks on S2
test than

on S f
train (see Table II).

Notice that results in the last column (highlighted in red)
were obtained using the official Challenge submission system.
The MFUS score of 45.33% (publicly obtained as Gabor
team3) is higher than that obtained by the official challenge
winners (i.e., 40.72%), fully validating our approach.

VII. CONCLUSIONS

In this paper we presented a multi-clue image tampering
localization algorithm that merges information from three
different strategies. The proposed approach builds upon [10],
introducing an alternative PRNU-based detector, detailing the
PatchMatch-based one, and presenting a tool based on image
phylogeny. To the best of our knowledge, results on the IEEE
IFS-TC First Image Forensics Challenge dataset achieve the
highest score (at paper submission time). Future works will be
devoted to fine-tune the fusion strategy, as well as to integrate
tools based on other footprints.

3http://tinyurl.com/onandky or http://tinyurl.com/nvc8dn4
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