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Precoding for Multiple Antenna Gaussian Broadcast
Channels With Successive Zero-Forcing
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Abstract—In this paper, we consider the multiuser Gaussian
broadcast channel with multiple transmit antennas at the base
station and multiple receive antennas at each user. Assuming full
knowledge of the channel state information at the transmitter
and the different receivers, a new transmission scheme that
employs partial interference cancellation at the transmitter with
dirty-paper encoding and decoding is proposed. The maximal
achievable throughput of this system is characterized, and it is
shown that given any ordered set of users the proposed scheme
is asymptotically optimal in the high signal-to-noise ratio (SNR)
regime. In addition, with optimal user ordering, the proposed
scheme is shown to be optimal in the low-SNR regime. We also
consider a linear transmission scheme which employs only partial
interuser interference cancellation at the base station without
dirty-paper coding. Given a transmit power constraint at the base
station, the sum-rate capacity of this scheme is characterized and
a suboptimal precoding algorithm is proposed. In several cases, it
is shown that, for all values of the SNR, the achievable throughput
of this scheme is strictly larger than a system which employs full
interference cancellation at the base station [21]. In addition,
it is shown that, in some cases, the linear transmission scheme
can support simultaneously an increased number of users while
achieving a larger system throughput.

Index Terms—Controlled interference, dirty-paper coding, mul-
tiple-input multiple-output (MIMO) broadcast channels (BCs),
precoding.

I. INTRODUCTION

THE downlink of multiuser multiple-input multiple-output
(MIMO) broadcast channels has been an extensive area

of research in the last few years. With an increased interest in
data throughput and quality-of-service (QoS), MIMO wireless
communication systems have played a fundamental role in pro-
viding such benefits. In particular, the capacity limits of the
Gaussian multiuser broadcast channel with multiple transmit
antennas at the base station and multiple receive antennas at
each user have captured a large amount of research in recent
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years [2], [27], [28], [30]. In general, most of the previous re-
search work has focused on the achievable system throughput
using Costa’s dirty-paper coding (DPC) technique [4]. In [2], it
was first shown that the DPC technique achieves the sum-rate
capacity of the Gaussian broadcast channel (BC) for a system
employing multiple transmit antennas at the base station and
users with single receive antenna. A generalization of this result
for the multiple receive antennas case was given in [27] and [30],
and, finally, in [28], it was shown that the dirty-paper achievable
region is actually the capacity region of the Gaussian multiuser
MIMO BC.

The DPC technique is based on noncausal knowledge of each
user’s interfering signal at the base station. With such knowl-
edge, the base station can apply dirty-paper encoding, and quite
remarkably without users knowing the interfering signals, the
capacity of the system is as if there were no interference at all.
The main drawback, however, of the DPC technique is that it is
a highly nonlinear technique which makes its implementation a
very challenging problem. Construction of practical codes that
achieve close to capacity performance of the dirty-paper tech-
nique is the subject of current research. A well-known general
approach for achieving the capacity of DPC is based on mul-
tidimensional lattice quantization with minimum mean-square
error (MMSE) scaling [6]. Different practical realizations of the
multidimensional lattice-based dirty-paper schemes were pro-
posed in [7], [8], and [18]. Another practical implementation of
a DPC-based scheme can be found in [26].

Because of its complexity, several authors have considered a
reduced complexity suboptimal DPC scheme that is known as
the zero-forcing dirty-paper coding (ZFDPC) scheme and was
first proposed in [2]. In [25], a greedy user-selection scheme
named greedy zero-forcing dirty-paper coding was suggested.
In [5], analysis of the performance of the greedy zero-forcing
dirty-paper coding scheme was provided. In [13], a MIMO BC
with multiple receive antennas at each receiver was considered,
and a comparison of a generalized zero-forcing dirty-paper
coding scheme with V-BLAST [9] was given. In [19], the
zero-forcing and matched zero-forcing (MMSE precoding)
transmission schemes employed in a MIMO BC with single
receive antenna users were considered, and a comparison with
the ZFDPC technique was made.

Based on the DPC technique, in this paper, we propose a
new transmission scheme that assumes full channel knowledge
at the transmitter and at each receiver. In this scheme, a set of
precoding matrices at the base station are designed such that
only partial interuser interference cancellation is performed.
Similar to the asymptotic performance (when each user has a
single receive antenna) of the ZFDPC scheme in the high and
low signal-to-noise ratio (SNR) regimes, it is shown that with
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any ordered set of users the sum-rate capacity of the proposed
scheme in the high-SNR regime is asymptotically equal to the
sum-rate capacity of the optimal DPC scheme. In the low-SNR
regime, it is also shown that with optimal user ordering, the
sum-rate capacity of the proposed scheme is asymptotically
equal to the sum-rate capacity of the DPC scheme. This scheme
can be thought of as a generalization for the ZFDPC scheme for
the multiple receive antenna case where we perform successive
block-diagonalization of the channel.

In general, the channel inversion technique can not be directly
generalized for the case when the users have multiple receive an-
tennas without sacrificing much of the multiplexing and diversity
benefits of the single user MIMO channel. In [21], a block-diago-
nalization (BD) transmission scheme for the multiuser downlink
channel was proposed. This scheme can be viewed as a general-
izationof thechannel inversiontechniquewhereusersworkunder
interference free conditions, however, the inherent multiplexing
and diversity gains of each user’s MIMO channel can be still uti-
lized up to a certain limit. The main idea of the proposed tech-
nique is based on the design of a set of precoding matrices corre-
sponding to each user’s transmitted signal such that the interuser
interference is canceled. A main limitation of this scheme is that
the number of transmit antennas at the base station has to be larger
than the total number of receive antennas of all users supported
simultaneously in the system. The case when the constraint on
the number of transmit antennas is not satisfied was considered
in [29], and different receiveantenna selection methodswere pro-
posed. Another transmission approach that was suggested in [21]
isbasedonthesuccessiveoptimizationof thesetofprecodingma-
trices such that the transmission power at the base station is min-
imized given the set of transmission rates of all the users. How-
ever, in [21], it was also shown that compared to the BD scheme
the proposed successive optimization scheme does not yield any
throughput improvement except in the low-SNR regime. In [10],
another linear precoding scheme for the downlink with multiple
transmit and receive antennas at each receiver was suggested. As-
suming MMSE receivers, it was shown that performing a con-
trolledinteruserinterferencecancellationbymaximizingtheratio
between the transmitted signal power of each user and the total
interference caused by the same user leads to the maximization
of a lower bound on the sum-rate capacity.

In this paper, we also consider a linear transmission tech-
nique for the multiuser Gaussian MIMO broadcast channel with
controlled interuser interference cancellation similar to [10] and
[21]. In this scheme, we only perform partial interference can-
cellation at the base station; however, we do not perform DPC.
We characterize the sum-rate capacity of this transmission ap-
proach and propose a suboptimal precoding algorithm that de-
termines a set of precoding matrices for the sum-rate capacity
maximization problem under a total power constraint at the base
station. In this case, it turns out that user ordering can potentially
improve the system throughput, and in several cases, it is shown
that, for all values of the SNR, the achievable system throughput
of this scheme is strictly larger compared to other previously
reported transmission techniques with linear complexity. Fur-
thermore, it is shown that in some cases the linear transmission
scheme can support an increased number of users while simul-
taneously having additional gain in the system throughput.

This paper is organized as follows. In Section II, we present
the system model under consideration and give a short overview
of the main precoding techniques proposed in previous litera-
ture. In Section III, the dirty-paper-based transmission scheme
is proposed and the sum-rate capacity is determined. In Sec-
tion IV, the linear precoding transmission scheme is considered
and analysis of the sum-rate capacity with a precoding algorithm
is provided. In Section V, a discussion on the optimal solution
for the linear transmission scheme is given. In Section VI, simu-
lation results are presented, and we conclude with future points
of emphasis in Section VII.

II. SYSTEM MODEL AND OVERVIEW

A. System Model

In this paper,1 we consider the flat fading multiuser MIMO
BC with users having receive antennas
and a base station with transmit antennas. According to this
model, the received signal at user is given by

where is the received vector, is the
channel matrix, and is the additive white com-
plex Gaussian noise vector at each receiver. In general, it is as-
sumed that for each user the channel matrix is fixed during
multiple transmission epochs and is fully known both to the base
station and to the th user. Given an ordered set of users with
an order , we can write

...
...

...
(1)

and we let given by

(2)

denote the channel matrix. The transmitted signal vector at the
base station is assumed to have the following general structure

(3)

where is the precoding matrix corresponding to the th user
vector . In the following, we present short reviews of previ-
ously known transmission schemes proposed for the multiuser
MIMO BCs.

B. Zero-Forcing Dirty-Paper Coding

The zero-forcing dirty-paper coding technique [2] is based on
the QR decomposition of the channel where it is assumed that

1We use boldface to denote matrices and vectors. For any set S; jSj denotes
the cardinality of the set. I denotes the identity matrix. For any matrixA; (A)
denotes the conjugate transpose, (A) denotes the matrix transpose, kAk de-
notes the maximal singular value of A; vec(A) denotes the stacking of the
columns ofA into a vector and unvec(A) denotes the reverse operation. [A]
denotes the (i; j)th entry of A. For a square matrix A; det(A) denotes the
matrix determinant, A denotes the matrix inverse, A denotes the matrix
square root, and A � 0 denotes that A is positive semidefinite. For any real
number x; [x] � max(x; 0).
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users have a single receive antenna. If we let ,
then the channel matrix , where is
a lower triangular matrix having zeros above its main diagonal
and has orthonormal rows. For simplicity, we as-
sume that after performing the QR decomposition we have the
set of users . For each user, is a scalar and
the precoding matrix is given by the corresponding column
vector in . The received signal at the th receiver is given by

where denotes the th entry in . In this case, the in-
terfering signal of the th user caused by the users’
symbols is canceled by the decomposition
structure, while the interfering signal component
is assumed noncausally known at the transmitter. By generating
the components of according to successive
dirty-paper encoding, the performance of user is the same as
if the interfering signal from users did not exist.

The problem with ZFDPC is that it is not easy to generalize
when the number of receive antennas of each user is greater
than one. In [13], a generalization of the ZFDPC technique is
made; however, in this case, different antennas at each receiver
are treated as if they belong to independent users. The main
problem with this kind of generalization is related to the fact
that in any point-to-point MIMO communication system if we
do not consider the asymptotic case of the high-SNR regime,
then attempting to diagonalize the channel via inversion like
techniques at the transmitter, is strictly suboptimal since it does
not exploit the multiplexing and diversity gains existing in any
MIMO communication system.

C. Channel Inversion

Assuming full channel knowledge at the transmitter,
different types of precoding methods can be applied. A
well-known method is the channel inversion or what is known
by zero-forcing beamforming [2], [22]. In the channel inver-
sion method, the channel matrix is inverted at the transmitter
in order to create orthogonal channels between the trans-
mitter and receivers. In this case, as before, it is assumed that
the users have single receive antenna and the input vector

is multiplied by the Moore–Penrose
pseudoinverse [12] of the matrix . Assuming that
and is of full rank, the transmitted signal is given by

(4)

and the received signal of each user is given by
for any . Now given the set of users and total power
constraint on the transmitted signal, the throughput of the
channel inversion method is found by the waterfilling solution
and is given by

where solves

The price that is paid here is in the amount of power needed to
do channel inversion which causes a significant noise enhance-
ment, especially when the channel is highly correlated or close
to singular. However, as in the ZFDPC method, the channel in-
version scheme can not be easily generalized to the case of users
with multiple receive antennas. Again, if we directly apply the
channel inversion method to the MIMO multiuser channel, this
will be equivalent to treating each receiver antenna as an inde-
pendent user without being able to exploit the main benefits of
the MIMO point-to-point channel. We note here that, in [17],
a precoding technique based on regularizing the inverse in the
channel inversion formula was suggested. As before, the pro-
posed scheme can not be generalized to the case of users with
multiple receive antennas, and by treating the different receive
antennas as independent users the regularized channel inversion
technique yields (assuming )

where is the SNR value. This precoding technique is also
known as MMSE precoding [15], and as can be easily seen in
the high-SNR regime it has similar performance as the channel
inversion technique.

D. Block-Diagonalization

For the MIMO multiuser downlink channel where users can
have more than one receive antenna, a generalization of the
channel inversion method was proposed in [21]. According to
this method, each user’s transmitted signal is precoded such that
when multiplied by other users’ channels it does not generate
any interference. In order to cancel the interuser interference,
each precoding matrix is constrained to lie in the null
space of

Therefore, the effective channel has a block diagonal structure,
and in order to satisfy the above constraint the null space dimen-
sion of should be greater than zero. This implies that the
rank of these matrices should be less than , and, in general, in
a rich scattering environment, we get that the number of transmit
antennas should be greater than or equal to the sum of all users’
receive antennas (more precisely, , for all
) [21]. In order to maximize the throughput of the system under

the BD method, the set of precoding matrices should satisfy the
total power constraint on the transmitted signal in addition to the
constraint on the null space mentioned above. If we let
denote the matrix of vectors that form a basis
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for the null space of , the throughput of the BD method is
given by

(5)

and the optimal set of covariance matrices is obtained
by waterfilling over the effective block diagonal channel matrix

. . . (6)

with total power constraint . Note that the matrix can be
obtained using the singular value decomposition (SVD); how-
ever, in [3], a more efficient and stable method for computing the
above matrix based on the QR decomposition was proposed.

We should note here that multiuser diversity can be achieved
by maximizing over the different possible sets of users with dif-
ferent cardinalities. In this case, in order to maximize the total
throughput in the system, only the users in the set but not the
ordering of users matters. In [20], a suboptimal algorithm that
reduces the search complexity over the different sets of users
with relatively small loss in performance can be found.

III. SUCCESSIVE ZERO-FORCING DIRTY-PAPER CODING

In general, interuser interference cancellation at the base sta-
tion puts several restrictions on the transmitted signal in addi-
tion to the constraints on the number of transmit and receive
antennas in the system. These constraints generally lead to sig-
nificant degradation in the system throughput and restrict the
capability of supporting multiple users simultaneously. In the
channel inversion method with a single receive antenna at each
user, orthogonal channels are created for interference free com-
munication. The main disadvantages of this technique are the
enhancement of the noise power and that it can not be easily
generalized to the case of users with multiple receive antennas.
In the BD technique proposed in [21], complete zero forcing of
the interuser interference is performed; however, compared to a
system that employs DPC, the achievable throughput is reduced
significantly.

In the following, a transmission scheme that employs DPC
with only partial interference cancellation is proposed. Ac-
cording to [30], we have the following lemma.

Lemma 1: ( , Cioffi): Consider a channel with
, where is the received vector,

is the transmitted vector, is the Gaussian interference
vector, and is the white Gaussian vector noise. If and
are independent and noncausal knowledge of is available at
the transmitter but not at the receiver, then the capacity of the
channel is the same as if was not present.

This lemma is actually a generalization of the DPC result [2]
for the vector case. Based on this result, we propose the fol-
lowing transmission scheme. The transmitted signal at the
base station will have the same general structure as in (3), but

for each , the precoding matrix is now
constrained to lie only in the null space of

(7)

and for , we assume to be a zero matrix (i.e.,
has no such subspace constraint). Now, the received signal of
each user is given by

(8)

According to the proposed method, for each , the term
is canceled by the above con-

straint on the precoding matrices. By applying successive
dirty-paper coding with noncausal knowledge of the inter-
fering signals according to Lemma 1, dirty-paper coding
allows the users to operate at a rate as if the interference
term did not exist. We will refer
to this scheme as successive zero-forcing dirty-paper coding
(SZFDPC). We note here that, in [21], given the transmission
rates of all the users, successive optimization of the different
users’ precoding matrices was performed under a similar sub-
space constraint.

The SZFDPC transmission scheme can be viewed as an ex-
tension of ZFDPC for users with multiple receive antennas. In
general, interference cancellation at the base station simplifies
the decoding process at each of the receivers. In the SZFDPC
scheme, the interference term is can-
celed at the base station and knowledge of this interference
power is not required at the different receivers. Furthermore,
similar to ZFDPC, the optimal precoding matrices at the base
station can be easily computed (as it will be later shown) in this
case without the need of more computationally complex opti-
mization algorithms, such as the iterative waterfilling algorithm
[14].

In the following, we are interested in characterizing the
achievable sum-rate capacity of the SZFDPC transmission
scheme and of comparing it with other transmission schemes
found in the literature. Moreover, similar to [2], the perfor-
mance of the proposed scheme is of special interest in the two
cases of high and low-SNR regimes, where it was shown that
in the high-SNR regime, the ZFDPC scheme is optimal in the
sense of achieving the cooperative channel capacity (where all
users are allowed to cooperate and joint decoding of all users’
received signals is possible), whereas in the low-SNR regime
the ZFDPC scheme has a similar performance as the channel
inversion scheme.

For a given set of ordered users, let

(9)

be the singular value decomposition of the matrix for

, where denotes the matrix of
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right singular vectors of and
is the set of vectors consisting a basis for the null space of

. Note that, for , we let be the
identity matrix. Since, for each the precoding matrix,

is constrained to lie in the subspace spanned by , the
achievable throughput of the system is given by

(10)

In order to determine the optimal set of precoding matrices given
the set of users , a similar algorithm as in [21] can be followed;
however, the basis for the null space of each user is now given
by . Given the ordered set of users , let

(11)

denote the optimal set of precoding matrices. Then

(12)

where for each is obtained from the
singular value decomposition

and is the matrix obtained by waterfilling over the singular
values of the matrix

. . . (13)

with power constraint .
In general, multiuser diversity can be achieved if the base

station maximizes the sum-rate capacity over different ordered
sets of users. In this case, we need to consider different users’
orderings which can affect the achievable throughput because
of the null space constraints; however, we can only consider
sets of users with cardinality equal to due to the waterfilling
algorithm which determines the optimal number of users that
should be supported in any ordered set of users . Therefore,
the sum-rate capacity of the SZFDPC transmission scheme with
multiuser diversity is given by

(14)

In order to achieve multiuser diversity, we need to consider the
different ordered sets as in (14). The problem with the maxi-
mization in (14) is that the number of different sets scales ex-
ponentially with the number of users in the system. Therefore,
an efficient user selection technique is generally required espe-
cially when the number of users is large.

Given the set of ordered users , let denote the sum-
rate capacity of the cooperative transmission scheme. In the fol-
lowing, the optimality of the SZFDPC scheme in the high-SNR
regime is established.

Theorem 1: In the high-SNR regime, given an arbitrary set
of ordered users and assuming that and are of full
row rank, the sum-rate capacity of the successive zero-forcing
dirty-paper coding transmission scheme is asymptotically equal
to the sum-rate capacity of the cooperative transmission scheme,
i.e.,

(15)

Proof: First note that when the users are allowed to coop-
erate, the effective multiuser channel is actually the single user
point-to-point MIMO channel. If we let denote the rank of

, the capacity of this channel is given by [23]

(16)

where is the set of eigenvalues of the matrix
and is the solution of

Similarly, the sum-rate capacity of the SZFDPC scheme is given
by

(17)

where is the set of eigenvalues of the matrix
and is the solution of

In order to show the asymptotic optimality of the SZFDPC
transmission scheme, we need to show that the difference be-
tween the capacity expressions given in (16) and (17) goes to
zero as . In order to do this, we will first show that

(18)

This will imply that the geometric means given by

are equal and similar argument as in [2] can be used to prove
(15).

In the following, we prove (18) by induction. Let us consider
the matrix as given in (2), and let us write

(19)
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From (19), it follows that

According to [12, p. 22] and assuming that the matrix
is of full row rank

(20)

Now let

(21)

be the singular value decomposition of the matrix .
Then, from (20) and (21)

(22)

Note that, if we let denote the set of right singular
vectors corresponding to the first nonzero singular values of

, i.e.,

then from (22), we get

Finally, since

Similarly, we have

and if we continue in the same way for each , we get

Therefore, (18) follows immediately from the definition of .
Now, similar to [2], let

then, for some , the waterfilling equation

has solution , and

has solution . Therefore, for , the
sum-rate capacities of the cooperative and SZFDPC schemes
are given by

and

and in the limit, we get

Let the sum-rate capacity of the optimal DPC transmission
scheme be denoted by . The following corollary follows
directly from Theorem 1 and from the fact that the sum-rate
capacity of the optimal DPC scheme is both lower bounded and
upper bounded by the sum-rate capacities of the SZFDPC and
cooperative schemes, respectively.

Corollary 1: In the high-SNR regime

From the above, we note that in the high-SNR regime, the
DPC, as well as the SZFDPC schemes, are optimal in the sense
of achieving the cooperative channel sum-rate capacity. Also,
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note that the above results are true with any user ordering. How-
ever, user ordering is important in the low-SNR regime and as
it will be later shown, in the low-SNR regime, optimal user
ordering is required for the SZFDPC scheme to achieve the
sum-rate capacity of the optimal DPC scheme.

IV. PRECODING WITH SUCCESSIVE ZERO-FORCING

The DPC technique generally requires nonlinear operations
and is currently considered very complex to implement in a
practical communication system. In this section, we consider
a linear transmission scheme that is based on partial interuser
interference cancellation. The motivation for considering this
kind of transmission scheme is two-fold. First, compared to
other linear transmission schemes, our goal is to improve the
performance of the system by increasing the achievable system
throughput given a transmit power constraint. Second, given that
zero-forcing of the interuser interference is required, we are in-
terested in relaxing the constraint on the number of antennas at
the base station versus the number of users’ receive antennas.
This can increase the number of users that can be supported si-
multaneously and in return increase the achievable throughput.
For example, let us consider the following case where the base
station is equipped with four transmit antennas and there are
three users in the system with two receive antennas each. Fur-
thermore, it is assumed that the first and second users’ channels
are highly correlated; however, all other pairs of users’ chan-
nels are independent. An example for such a channel can be
if two of the three users are located close to the base station
and the third user is far away. Now, if we consider the nulling
constraint given in Section III, there exists a certain ordering of
users where the base station can support the three users simul-
taneously; however, it is not possible in this case to support the
three users in an interference free environment. Therefore, this
is a simple case where optimization of the sum-rate capacity can
be performed over the total number of users in the system. This
kind of optimization can not be performed if complete interfer-
ence cancellation is required.

We will consider the following transmission scheme. Given
an ordered set of users , the base station designs the precoding
matrix of each user according to the null space constraint as in
Section III, i.e., the precoding matrix , which corresponds

to user in , is constrained to lie in the null space of .
However, in contrast to the SZFDPC transmission scheme, the
base station does not employ a DPC scheme and users design
their receivers such that the remaining interference from other
users’ transmitted signals is treated as a Gaussian noise that is
independent of the desired signal. Because users’ precoding ma-
trices are designed successively based on the null space of
where complete interference cancellation is not required, and we
do not employ any DPC technique for combating the remaining
interference from other users, we refer to this scheme as succes-
sive zero-forcing (SZF).

A. Sum Rate Capacity of SZF

Given the above transmission scheme, we need to charac-
terize the sum-rate capacity of the SZF scheme and to find a
way of designing the optimal set of precoding matrices. Note
that from the above constraint on the set of precoding matrices

, the received signal for each is
given by

(23)

Now, assuming that the set of vectors have Gaussian
distribution and are independent, it follows that the interference
term is also Gaussian. By treating this spa-
tially correlated interference signal as noise, and by applying a
whitening filter on the received signal, a minimum Euclidean
distance decoding strategy is optimal [16], and the maximal
achievable rate of each user is given by (24), shown at the bottom
of the page, for a given ordered set of users and set of covari-
ance matrices such that for each

Hence, given the above rates, for each the achievable system
throughput of the SZF scheme is given by

(25)

and when there are users in the system, the maximal achiev-
able throughput with multiuser diversity is

(26)

In order to find the maximal achievable throughput and the
optimal set of precoding matrices, we need to solve the opti-
mization problem given in (26). Therefore, we need first to be
able to solve the optimization problem in (25). In general, be-
cause of the nonconvexity of the rate equations in (24) in the
set of covariance matrices, solving (25) optimally is a difficult
problem. We note that from the rate equations in (24), the sum-
rate capacity optimization problem of the SZF scheme is similar
to the sum-rate capacity optimization problem of the BC with
added subspace constraints on the set of covariance matrices. In
what follows, a suboptimal optimization algorithm that is based
on the existing duality [27] between the BC and the MAC is
proposed, and as it turns out, for several antenna system config-
urations, the achievable system throughput of the SZF scheme
is strictly larger (for all SNR values) than the sum-rate capacity
of the block-diagonalization scheme [21], where complete in-
teruser interference cancellation is performed at the base sta-
tion.

(24)
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In [27], it was shown that any rate in the capacity region of
the BC (achieved with DPC) is in the capacity region of the dual
MAC (achieved with successive decoding) under a sum power
constraint. Therefore, the sum-rate capacities of the BC and the
dual MAC are also equal with

(27)

The sum-rate capacity of the dual MAC under a sum power con-
straint is given by (28), shown at the bottom of the page [27],
[30], where is the set of covariance matrices for the
MAC. Before we give the optimization algorithm for the SZF
transmission scheme, in the following we give a short overview
of the iterative waterfilling algorithm [14] that optimally solves
the sum-rate capacity of the BC based on the above duality be-
tween the BC and the MAC.

BC Iterative Waterfilling Algorithm: In order to solve the op-
timization problem in (28), an iterative waterfilling algorithm
was proposed in [14]. An important feature of the algorithm is
the linear complexity with the number of users supported simul-
taneously in the system. In fact, three algorithms were suggested
with different linear complexities and rates of convergence. For
the two-user case, the least complex algorithm converges for all
channel realizations and with the fastest rate. For the more gen-
eral case, a hybrid algorithm was suggested which trades off
between rate of convergence and optimal convergence point. In
this case, a good starting point for rapid convergence is found
using the two-user algorithm, and then the iterative algorithm
with the least complexity (for ) is used to find the op-
timal sum-rate capacity.

The th iteration of the iterative waterfilling algorithm [14].
1) Generate effective channels

2) Perform waterfilling over an effective block diagonal
channel matrix with power constraint and obtain

3) Update the covariance matrices as

We note here that, initially, the covariance matrices are all ini-
tialized with the identity matrix , and for the
first few iterations, the covariance matrices in step 3 are updated
by without using the exponential filter.

After solving (28) using the above optimization algorithm,
we obtain the sum-rate capacity with the optimal set of covari-
ance matrices for the MAC. In order to find the corre-
sponding set of covariance matrices for the BC that is denoted
by , we use the transformations provided in [27]. If we
consider the simple case when , and let

the th user BC covariance matrix

The matrices and are obtained from the SVD of

where is the square diagonal singular value matrix. In the
following, the sum-rate capacity optimization algorithm for the
SZF scheme is given.

SZF Scheme Optimization Algorithm: Given the set of or-
dered users , the set of channel realizations , and the
power constraint , do the following.

1) Find the optimal set of covariance matrices that
solves (28) using the iterative waterfilling algorithm.

2) Use the MAC to BC covariance transformations (28) on the
set , and let denote the transformed set
of BC covariance matrices.

3) For , set

4) For :
• find by waterfilling over the effective channel

matrix

(28)
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with power constraint ;
• set

In the third step of the SZF optimization algorithm, we per-
form a projection of the optimal solution that is obtained by the
iterative waterfilling algorithm, and then we project back to the
original subspace. In this case, if the projection was unitary we
wouldget theoptimalwaterfillingsolution.Notethat, in theabove
algorithm, denote the covariance matrices which in-
clude the subspace projections. This type of optimization is sim-
ilar to solving a relaxed optimization problem, where the optimal
solution can be obtained by solving the BC sum-rate capacity op-
timization problem, and then in order to satisfy the subspace con-
straint we perform the projection given in the third step.

In the fourth step of the above optimization algorithm, we can
design the covariance matrix optimally since the covari-
ance matrices or equivalently the interference term contributed
by users is already determined in steps ,
and since the achievable rates of users are not
affected by modifying due to the subspace projection.

Given the set of covariance matrices , the rate of
the last user in is given by

From the fact that for any two
matrices and with suitable dimensions, and if we let

then the fourth step in the SZF optimization algorithm follows
from

In the maximization over the different ordered sets of users
as given in (26), it is required to maximize the achievable
throughput over

(29)

different sets. Also note that, from (25), it is clear that the SZF
scheme always maximizes over different ordered sets of users
that include users with full channel degrees of freedom (i.e.,
without any subspace constraint). In [24], it was shown that the

optimal transmission strategy for a base station with a single
transmit antenna is always to transmit to the best user, but this
was shown not to be the case [2], in general, when the base sta-
tion has multiple transmit antennas. However, in certain cases,
especially when the SNR is very low the optimal transmission
strategy will be always to transmit to the best user as it will be
later shown, and in this case the SZF scheme with optimal user
ordering achieves the same sum-rate capacity of the SZFDPC
and DPC schemes.

B. SZF in the Low-SNR Regime

In [2], it was shown that in the low-SNR regime the ZFDPC
scheme has a similar performance as the channel inversion
scheme. It is, therefore, of interest to see if a similar relation
exists between the SZF and the SZFDPC transmission schemes.

Theorem 2: For any ordered set of users

Proof: From (13) and (17), the sum-rate capacity of the
SZFDPC scheme is

where are the eigenvalues of and is the so-
lution to

(30)

For sufficiently small, only the dominant eigenvalue in (30)
will be activated, and, therefore, the sum-rate capacity of the
SZFDPC scheme is given by

(31)

where

Now consider the sum-rate capacity of the SZF scheme given
in (25). The sum-rate capacity of the SZF scheme is first upper
bounded by the sum-rate capacity of the SZFDPC scheme. Fur-
thermore, from the optimization problem as given in (25), we
note that the sum-rate capacity of the SZF scheme is also lower
bounded by the capacity of the single-user channel with effec-
tive channel response for each .
This is very easily seen if we let each of the covariance matrices
be equal to zero, except for the th user. Hence

Therefore, we have that in the low-SNR regime the capacity of
the SZF scheme is lower bounded and upper bounded by (31).
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Theorem 3: In the low-SNR regime, the sum-rate capacity
of the SZF scheme with optimal user ordering is asymptotically
equal to the sum-rate capacity of the optimal DPC scheme

Proof: From Theorem 2, since the sum-rate capacities of
the SZF and SZFDPC schemes are asymptotically equal for any
ordered set , we can equivalently consider the sum-rate ca-
pacity of the SZFDPC scheme.

The sum-rate capacity of the optimal DPC scheme is given
by the sum-rate capacity of the dual MAC. In this case, given
the ordered set of users

Now similar to the proof in Theorem 2, in the low-SNR regime,
the capacity of the DPC scheme is given by the eigenvalue which
corresponds to the channel with the largest singular value. From
(31), given the ordered set of users , since for each

we have that the capacity of the SZFDPC scheme is upper
bounded by the capacity given by the channel with the maximal
eigenvalue. Therefore, by performing optimal user ordering,
where we do not have any subspace constraint for the first user
in we get the above result.

Therefore, we can conclude that in the low-SNR regime the
SZF transmission scheme is optimal when user ordering is per-
formed and is asymptotically equal to the SZFDPC scheme for
any set of ordered users. Furthermore, with optimal user or-
dering the sum-rate capacity of the SZFDPC scheme is asymp-
totically equal to the sum-rate capacity of the DPC scheme.

As mentioned earlier, as a linear transmission scheme, the
SZF method improves the achievable system throughput. This
will be shown later in the simulation results section where we
apply the SZF optimization algorithm. In a system satisfying the
transmit-receive antenna constraint, it is also possible to com-
pare the throughput of the SZF scheme with other linear trans-
mission schemes such as the BD scheme proposed in [21] where
precoding at the base station is performed for interference can-
cellation. In this case, we will show that complete cancellation
of the interuser interference at the base station is a suboptimal
transmission strategy, and by letting the users work under lim-
ited interference, an improved system throughput is achievable.

Another important issue is the ability of supporting mul-
tiple number of users simultaneously. In general, multiuser
precoding-based techniques where interference cancellation is
required at the base station are strongly limited by the antenna
system configuration, by the rank of each user’s channel, and
by the correlation between different users’ channels. In this
case, it will be shown that, in some cases, the SZF scheme can
simultaneously support an increased number of users while
having a gain in the system throughput.

V. DISCUSSION

In general, because of the suboptimality of the SZF optimiza-
tion algorithm proposed in the previous section, it might be pos-
sible to improve over the performance of this algorithm by con-
sidering different constrained optimization techniques where a
locally or globally optimum point could be found. However, the
sum-rate capacity optimization problem of the SZF scheme can
in general be written as

(32)

This form of the SZF optimization problem is similar to the stan-
dard form of the BC sum-rate capacity optimization problem,
except that in this case we have in addition a set of subspace
constraints given by (32). As mentioned above, by ignoring the
set of subspace constraints, this problem can be solved optimally
using the duality property between the BC and the MAC. The
set of subspace constraints, however, is linear in the optimiza-
tion matrix variables , and, therefore, it imposes a new
set of linear equalities.

We note that the above form of the SZF optimization problem
requires an increased number of optimization variables. Let

denote the number of column vectors

in as defined in Section III. Since each covariance ma-
trix must be positive semi-definite and Hermitian, each
can be generated from a corresponding length
vector in the following way.

For each ,
1) Generate the matrix from

.

2) Set .
Therefore, the actual number of optimization variables should
be less than what is given in the above general form, and espe-
cially for users ordered last in , the number of optimization
variables significantly decreases with .

VI. SIMULATION RESULTS

In this section, simulation results for the above proposed
transmission schemes are provided.

Dirty-Paper Coding-Based Transmission Schemes: In this
part of the simulation results, the SZFDPC transmission scheme
proposed in Section III is simulated, where we compare the pro-
posed transmission scheme with the other DPC-based transmis-
sion schemes. In particular, we consider the optimal DPC and
the QR or ZFDPC transmission schemes.

In Fig. 1, a plot of the average sum-rate capacity versus the
SNR is provided for a system with two users equipped with two
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Fig. 1. Dirty-paper coding-based schemes: Sum-rate capacity with arbitrary
user ordering, K = 2;M = 4; and N = N = 2.

receive antennas each and a base station with four transmit an-
tennas. In this case, the channels of all users are generated in-
dependently with independent and identically distributed (i.i.d.)
complex Gaussian elements . First, the performance
of the SZFDPC scheme is shown, and it is compared with the
ZFDPC scheme and the DPC (optimal noncooperative) trans-
mission scheme. Furthermore, in Fig. 1, we plot the sum-rate
capacity of the optimal cooperative transmission scheme. In this
case, we do not perform optimal user ordering, and by Monte-
Carlo simulation the average sum-rate capacity is computed.

As it can be seen from Fig. 1, and in accordance with
Theorem 1, the sum-rate capacity of the SZFDPC scheme
is asymptotically optimal in the high-SNR regime, where it
approaches the sum-rate capacities of the cooperative and
the DPC transmission schemes. In the ZFDPC transmission
scheme that is based on the QR decomposition of the channel,
each receive antenna is treated as an independent user, and as
given in Section II, DPC is performed after the multiplication
by a unitary precoding matrix. By comparing the ZFDPC and
the SZFDPC transmission schemes, we can see that the achiev-
able throughput is improved for all values of the SNR and the
improvement is greater for a medium range of SNR values.

In Fig. 2, a similar simulation as before is performed; how-
ever, in this case, we consider a system with two users but with
four receive antennas each and a base station equipped with
eight transmit antennas. Similar to the previous simulation, we
have the same conclusion regarding the asymptotic optimality
of the proposed scheme in the high-SNR regime. However, if
we compare the performance of the SZFDPC scheme with the
ZFDPC scheme, we can see that in this case the improvement
in the system throughput is even larger than before. This is an
intuitive result because of the fact that in the ZFDPC scheme dif-
ferent users’ antennas are treated as independent users. There-
fore, changing the antenna configuration in the system such
that we increase the degrees of freedom in each user’s channel
should improve the performance of the SZFDPC scheme rela-
tive to the ZFDPC scheme.

Fig. 2. Dirty-paper coding-based schemes: Sum-rate capacity with arbitrary
user ordering, K = 2;M = 8; and N = N = 4.

Fig. 3. Dirty-paper coding-based schemes: Sum-rate capacity with arbitrary
user ordering, K = 3;M = 9; and N = N = N = 3.

In Fig. 3, we perform a simulation with three users equipped
with three receive antennas each and a base station equipped
with nine transmit antennas. Similar conclusions can be also
made here, where we can see the improvement in the system
throughput when the SZFDPC is considered, and the asymptotic
optimality in the high-SNR regime.

In Fig. 4, we plot the sum-rate capacities of the SZFDPC and
the ZFDPC transmission schemes as a function of the number
of users for an SNR equal to 5 dB. In this case, we also fix
the number of receive antennas of each user to two and we let

. From Fig. 4, we can see the improvement in the
achievable throughput for all values of and notice the linear
increase in capacity with the number of users in the system.

SZF Versus Linear-Based Transmission Schemes: In the
following, the SZF transmission scheme from Section IV is
simulated, and a comparison of this scheme with the BD,
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Fig. 4. Dirty-paper coding-based schemes: Sum-rate capacity with arbitrary
user ordering, M = 2K , and N = 2 for all i.

the channel inversion, and the regularized channel inversion
schemes is made. We note here that, in both the channel inver-
sion and regularized channel inversion schemes, each user’s
receive antenna is treated as an independent user and in this
case, as given in (4), the total number of receive antennas
should be less or equal to the number of transmit antennas. In
general, optimal user ordering is performed for each channel
realization, and we consider the cases when complete interuser
interference cancellation can be performed and when only
partial interuser interference cancellation is possible.

In Fig. 5, a simulation of a communication system with two
users with two receive antennas each and a base station with four
transmit antennas is performed. In this case, it is also assumed
that the different users’ channels are generated independently
with i.i.d. Rayleigh fading elements. For the SZF method, we
apply the precoding algorithm given in Section IV where we
compute the covariance matrices of the different users and the
corresponding achievable rates. The achievable throughput is
plotted in Fig. 5. In the same figure, we can also see the sum-rate
capacity of the BD transmission scheme and the sum-rate ca-
pacity which corresponds to the channel inversion and regular-
ized channel inversion schemes. As mentioned above, in this
case for each channel realization we perform optimal user or-
dering.

As we can see from Fig. 5, with the SZF transmission scheme
and for all values of the SNR, the achievable system throughput
has improved compared to the BD scheme and the improve-
ment is much more significant compared to the channel inver-
sion scheme. In Fig. 5, we also plot the sum-rate capacity of
the DPC scheme. As we can see from the figure, and as given
in Theorem 3, the SZF transmission scheme is asymptotically
optimal in the low-SNR regime where it approaches the DPC
sum-rate capacity.

A similar simulation was performed for a system with three
users with two receive antennas each and a base station with
six transmit antennas. The results are shown in Fig. 6, and the
improvement over the BD and channel inversion schemes is

Fig. 5. Achievable throughput of the SZF transmission scheme,K = 2;M =

4; and N = N = 2.

Fig. 6. Achievable throughput of the SZF transmission scheme,K = 3;M =

6; and N = N = N = 2.

clear. Therefore, we can conclude that a complete interuser in-
terference cancellation is not necessary and an improved system
throughput can be achieved using the SZF method with only par-
tial interference cancellation.

In Fig. 7, we consider a system with an asymmetric number
of users’ receive antennas. We assume that there are two users
in the system. However, one of the users has two receive an-
tennas and the other has four receive antennas. The base sta-
tion is equipped with four transmit antennas. In this asymmetric
case when the channels are of full rank the BD transmission
scheme can not support the two users simultaneously. Using
the SZF scheme, the base station can support the two users si-
multaneously if the user with the two receive antennas is the
first user in . As it can be seen from Fig. 7, the achievable
system throughput is larger for all values of the SNR when we
compare the SZF scheme with the maximal achievable single
user throughput (optimized over the two users). Hence, with the
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Fig. 7. Achievable throughput of the SZF scheme with asymmetric number of
receive antennas, K = 2;M = 4; N = 2; and N = 4.

suboptimal precoding algorithm proposed in Section IV, it is
shown that in spite of the antenna system configuration the two
users can be supported simultaneously and an increased system
throughput can be achieved.

VII. CONCLUSION

In this paper, the multiuser broadcast channel with multiple
transmit antennas at the base station and multiple receive an-
tennas at each user was considered. Assuming full knowledge
of the channel state information at the transmitter and the dif-
ferent receivers, a new transmission scheme based on dirty-
paper coding and partial interuser interference cancellation was
proposed. In this transmission scheme, it was shown that in the
high-SNR regime and for any ordered set of users, the sum-
rate capacity is asymptotically equal to the optimal coopera-
tive channel sum-rate capacity. In the low-SNR regime, it was
shown that with optimal user ordering the proposed scheme is
optimal in the sense of achieving the sum-rate capacity of the
dirty-paper coding scheme. In addition, from simulation results,
the proposed technique achieves an improved throughput over
generalized zero-forcing dirty-paper coding for all values of the
SNR.

Because of current practicality issues, a linear transmission
scheme was also considered. In this transmission scheme, dirty-
paper coding is not implemented and only partial interuser inter-
ference cancellation is required. The sum-rate capacity of this
approach was characterized, and due to the complexity of the
optimal precoding solution a suboptimal optimization algorithm
was proposed.

Compared to other linear transmission schemes, such as
block-diagonalization and regularized channel inversion, it
was shown that the maximum achievable throughput of the
proposed transmission scheme is strictly larger and, in some
cases, where users’ asymmetries or channel correlations are
found, this scheme can also support a larger number of users
simultaneously in addition to the improvement in the achievable
throughput.

Because of the suboptimality of the proposed optimization
algorithm, it is of interest to find an improved solutions for the
broadcast channel sum-rate capacity optimization problem with
arbitrary linear constraints on the set of covariance matrices.
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