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Abstract—In this paper, we introduce a novel approach for
lip activity detection and speaker detection, using solely visual
information. The main idea in this work is to apply signal detection
algorithms to a simple and easily extracted feature from the mouth
region. We argue that the increased average value and standard
deviation of the number of pixels with low intensities that the mouth
region of a speaking person demonstrates can be used as visual cues
Jor detecting visual speech. We then proceed in deriving a statistical
algorithm that utilizes this fact for the efficient characterization of
visual speech and silence in video sequences. Furthermore, we
employ the lip activity detection method in order to determine the
active speaker(s) in a multi-person environment.
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I. INTRODUCTION

Speech analysis has been an area of extensive research in
recent years, demonstrating impressive growth and significant
applications. At first, only the audio information was being
exploited, however visual cues have been also incorporated,
providing supplementary information in the analysis process.

In this paper, we present a statistical approach for lip activity
detection and speaker detection in videos, based solely on
visual information. Lip activity detection can be thought of
as the visual counterpart of voice activity detection. Naturally,
lip activity can be directly related to visual speech, although
not all lip movements correspond to visual speech, yawning
and chewing being two such examples.

The proposed method aims to distinguish frames that depict
visual speech from those that depict visual silence. Further-
more, speaker detection is achieved by applying the lip activity
detection algorithm to every detected face of each video
frame. The main idea in our work is to apply signal detection
algorithms to a simple feature that is easily extracted from
the mouth region intensities, leading to a fast and robust
method. The proposed system exhibits a wide range of poten-
tial applications in areas such as human-computer interaction,
video indexing and multimedia retrieval. This paper is an
enriched version of the work presented in [4]. In this paper a
much more detailed and analytical description of the statistical
framework employed by the proposed algorithm is provided.
Moreover, the efficiency of the proposed algorithm is verified
by conducting more extensive experiments and by comparing
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it to a state of the art approach. Furthermore, an extension
of the proposed algorithm for the efficient detection of the
active speaker(s) in a multi-person environment is introduced
and tested in this paper.

The main research topic in the area of speech analysis using
visual information is automatic visual or audio-visual speech
recognition [5], [6], [7]. However, only a few works [9], [10]
address the same problem as in our work, i.e. characterizing
the frames of a video sequence as containing speaking persons
or not using only visual information.

In [8], a system that detects the user’s intent to speak
considering both the audio and visual information is proposed.
First, a frontal face is detected, and then the audio energy and
the shape of the speaker’s mouth are used to yield an indication
of speech activity. The system achieved a maximum correct
classification (of silence or speech visemes) equal to 70.27%.

A method for visual detection of silence sections is proposed
in [9]. The visual information consists in the time trajectory of
basic lip contour geometric parameters, namely the interolabial
width and height. These parameters are analyzed in order
to characterize the possible differences on visual patterns
between silence and non-silence sections for a given speaker,
leading to a dynamic model. The proposed method achieved
a correct silence detection of 80%, at a false silence detection
of 5%.

In [10], Principal Component Analysis (PCA) is applied on
the intensities and the first order intensity differences of the
pixels in the mouth region, that is derived in each frame using
PCA and template matching. The outcome of PCA is used as
the feature vector of the algorithm. A single Gaussian is used
to model feature vectors of the non—voice frames whereas a
mixture of two Gaussians is used to model the feature vectors
of voice frames. The parameters of the Gaussians are estimated
from feature vectors derived from training data. Once training
is completed, the speech/non-speech decision is taken by
evaluating the likelihood of the feature vector of each frame
for both distributions (voice/non—voice). In the experiments
reported in this paper, the method exhibits a frame error rate
(incorrect classification of the video frames) equal to 3.37%.

Concerning speaker detection and localization, several
methods try to address the problem using only audio infor-
mation, for instance, using microphone array processing to
estimate the direction of arrival from one or more sources
[12]. A number of methods proceed into integrating visual
information with audio information for the same task [13],
[14], [15]. In the vast majority of the speaker detection works,
the authors consider only video data where strictly one person
is speaking at a time; the algorithms have not been tested



on simultaneous speech cases. The method proposed in this
paper has been successfully tested in such simultaneous speech
cases.

II. MOTIVATION

Our method for lip activity detection is based on the sig-
nificant variability of the intensity values of the mouth region
in the case of a speaking person. The opening of the mouth
produces a radical increase in the number of mouth pixels with
low intensity values. This is due to the exposure of a part of
the interior of the mouth, which is usually in shade. Since the
pronunciation of the majority of phonemes involves an open
mouth, it is obvious that during visual speech, the number
of low intensity pixels is, in general, high. However, when a
person is speaking, the percentage of the oral cavity revealed is
related to the pronounced phoneme, and the pronunciation of
certain phonemes even involves closed lips. Hence, there is a
fluctuation in the number of low intensity pixels. On the other
hand, when there is no lip activity (i.e. no speech) the lips
are most probably closed and, therefore, there is no increase
in the low intensities of the mouth region and no fluctuation
of these intensities. We, thus, argue that the increase and the
fluctuation of the number of mouth region pixels exhibiting
low intensity values can indicate lip activity. This fact is used
in this work for the visual detection of speech.

We denote by z[n] the number of pixels of the mouth
region at the n-th video frame whose grayscale value is below
an intensity threshold 7. More specifically, if H,, (i), i =
0,...,255 is the grayscale histogram of the n-th frame then:

T
[n] = Hu(i) ey
=0

Thus, for a video sequence that consists of /N frames, we
create a discrete sequence x[n], n € [0, N — 1]. In order
to normalize the value of z[n] for different sizes of the
bounding box of the mouth region, we divide it with the
area (in pixels) of the bounding box that encloses the mouth.
The methodology for calculating the intensity threshold is
described in section III.

In Figure 1 we depict z[n] for a video sequence displaying a
person who is silent at first, and then is speaking for a number
of frames. It is obvious that z[n] obtains much higher values
when the person is speaking. Moreover, x[n] exhibits a large
deviation of its values in the speaking interval, due to the
movement of the lips that affect the visible area of the mouth
cavity. In the silent frames, the values of z[n] are much lower
(in average) and exhibit a small deviation from their mean
value. The proposed algorithm makes use of the increased
values and the large deviation of x[n], in the visual speech
intervals, in contrast to the low values and the small deviation
of the samples of z[n] in the silent intervals.

III. LIP ACTIVITY DETECTION ALGORITHM

Before proceeding with the detailed description of the
proposed algorithm, a short overview of the method will be
provided.

Prior to applying the proposed algorithm, we detect the face
in the video sequence and then assign at each frame a bounding
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Fig. 1. Plot of the number of low grayscale intensity pixels x[n] for certain
frames of a video sequence. The rectangle encompasses the frames where the
person is speaking.

box encompassing the mouth region. Naturally, the lip activity
detection system is prone to suffer from errors of the face and
mouth region detectors.

The face is detected using the method described in [16],
which is one of the most powerful and widely used face
detectors proposed in the literature. For the detection of the
mouth region within the detected face, the algorithm proposed
in [19] was used.

The lip activity detection system is based on statistical
algorithms, used in signal detection applications. The speaking
and non-speaking intervals are determined by applying on
x[n] an energy detector and an averager [17], using a sliding
window which moves frame-by-frame, spanning the whole
video sequence. The outcomes of the detectors are compared
to their respective thresholds in order to determine the presence
of lip activity in each window. The thresholds are computed
according to the Neyman-Pearson theorem for each video
sequence and depend on the variance of z[n] in the silent
frames. A detailed description of the algorithm is provided
below.

The first step of the algorithm is to compute the threshold
T in (1). Since video excerpts from different movies, TV
programs, or personal cameras are acquired in diverse lighting
conditions, we do not apply a global intensity threshold for all
videos, but a video-specific threshold. The intensity threshold
is calculated as half of the average intensity pq of the mouth
region in the first frame of the face video sequence. If, for
this value, the number «[0] of pixels whose intensity is below
T is zero, T is increased in small steps until z[0] obtains a
non-zero value. Once 7' is determined, z[n] is computed for
every frame n =0, ..., N — 1 using (1) and normalized by the
number of pixels of the mouth area.

A. Statistical framework

The aim of the proposed method is to decide between
two possible hypotheses: lip activity present versus no lip
activity. This hypothesis testing problem can be translated into
a problem of signal detection within noise that involves the
sequence z[n]. We consider as noise w[n| the fraction of z[n]
that corresponds to the area of the lips when the mouth is
closed, and as signal s[n] the contribution to the value of
z[n] of the area of the mouth interior that is revealed when a
person is speaking. Hence, in both hypotheses noise is present,



whereas when the person is speaking there is signal present as
well. Consequently, our hypotheses can be stated as follows:

Hy (no lip activity) : z[n] = w[n], n=0,..,N -1

H, (lip activity) : z[n] = s[n] +w[n], n=0,..,N -1

Both our signal s[n] and noise w[n] samples are obtained as
the sum of the number of pixels whose intensity is below T'
(see (1)). If H, (i) are assumed to be independent random
variables, we can assume, according to the central limit
theorem, that both s[n] and w([rn] follow Gaussian distributions.
Furthermore, we assume that both s[n] and w(n] are indepen-
dent for the various values of n and that the noise w[n] is zero
mean. Thus: w[n] ~ N(0,0?), s[n] ~ N(us,02). Therefore,
in order to discern between visual speech and silence, we
can apply detection theory principles for detecting a Gaussian
random signal in Gaussian noise. We have to note that in
reality the distribution of w[n] is not zero mean. However,
we can convert it to zero mean by estimating the mean value
of the noise samples, as will be presented in the following
subsection, and subtract it from w[n]. The above assumptions
are necessary in order to proceed in developing our statistical
framework, which is experimentally verified as efficient and
reliable.

We define the NN x 1 random vector x =
[[0], z[1], ..., x[N — 1]]T. The Neyman-Pearson theorem
states that in order to maximize the probability of signal
detection Pp for a given probability of false alarm Prpyg = A,
we decide for Hi, if the likelihood ratio L(x) is larger than
a threshold ~:

p(x; Hy)

where the threshold v is found from:
Pea= [ plxiHoldx =2 @
x:L(x)>~

and p(x; Hy), p(x; Hy) are the multivariate probability density
functions of x under the respective hypotheses. From our
modelling assumptions, x ~ N(0,0% - I) under H, and
x ~ N(ps-1,(02 + 0?) - I) under Hy, where 0 and 1 denote
the all-zero and all-one vectors respectively and I denotes the
identity matrix. By substituting these density functions in (2),
the likelihood ratio becomes:

N—-1
EEEL A [‘W 2 (a[n] - us)z}
L(x) = : e -
(2m02) % oxp [_W nz::() z [”]]
)

We then compute the log-likelihood ratio by taking the
logarithm of (4), and we incorporate the non-data terms (i.e.,
the terms of the sum that are not related to z[n]) in the
threshold. Thus, the following expression results:

N-1 N-1
1

1) = =7y a7 2 el =) gz 32 > o
(&)

By further processing of the above equation and incorporat-
ing its non-data terms in the threshold, the test statistic 7'(x)
is found:

=
T(®) = Nps - 5 ;x[n] +

2
O

N—1
. Z z[n]> > 4" (6)
20—

This test statistic is a linear combination of an averager:
N—-1
Ty(x) = (1/N) Y z[n] @)
n=0
which attempts to discriminate between the two hypotheses on
the basis of the sample mean, and an energy detector:

N—1
Tr(x) = Z 2%[n] 8)
n=0
which attempts to discriminate on the basis of the variance,
ie.:

T(x) = aT1(x) + bT5(x) )

In order to use (6) or, equivalently, (9) one needs to estimate
the variances o, o, of the noise and the signal as well as
the mean value of the signal us. Since such an estimation
is difficult to achieve, we have chosen to employ the two
detectors separately. In that way, as it will be shown below,
one nezeds to estimate only o, since the terms a = Npu, and
b= ;:;2 in (9) can be incorporated in the respective thresholds.

By applying these two detectors, we can detect lip activity
by exploiting the attributes that a speaking person demon-
strates. In order to determine the presence of lip activity, both
criteria — increased values and large variance of z[n] — have
to be satisfied. The two detectors are applied to a sliding
window, consisting of N frames, which moves frame-by-frame
spanning the whole video sequence. At each window, both
detectors are compared to their respective thresholds, v; and
72, which are computed according to the analysis that follows.
When the outcomes of both detectors exceed their respective
thresholds, i.e. when:

Ty (x) >y AND Ty(x) > v (10)

lip activity is detected.

The averager (7) is used to detect a DC level in the presence
of zero mean Gaussian noise. The detector compares the
sample mean to a threshold. The value of the threshold is found
by constraining Pr4. Being the sum of Gaussian random
variables z[n], T1(x) is also Gaussian. Furthermore, it can be
easily proven that, under hypothesis Hg, 7' (x) has mean equal
to zero, and variance equal to o?/N. Hence, the probability
of false alarm of the averager is given by:

_ ) _ N
Ppa = Pr{Ti(x) > 715 Ho} = Q( 02/N)
where () is the right tail probability of a Gaussian random
variable. Hence, the threshold can be found from:

Y

o2
m= NQ (Pra)

where Q! is the inverse right-tail probability.

12)



The energy detector (8) is used to detect a random Gaussian
signal in zero mean Gaussian noise. The detector computes
the energy of the data samples and compares it to a threshold.
If the signal is present, the data energy is large. Again, the
value of the threshold is found by constraining Pr4. The
probability of false alarm can be found by noting that under
hypothesis Hg, T5(x)/o? is distributed according to a chi-
squared distribution. The right-tail probability function of a
chi-squared random variable is expressed as Q2 (=) [18].
Therefore, the probability of false alarm is

Pra = Pr{T:(x) > 72 Ho}
Th(x) _ 7:
= Prizir > SiH}=Qg () (13

Thus, the threshold is given by
Yo = UZQ;% (Pra)

However, we have not completely resolved the problem yet,
since in our case the noise standard deviation ¢, which is
involved in threshold determination (12), (14), and the noise
mean, required to convert the noise into a zero mean process,
are not known a priori.

(14)

B. Estimation of noise statistics

In the preceding analysis we have assumed a zero mean
Gaussian noise w[n]. However, as already mentioned, w[n] is
not zero mean. Thus, we have to estimate the actual mean
value p of the noise and subtract it from the noise samples.
Furthermore, we have concluded that the noise standard devia-
tion o is a prerequisite for the computation of the thresholds y;
and . In order to find the actual values of the noise statistics,
we apply an estimation algorithm based on the detection theory
principles we have presented.

The noise statistics estimation algorithm focuses on distin-
guishing efficiently the signal and noise samples (hypothesis
H;) from the noise only samples (hypothesis H), and then
calculating the actual noise mean p and standard deviation o.
This is achieved iteratively, by applying the averager and the
energy detector to our data sequence, each time with refined
estimates of the noise statistics, until they converge to their
final values. This approach, referred to as an estimate and
plug detector [17].

The algorithm first computes initial estimates of p and
o, in order to apply the detectors. The initial estimates are
obtained by evaluating the sample mean and sample variance
of the smaller 10% of z[n], assuming that these values belong
to the noise samples. Thereafter, we apply the detectors to
our data set, employing the computed noise statistics. The
detectors distinguish the noise only samples from the signal
and noise samples and new noise statistics are calculated from
the detected noise samples. This process is repeated until the
difference between two consecutive estimates of ¢ is smaller
than 1072,

C. Speaker Detection

As already mentioned, using the lip activity detection
method we have presented, we can detect the active speakers

in multi-speaker videos, solely from visual information. In
order to do so, we apply the face detector so as to identify
the persons that are present at each frame. Subsequently,
the mouth detector is applied on each detected face. The
outcome of the lip activity detection algorithm, for each mouth
region, determines the active speakers. The proposed speaker
detection, has been successfully tested in cases where more
than one speakers are talking simultaneously. Such cases have
not been considered in the experimental evaluation of other
approaches presented in the literature.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of the lip activity
detection system, we have tested it in 49 short video sequences
consisting of a total of 20429 frames, displaying individuals
that exhibit speaking and silent intervals. In particular, our
test data consist of 8915 speaking and 11514 silent frames,
from 13 individuals. The video sequences are recorded from
news programs and talk shows. In general, the selection
of video sequences for the creation of our test data was
performed so as to ensure that the lips and their deformations
are visible. The faces displayed in these videos were chosen
to be predominantly frontal, with dimensions ranging from
100 x 145 to 195 x 315 pixels. In order to determine the ground
truth, each frame has been marked after visual inspection as
corresponding to visual speech or silence.

In our experiments, we have constrained Pp4 to 1% and
we have applied the detectors to a data window consisting
of 5 frames using the thresholds derived from (12) and (14).
The window was moving frame-by-frame, spanning the whole
data sequence. The decision obtained for each window position
characterized its central frame.

The probabilities of detection Pp (the ratio of the correctly
detected visual speech frames to the total number of visual
speech frames) and false alarm Pr 4 (the ratio of the silence
frames that were mis-detected as speech ones, to the total
number of silence frames) were used as performance indicators
for our system. The proposed system achieved very good
results, namely Pp equal to 98.93%, and Pr 4 equal to 2.16%.
Most of the false alarms were produced by the speaker’s
mouth opening, either to breathe or to establish his intent to
speak. The fact that the achieved Pp4 is very close to the
theoretically imposed value (1%), as well as the overall very
good performance of the method, justify that the assumptions
that have been adopted for the theoretical derivations are, in
general, valid. In Figure 2, we depict the lip activity detection
algorithm outcomes for two video sequences.

In another set of experiments, a state-of-the-art voice ac-
tivity detection algorithm proposed in [10] was compared
against the proposed approach. A brief description of the
algorithm, that will be mentioned from now on as PCA-GMM,
is provided in Section I. The algorithm was tested on the
same data as the proposed algorithm. The outcome of the
face and mouth detectors which were used in the proposed
method (scaled by a factor of 1.5), was also used to define
the ROI where PCA-GMM is operating. The parameter values
that were proposed in [10] as being the ones that provide
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Fig. 2. Lip activity detection. Dark values: Visual speech frames, bright
values: silence frames. The dashed rectangle encloses the visual speeech
frames as defined in the ground truth.

the best performance, were adopted in our experiments. More
specifically, a 12-dimensional feature vector, resulting from
the application of PCA to intensity and differences of intensity
data was used, whereas a mixture of two Gaussians was used
to model the voice data and a single Gaussian to model the
non-voice data. In the training phase, 20% of the total number
of video frames was used in order to train the voice and non—
voice Gaussian models. The rest of the frames were used in
order to test the performance of the PCA-GMM. The achieved
probabilities of detection and false alarms over the test data,
were Pp = 80.75% and Ppa = 15.32% respectively, proving
that the proposed algorithm performs significantly better than
the PCA-GMM approach.

In a final set of experiments, the performance of the pro-
posed algorithm in the task of speaker detection was evaluated
on video clips depicting discussions, from news programs
and TV talk shows, where two or three persons are present,
and where (sometimes) more than one persons are speaking
simultaneously. More specifically, we have tested our method
in 14 short video sequences, for a total of 3452 frames.
The total probability of error, defined as the ratio of the
mis-detected frames (namely falsely determining the active
speaker(s); detecting a speaker when no one is speaking; not
detecting a speaker when someone is speaking) to the total
number of frames, was used as performance indicator. Our
system produced a very low probability of error equal to
1.16%, thus showing that the proposed method achieves very
good active speaker detection accuracy.

V. CONCLUSIONS

A novel method for detecting lip activity and determining
the active speakers in video sequences has been presented in
this paper. The method uses the luminance information of the
mouth region. The fact that the algorithm is based on a simple
feature, that is easy to extract, is, in our opinion, a positive
aspect of the algorithm that contributes to its robustness, since
it does not require a complex feature extraction procedure (e.g.
tracking of lip contours as in [9]) that might be prone to errors.
Moreover, the adopted statistical signal detection approach
and the fact that the statistics involved in this approach are
evaluated from the data in a robust and adaptive way (without
fixed parameters or thresholds) further increase the robustness
of the algorithm. The proposed system has been tested in

a number of video sequences with very good performance.
Furthermore, we have applied our lip activity detection method
in order to identify the active speakers in sequences having
more than one speaker.

Naturally, the proposed system, despite being sufficiently
robust to lighting variations, face size and orientation varia-
tions, cannot operate correctly under all conditions. Extremely
poor lighting conditions and faces that deviate significantly
from a frontal pose or are too far apart from the camera to
provide sufficient information for the mouth area, would cause
the algorithm to perform poorly.
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