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ABSTRACT
Uncertain data streams, where data is incomplete, imprecise, and
even misleading, have been observed in many environments. Feed-
ing such data streams to existing stream systems produces results
of unknown quality, which is of paramount concern to monitoring
applications. In this paper, we present the PODS system that sup-
ports stream processing for uncertain data naturally captured using
continuous random variables. PODS employs a unique data model
that is flexible and allows efficient computation. Built on this model,
we develop evaluation techniques for complex relational operators,
i.e., aggregates and joins, by exploring advanced statistical theory
and approximation. Evaluation results show that our techniques can
achieve high performance while satisfying accuracy requirements,
and significantly outperform a state-of-the-art sampling method. A
case study further shows that our techniques can enable a tornado
detection system (for the first time) to produce detection results at
stream speed and with much improved quality.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

General Terms
Algorithms, Design, Performance, Theory

1. INTRODUCTION
Uncertain data streams, where data is incomplete, imprecise, and

even misleading, have been observed in a variety of environments,
such as sensor networks measuring temperature and light [9, 14], ra-
dio frequency identification (RFID) networks [17, 29], GPS systems
[18], and weather radar networks [20]. As these data streams are col-
lected by monitoring applications, they often undergo sophisticated
query processing to derive useful high-level information. However,
feeding uncertain data streams directly to existing stream systems
can produce results of unknown quality. This issue is of paramount
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concern to monitoring applications that trigger actions based on the
derived information.

Our work is particularly motivated by two emerging applications.
The first is object tracking and monitoring using RFID readers [29].
RFID data streams are highly noisy due to the sensitivity of sensing
to the orientation of reading and environmental factors such as metal
objects and interference. When such streams are used to detect, for
instance, safety violations regarding flammable objects, the quality
of the alerts raised is a critical issue to the end application.

The second application is tornado detection [20], where mete-
orological data streams are collected from a radar network and
processed in a real-time stream system. Data uncertainty can arise
from environmental noise, device noise, and inaccuracies of vari-
ous radar components. Such uncertainty can propagate through the
entire stream system, making tornado detection results error-prone.
Given the potential social impact of such a system, it is absolutely
vital that the system capture the quality of its detection results.

In this paper, we address uncertain data stream processing for
data that is naturally modeled using continuous random variables,
such as many types of sensor data and financial data. Given such
data, our work supports relational query processing under uncer-
tainty. For each relational operator, we aim to fully characterize
the distribution of each tuple produced from uncertain data. Such
distributions, called result tuple distributions, allow the visualization
of data uncertainty in any step of the processing. They also allow
the stream system to feed the tuples output from one operator as
input to another and characterize the results of further processing—
evidently, having only statistics such as mean and variance for the
tuples output from the previous operator is not enough to do so.

Challenges. Uncertain data stream processing as described above
raises two challenges: First, it is computationally difficult to obtain
result distributions when input tuples are modeled using continuous
random variables. Such computation often involves multivariate
integrals or requires new algorithms to be designed if an integral-
based solution does not exist. Second, such computation must be
performed for high-volume data streams. While approximation is
a common approach to improving efficiency, the technique must
be able to achieve a small bounded error while meeting stringent
performance requirements.

Despite a flurry of recent work on uncertain data management,
the two challenges stated above have not been adequately addressed.
Most probabilistic databases [2, 3, 6, 24, 30] and stream systems [7,
16, 19] model tuples using discrete random variables and evaluate
queries using the possible worlds semantics. The continuous nature
of our data, however, precludes the use of these techniques as the
possible values of a continuous random variable are infinite and
cannot be enumerated.

The state-of-the-art techniques for continuous random variables



employ either multivariate integrals or Monte Carlo simulation. The
integral-based approach to aggregation [6] performs n-1 integrals
to compute the sum of n tuples. While the result is exact, its com-
putation is too slow for stream processing, as we shall show later
in this paper. The Monte Carlo approach [12, 15, 25] samples from
the input tuple distributions and computes the result tuple distribu-
tion from the samples. For real-world data, however, it is difficult,
sometimes impossible, to know right the number of samples needed
to guarantee both accuracy and efficiency for complex relational
operations, as we also show in our performance study.

Our work presented in this paper originates from our belief that
for a significant fragment of relational algebra, faster and more
accurate algorithms are possible. Then these algorithms can be used
to improve existing Monte Carlo systems when queries involve the
set of common relational operations that these algorithms support.

Scope and contributions. In this paper, we present a PrObabilis-
tic Data Stream system, which we call PODS, that supports relational
processing of uncertain data streams modeled using continuous ran-
dom variables. The architectural design of PODS, as described in
[11], is to extend the box-arrow paradigm for stream processing
[4] such that tuples carry distributions to describe uncertainty and
relational operators transform these distributions while processing
tuples. This paper, in particular, focuses on the data model and pro-
cessing algorithms for two complex operators, aggregates and joins.
1 These operators are crucial to our target applications but have
not been sufficiently addressed. Further in the streaming context,
our goal is to perform such complex operations at high speed, e.g.,
thousands of tuples per second or higher. More specifically, our
contributions include:

Data model. The foundation of PODS is a unique data model
based on Gaussian Mixture distributions. This model is highly flexi-
ble as it subsumes Gaussian distributions and can model arbitrary
real-world distributions [21]. It further allows efficient computation
by exploiting Gaussian properties and powerful statistical methods
for continuous variables. Most importantly, this model allows a
closed-form solution for a range of relational operations, among
which this paper focuses on aggregates and joins, and the result
distributions of these operations still obey Gaussian Mixture distri-
butions. Our model stands in contrast to those based on histograms
[12] and weighted particles [18], which indicate the use of samples
in computation.

Aggregates. Our data model empowers us to design novel al-
gorithms for aggregates, such as sum and avg, that are grounded
in statistical theory. Our first algorithm obtains exact result dis-
tributions of aggregates while completely eliminating the use of
integrals (in contrast to using multiple integrals in [6]). However,
the formulas for result distributions produced by the exact algorithm
grow exponentially in the number of aggregated tuples. Hence, we
provide two approximation methods to simplify the formulas for
result distributions. These techniques, when combined into a hybrid
solution, can satisfy arbitrary application accuracy requirements
while achieving high speed in stream processing.

Joins. Our data model also enables efficient, accurate evalua-
tion techniques for joins. We propose two types of joins to suit
different application semantics. The first type models equi-joins on
continuous-valued uncertain attributes as a join of an input stream
and a probabilistic view. PODS supports such joins with efficient
regression techniques to construct the view and given the view, a
closed-form solution in Gaussian Mixture Models to represent result
distributions. The second (traditional) type of join pairs tuples from

1We note that our model and algorithms can be generally applied to both
probabilistic databases and data stream systems where uncertain attributes
are modeled by continuous random variables.

two inputs for inequality comparison and is modeled by a cross-
product followed by a selection. PODS supports such joins with
exact result distributions and methods for pruning tuples with low
existence probabilities.

Evaluation. We perform a thorough evaluation of our techniques
for joins and aggregates, and compare them with sampling-based
methods ([12] for aggregates and a home-grown method for joins).
Results of this study demonstrate our advantages in both accuracy
and speed over the sampling-based methods, due to the use of our
data model and techniques for continuous random variables.

We further perform a case study of tornado detection by feeding
a trace collected from a real tornadic event into the PODS system.
Our results show that fitting the data to the PODS model and using
its processing techniques to characterize uncertainty enables the
tornado detection algorithm (for the first time) to produce detection
results at stream speed with much improved quality.

2. MOTIVATING APPLICATIONS
In this section, we present two motivating applications.

2.1 Object Tracking and Monitoring
In the first application, radio frequency identification (RFID)

readers are used to monitor a large area such as a warehouse, a
retail store, or a library. RFID data is known to be highly noisy
[17, 29] due to environment factors such as occluding metal objects
and interference. Moreover, mobile RFID readers may read objects
from arbitrary angles, hence particularly susceptible to variable read
rates. Recent work such as [29] provides techniques to transform
raw RFID readings into a stream of location tuples. Each location
tuple contains (Time, Tag_id, Xp, Yp), where Xp and Yp denote
the inferred location of the object and are probabilistic in nature.

Despite the data uncertainty, monitoring applications want to
run queries on the location stream to derive high-level information.
Query 1 shows an example in fire monitoring: “trigger an alert when
a flammable object is exposed to a high temperature.” This query
takes two inputs: a location stream as described above for flammable
objects, and a temperature stream from sensors in the same area
with attributes (Time, Sensor_id, X, Y, Temp). The query joins the
location stream with the temperature stream based on the location.
The query is written as if the location of an object were precise.

Q1: Select Rstream(R.Tag_id, R.X, R.Y, T.Temp)
From FlammableObject [Now] As R,

Temperature [Partition By sensor_id
Rows 1] As T

Where T.Temp > 60 °C and
R.X = T.X and R.Y = T.Y

Query 2 detects violations of a shipping policy by the Food and
Drug Administration (FDA): “food with and without peanuts cannot
be located closely in the supply chain.” This query takes two location
streams and checks for the proximity of two types of food.

Q2: Select Rstream(R.Tag_id, R.X, R.Y, S.Tag_id)
From PeanutFreeFood [Range 3 minutes] As R,

PeanutFood [Range 3 minutes] As S
Where |R.X - S.X| < 3 ft and |R.Y - S.Y| < 3 ft

2.2 Hazardous Weather Monitoring
The CASA Research Center is developing weather radar networks

to detect hazardous weather events such as tornados and storms [20].
A four-radar testbed has been deployed in southwestern Oklahoma,
a region that receives an average of four tornado warnings and 53
thunderstorm warnings each year [20].

A CASA radar node rotates to scan. It sends around 2000 pulses
per second, alternating between 54 high frequency pulses and 40
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Figure 1: Simplified stream processing in the CASA radar system

low frequency ones. The raw data stream is partitioned into high and
low frequency stream segments accordingly, and further partitioned
based on the distance to the radar. Overall, the raw data is generated
at 175 Mb per second. Such data is highly noisy due to electronic
device noise, instability of transmit frequency, quality issues of the
system clock and the antenna, and finally environmental noise.

Such high-volume noisy raw data is fed into a stream processing
system for real-time weather event detection. The current CASA
system addresses both data volume and noise issues by means of
taking the average. Fig. 1 shows a simplified diagram of the system.
The top box depicts the generation of wind velocity from raw data.
This module applies a Fast Fourier Transform (FFT) to each stream
segment for signal processing. It then outputs a single velocity
value for each stream segment and averages the values for adjacent
high and low frequency stream segments. The reflectivity analysis,
shown in the lower part of Fig. 1, uses similar average operations.
While such average operations can reduce data volume and gain a
smoothing effect, the resulting data is still highly noisy, causing low
quality detection results and long running time.

In our case study (detailed in §6.3), we explore the use of distribu-
tions, rather than simple average values, to separate useful data from
noise while controlling the data volume. The output of our data
analysis contains tuple streams with distributions (Time, Azimuth,
Distance, Velocityp or Re f lectivityp). We also study the transfor-
mation of these distributions through CASA operations, e.g., the
frequently used aggregation operations. By doing so, we expect to
gain better tornado detection results yet with lower running time.

3. THE PODS DATA MODEL
The foundation of the PODS system is a data model based on Gaus-

sian Mixture distributions that can capture a variety of uncertainties
for continuous-valued attributes and further allow fast relational
processing. We describe the PODS data model in this section.

3.1 Gaussian Mixture Models (GMMs)
Gaussian Mixture Models (or distributions), abbreviated as GMMs,

are traditionally used for data clustering and density estimation. As
an instance of probability mixture models, a GMM describes a
probability distribution using a convex combination of Gaussian
distributions.

Definition 1 A Gaussian Mixture Model for a continuous random
variable X is a mixture of m Gaussian variables X1, X2, · · · , Xm.
The probability density function (pdf) of X is:

fX(x) =
m

∑
i=1

pi fXi (x),

fXi (x) =
1

σi
√

2π
e
− (x−µi )

2

2σ2
i (Xi ∼ N(µi, σ2

i )),

where 0 ≤ pi ≤ 1, ∑m
i=1 pi = 1, and each mixture component is a

Gaussian distribution with mean µi and variance σ2
i .

Definition 2 A multivariate Gaussian Mixture Model for a random
vector X naturally follows from the definition of multivariate Gaus-
sian distributions:

fX(x) =
m

∑
i=1

pi fXi (x),

fXi (x) =
1

(2π)k/2|Σi|1/2 e−
1
2 (x−µi)

T Σ−1
i (x−µi) (Xi ∼ N(µi, Σi)),

where k is the size of the random vector, and each mixture component
is a k-variate Gaussian distribution with mean µi and covariance
matrix Σi.

The PODS system adopts Gaussian Mixture Models due to several
key benefits of these models. First, GMMs are a natural extension
of Gaussian distributions which are widely used in scientific sensing
and financial applications. They can be easily accepted by end users
such as the CASA scientists with whom we are working.

Second, theoretical results have shown that GMMs can approxi-
mate any continuous distribution arbitrarily well [21]. Hence, they
are suitable for modeling complex real-world distributions. In the
tornado detection application, a detected bimodal distribution of
velocity at the boundary between a positive velocity area and a
negative velocity area is shown in Fig. 2(a). In contrast, Fig. 2(b)
shows a velocity distribution in a positive velocity area, where one
Gaussian component captures the high concentration of velocity and
the other captures the noise widely spread across the entire spectrum.
In the RFID application, Fig. 2(c) shows the inferred location distri-
bution of a recently moved object [29]. Here, the bivariate, bimodal
GMM represents the possibilities of the old and new locations using
two mixture components; each component is a bivariate Gaussian
modeling the joint distribution of x and y locations.

The third benefit of GMMs is efficient computation based on
Gaussian properties and advanced statistical theory. First, the mean
and variance of GMMs can be computed directly from those of the
mixture components:

E[X] =
m

∑
i=1

piE[Xi] (1)

Var[X] =
m

∑
i=1

pi(Var[Xi] + (E[Xi])2)− (E[X])2 (2)

Furthermore, the cumulative distribution function (cdf) of a GMM
with a single variable has an analytic expression based on a known
error function. Values of the error function are precomputed in any
numerical library. Hence, computing

∫ b
a fX(x)dx = FX(b)-FX(a)

using the cdf incurs little cost. Other computational benefits of
GMMs, such as the characteristic functions, product distributions,
and linear transformation, are described in the later relevant sections.

Gaussian Mixture Models can be generated from real-world data
in a variety of ways. Recent studies [18, 29] have employed graphi-
cal models to infer distributions from noisy raw data. Since these
distributions are often represented using weighted samples, GMMs
can be generated from these samples using standard density estima-
tion or function fitting methods. Time series techniques can also
be used to generate GMMs from temporally correlated input data
. In our case study of tornado detection, a Fast Fourier Transform
(FFT) is used to translate a correlated data sequence in the time
domain to an uncorrelated sequence in the frequency domain. The
latter is essentially a discrete distribution that can be used to fit a
GMM, as will be described in §6.3. (See [11] for a discussion of
other techniques that can be employed to generate GMMs.)



(a) CASA: Velocity distribution after FFT in
Area(430, 281.9°) in a tornadic event

(b) CASA: Velocity distribution after FFT in
Area(430, 282.3°) in a tornadic event

(c) RFID: Location distribution of a recently
moved object detected using RFID readers

Figure 2: Gaussian Mixture Models for real-world data collected from our target applications

3.2 PODS Data Model
We now present the complete PODS data model for relational

processing. An uncertain data stream is an infinite sequence of
tuples that conform to the schema Ad ∪Ap. The attributes in Ad

are deterministic attributes, such as the tuple id and the fixed x-y
location of a sensor. The attributes in Ap are continuous-valued
uncertain attributes, such as the temperature of a location and the
wind velocity in an area. In each tuple, the attributes in Ap are
modeled by a vector of continuous random variables X. If the
schema further has that the attributes in Ap can be partitioned into
independent attributes, Ap

i , and groups of correlated attributes, Ap
j ,

we can model Ap
i in a tuple using a Gaussian Mixture distribution,

denoted by fi(xi), and model Ap
j in the tuple using a multivariate

Gaussian Mixture distribution, denoted by f j(xj). Then the tuple
distribution can be written as:

fX(x) = ∏
i

fi(xi) ∏
j

f j(xj),

which is a multivariate Gaussian Mixture distribution.
In some scenarios, tuples in a stream can be correlated. Inter-

tuple correlations can be modeled using joint tuple distributions or
lineage [3]. Our current model does not include such correlations
for two reasons: First, while raw data is often temporally corre-
lated, the methods that our system employs to transform raw data to
tuples with distributions, such as graphical models and FFT, have al-
ready taken such correlations into account. Second, given stringent
performance requirements stream systems may sometimes have to
sacrifice inter-tuple correlations. For instance, the CASA tornado
detection system ignores spatial correlations in any data processing
before the final tornado detection, and existing probabilistic stream
systems such as [18] ignore inter-tuple correlations, all for perfor-
mance reasons. A thorough treatment of tuple correlations in stream
processing is a focus of our future work.

4. AGGREGATION OF UNCERTAIN TUPLES
We first address aggregation of uncertain tuples under the PODS

data model. In this work, we focus on sum and avg because they
are crucial to our target applications but have not been sufficiently
addressed for continuous random variables in the literature.2

Aggregates such as sum and avg are known to be hard problems
in probabilistic databases that employ discrete random variables to
model data uncertainty and the possible worlds semantics (PWS) for

2Our technique for min and max is similar to that in [6], hence omitted in
this paper.
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Figure 3: Aggregation in the discrete setting (using PWS) and in con-
tinuous setting (using integration).

query processing [8]. For instance, computing the distribution of the
average of n discrete random variables may require the enumeration
of an exponential number of possible worlds, as depicted in Fig. 3(a).
A recent technique that employs Markov sequences to compute sum
and avg [19] has a time complexity O(nD3) where D is the size
of the domain of each random variable, which becomes inefficient
for large domains. Aggregates of continuous random variables
have related complexities but are naturally modeled by multivariate
integrals. Fig. 3(b) illustrates an average of four continuous random
variables, Y = 1

4 (X1 + · · ·+ X4). The probability that Y is in the
range of U is defined by the multivariate integral in the figure. This
definition when applied to the discrete setting is consistent with
PWS: in each possible world, we take a value from X1, a value from
X2, and so on, and then add up the probabilities of those possible
worlds where the average is in the range of U.

Given that multivariate integration is a prohibitively expensive
operation, the state of the art integral-based approach [6] integrates
two continuous random variables at a time, resulting in the use of
n-1 integrals to aggregate n variables. As we shall show in §4.1, the
performance of this technique is not suitable for stream processing.

The sampling-based approach [12, 25] generates a fixed number
of samples from the distribution of each input tuple, computes aggre-
gate values from these samples, and constructs the result distribution
using the aggregate values. Despite its generality, its approach has
two main drawbacks: First, it is unknown how many samples are
needed a priori. Using a small number of samples trades off accuracy
for performance; using a large number has the opposite problem.
Second, the sampling-based approach does not provide knowledge



of the true result distribution and hence cannot adapt to varying data
characteristics and accuracy requirements.

Our work departs from existing approaches by exploring ad-
vanced statistical theory to obtain exact result distributions while
completely eliminating the use of integrals. However, the formulas
for result distributions that the exact algorithm produces grow ex-
ponentially in the number of aggregated tuples. Hence, we provide
two approximation techniques to simplify the formulas for result
distributions while satisfying accuracy requirements and achieving
high efficiency.

4.1 A Basic Algorithm
We first introduce characteristic functions and describe a basic

algorithm to derive the result distribution for sum of a set of tuples.
The modification to avg is straightforward and hence omitted in
the following discussion.

In probability theory, characteristic functions (CFs) are used to
“characterize” distributions. Specifically, the CF of a random vari-
able U is defined as (chapter 2, [5]):

ΦU(t) = E[eiUt], (3)

where E denotes the expected value and i is the complex number√
−1. The pdf of U then can be obtained by the inverse transforma-

tion of the CF:

fU(x) =
1

2π

∫ +∞

−∞
e−itxΦU(t)dt. (4)

Now let us consider sum(A), with the attribute A in n tuples
modeled using random variables X1, ..., Xn. Let U = X1 + X2 +
... + Xn. The CF of U is:

ΦU(t) = EeiUt = Eei(X1+X2+...+Xn)t

= ΦX1(t)ΦX2(t)...ΦXn(t) (5)

That is, the CF of U can be written as the product of the CFs of the
input tuples based on the independence assumption. This suggests a
simple algorithm for sum: (1) Get the CF of each input tuple and
take the product of these functions according to Eq. 5. (2) For a
given value x, apply the inverse transformation at x to yield fU(x)
according to Eq. 4. In particular, we call the inverse transformation
in the second step a parameterized integral because it takes an
argument x.

In the context of Gaussian Mixture Models (GMMs), the CFs can
be expressed in closed form. For example, for a Gaussian mixture
of two components:

f (x) = p1
1

σ1
√

2π
e
− (x−µ1)2

2σ2
1 + p2

1
σ2
√

2π
e
− (x−µ2)2

2σ2
2 ,

its CF can be written directly as:

ΦX(t) = p1eiµ1t− 1
2 σ2

1 t2
+ p2eiµ2t− 1

2 σ2
2 t2

.

Thus, Step 1 of the above algorithm does not involve any integration.
The only integral required is the one for inverse transformation in
Step 2. This analysis holds for all common distributions whose char-
acteristic functions are known. This gives a boost in performance
compared to the two-variable convolution method, which requires
n-1 parameterized integrals [6].

The main drawback of this approach is that the formula of the
result distribution involves an unresolved parameterized integral. To
get sufficient knowledge of the result distribution (e.g., calculating
its mean and variance), one needs to repeat the inverse transforma-
tion for a large number of points. To understand the cost of such

repeated integration, we used a numerical solution called adap-
tive quadrature [23] to compute integrals. The task is to average
over 10 tuples and compute the pdf values for 20 points. Even
with manual optimizations, the throughput obtained is less than 200
tuples/second. This indicates that this technique is inefficient for
our data stream applications. Moreover, it is unknown if the result
distribution is a GMM.

4.2 Exact Derivation of Result Distributions
The discussion in the previous section motivated us to seek a

solution without using numerical integration. For GMMs, it turns
out that we can obtain the closed-form solution to the inverse trans-
formation. In addition, when input tuples are Gaussian mixtures and
independent, the result of sum over those tuples is also a Gaussian
mixture that can be directly obtained from the input tuples.

Theorem 4.1 Let each Xi, (i = 1..n) be a mixture of im compo-
nents identified by the parameters (pij , µij , σij ), (j = 1..im). The
result distribution for U = ∑n

i=1 Xi is a Gaussian mixture of
∏n

i=1 im components, each of which corresponds to a unique combi-
nation that takes one component from each input Gaussian mixture
{ij}, (i = 1..n, j ∈ {1..im}) and is identified by (pk, µk, σk):

pk =
n

∏
i=1

pij ; µk =
n

∑
i=1

µij ; σk =

√
n

∑
i=1

σ2
ij

. (6)

The theorem can be proved by mathematical manipulation of the
inverse transformation formula. Due to space constraints, proofs
of all the theorems presented in this paper are omitted. The result
subsumes the well-known linear property of Gaussian distributions.
However, in the context of GMMs, we are not aware of any state-of-
the-art books on mixture models [21, 22] that show this result.

This technique gives an exact solution so the accuracy is guaran-
teed. The computation involved is to enumerate and compute all
components of the result Gaussian mixture. Let N be the number of
input tuples and M be the average number of mixture components in
each input tuple. The result formula size is then O(MN). Comput-
ing one component of the result formula requires multiplication and
addition of N input tuple parameters as shown in Eq. 6; thus, the
time complexity is O(NMN). As such, the result formula grows
exponentially in the number of aggregated tuples, raising a scalabil-
ity issue with this technique. We next describe two approximation
techniques to address this issue.

4.3 Approximation using Sort-Group
Our first approximation technique simplifies the result distribution

formula while satisfying the accuracy requirement. This is important
for the cases such as when we are summing 10 tuples and the
result distribution has more than 1000 components. The resulting
approximate distribution, with fewer components, is easier for users
to read and incurs lower cost in subsequent processing.

Our algorithm, referred to as sort-group, is based on the idea that
we can group adjacent Gaussian peaks in the exact result formula
and approximate each group using a single Gaussian component.
Algorithm 1, sketched below, searches for a GMM with K compo-
nents that approximates the exact result distribution while meeting
the application accuracy requirement. (An example of simplified
approximate distributions is shown in Figure 7(c) in §6.) There are
four main steps in Algorithm 1 as follows.

The algorithm first generates the result GMM based on Theorem
4.1 in Step 1. The result GMM is exact but has an exponential
number of Gaussian mixture components. The algorithm then sorts
these components by their means in Step 2. Next, it creates K groups
of consecutive components in Step 3, normalizes the components



in each group into a proper Gaussian mixture distribution, so that
mean and variance can be computed, and then approximates each
group of components using a single Gaussian with the computed
mean and variance. The search starts with K set to a small number
and increases it until the accuracy is satisfied. In the last step, in
particular, the algorithm checks if the current K-component GMM
is close enough to the exact distribution. The point-based Variation
Distance (VD), similar in idea to the VD in [12], is used as the
distance metric for two continuous distributions D1(x) and D2(x):

VD =
1
2 ∑

x
|D1(x)− D2(x)|∆x,

where the values of x are evenly spaced in the range where D1(x)
and D2(x) have most of their density mass, and ∆x is the distance
between two consecutive x points. The constant 1

2 ensures that
VD is in [0,1]. For efficiency, we use only a small number of
points to compute the VD between the exact distribution and an
approximation distribution. It is experimentally shown that when
the sort-group algorithm determines the value of K using a 30-
point VD, the resulting K-component GMM successfully meets
the application accuracy requirement, which we validated using a
1000-point precise VD.

Algorithm 1 Sketch of the sort-group algorithm for approximation
1: Compute all T components of the result distribution based on

Theorem 4.1. Each component is a Gaussian N(µi, σi) with a
coefficient pi.

2: Sort the components in increasing order of µi.
3: Start with K = 1. Group all T components into K new Gaussian

components: each of them replaces b T
K c original components,

except the last that may replace less.
4: Calculate the VD against the exact distribution. If the K-

component mixture satisfies a given accuracy constraint, return
it; otherwise, increase K and go to step 3.

We next consider the time complexity of this algorithm. Since
Step 1 is the same as the algorithm for exact derivation, its cost is
O(NMN). In Step 2, sorting has a complexity of O(TlogT), with
T = MN , which yields O(NMN). In Steps 3 and 4, grouping
enumerates the MN components K times and performs VD calcu-
lation, which adds a cost O(KMN). As this analysis shows, the
sort-group algorithm results in a simplified formula of size K, but
still has an exponential time cost O((N + K)MN). In fact, it incurs
a somewhat higher cost than exact derivation (due to the costs of
Steps 2-4) to obtain a simplified distribution with bounded error.

4.4 Approximation using CF Fitting
The previous approximation algorithm becomes inefficient when

the number of tuples to aggregate is large. We next propose to
approximate the exact result distribution by performing function
fitting in the Characteristic Function (CF) space. This is based on
the property that the CF of sum can be compactly represented as
a product of N individual CFs (Eq. 5), rather than an exponential
number of components (Eq. 6). Our goal is to find some Gaussian
mixture distribution whose CF best fits this product function.

We devise an approximation algorithm, named Characteristic
Function (CF) fitting. which is sketched in Algorithm 2. The
algorithm searches for the right number of components by starting
with one component Gaussian mixture, running the least squares
fitting. If the fitting residual is below a threshold, it returns the fitted
parameters; otherwise it increases the number of components and
repeats fitting. Note that the objective function for fitting contains

Figure 4: Example characteristic function for sum of 10 tuples.

both real and imaginary parts since the CFs are complex functions
and both parts contribute to the pdf via inverse transformation.

We further employ a suite of optimizations based on statistical
theory to improve performance and accuracy. The first optimization
regards the choice of an appropriate range in the domain of the CF,
Φsum(t), for fitting. Statistical theory shows that Φ(t) approaches
0 fast as t moves from the center 0. Figure 4 shows an example CF
for sum of 10 tuples, with both the real and imaginary parts of the
CF. Given this observation, we set the range for fitting to be a small
region centered around 0, which directly affects the fitting quality.

The second optimization concerns the initial guess of the param-
eters of a K-component Gaussian mixture. Due to the oscillating
behavior of the CF, the fitting result is quite sensitive to the initial
guess of its parameters and can get stuck in local optima. Finding a
good initial guess for fitting can be as hard as fitting itself. Luckily,
Theorem 4.1 provides insight into choosing such an initial guess.
Specifically, we precompute a small number of result components
whose means are widely separated, capturing different regions of the
result distribution. We group these components into a k-component
mixture, and then use the parameters of this mixture as the initial
guess for fitting.

Finally, the fitting residual ε needs to be chosen to guarantee
the VD requirement. We have analyzed the connection between ε
and VD through mathematical manipulation of the inverse trans-
formation of CF: Given our choice of other parameters such as the
range of CF fitting, our analysis shows that ε ≤ 6 · 10−5 ·VD2 is
approximate bound for the fitted distribution to meet the application
VD requirement, and this bound is insensitive to the characteristics
of input distributions.

Algorithm 2 Sketch of the CF fitting algorithm for approximation
1: Obtain the expression of the CF of the sum, Φsum(t) =

∏n
i=1 ΦXi (t). This is a complex function.

2: Take P points {ti}, (i = 1..P) from the domain of Φsum(t),
and compute {Φsum(ti)}, (i = 1..P).

3: Start with K = 1. Consider a Gaussian mixture of K compo-
nents. The corresponding CF is Φ(t).

4: Run least squares fitting to minimize:
∑P

i=1
[
(Re(Φ(ti)−Φsum(ti)))2 + (Im(Φ(ti)−Φsum(ti)))2].

5: Get the fitting residual. If this is smaller than a threshold ε,
return the fitted Gaussian mixture. Otherwise, increase K and
go back to step 3.

The complexity of this algorithm is dominated by two steps. In
Step 2, computing P points, each of which is a product of N complex
terms with M components, has a cost O(PMN). For Step 4, the
complexity of the least squares fitting algorithm we use is O(p3),
where p is the number of parameters [31], and p = 3k in our
case. Since fitting is repeated K times, its total cost is approximately
O(K4). While this result is only approximate (due to the difficulty of
bounding the fitting cost precisely), it has eliminated the exponential
cost as in sort-group. However, K4 is a non-trivial cost: when the
result distribution has a complex shape, we need many Gaussian
components (e.g., K=10) to approximate it. On the other hand, we



observe empirically that when the number of tuples N is large, the
result distribution becomes smoother so we can use a small value of
K. Therefore, we expect CF fitting to be efficient when N is large.

Relation to the Central Limit Theorem. The Central Limit
Theorem (CLT) is a special case of our algorithm. It states that the
sum of a sufficiently large number of independent random variables
is normally distributed [5]. This gives an asymptotic result but our
algorithm dynamically determines when this result can apply. For
example, the CASA system sometimes requires a small number of
stream segments to be averaged, for which our algorithm determines
that the CLT does not apply, whereas when the number of tuples is
sufficiently large (e.g., greater than 20), the result distribution starts
to become a smooth single Gaussian.

4.5 Hybrid Solution
The discussions above suggest a hybrid solution to exploit the

advantages of the three algorithms: When the number of tuples
is small, we use exact derivation since it is fast and its formula is
not complex. When this number is larger but enumerating all the
components is still possible, we use sort-group to have an approx-
imate formula of reduced size. After that, we switch to CF fitting.
This way, we exploit the advantage of each algorithm in the range
where it performs the best. We also observe that the switching points
among the three mainly depend on the number of tuples and less so
on other data characteristics, as shown in §6. This implies that once
the hybrid solution is configured with those switching points, it can
be applied to different workloads.

Our hybrid solution also supports the use of windows. It can be
directly applied to stream systems using tumbling windows such
as in CASA [20] and XStream [13]. When sliding windows are
used, we employ incremental computation. First, generating the
mixture formulas for exact derivation and sort-group (Eq. 6) can
be incremental by factoring out the old tuples and adding the new
ones. When the window size is large and the CLT is known to apply,
the computation can also be implemented in an incremental fashion.
We report on the efficiency of the resulting hybrid solution in §6.

5. JOINS OF UNCERTAIN TUPLES
In this section we consider efficient evaluation of joins under the

PODS data model. The evaluation strategies of joins vary signif-
icantly with the nature of the join attributes. Recent research on
probabilistic databases [2, 3, 19, 30] has mostly focused on join
attributes modeled by discrete random variables. Since it is possible
to enumerate the values of a discrete random variable, existing work
supports such joins based on the possible worlds semantics (PWS):
in every possible world, each random variable takes a specific value
so a join can proceed just as in a traditional database. However,
when data uncertainty is captured using continuous random vari-
ables, join methods based on PWS hardly work because we cannot
enumerate the possible values of a continuous random variable—the
number of such possible values is infinite and each possible value
has probability 0.

Below, we propose two types of joins of continuous random
attributes to suit different application semantics. The first type
deals with the complexities associated with equijoins on attributes
modeled by continuous random variables. Our system employs a
probabilistic view to facilitate such joins and offers a closed-form
solution in Gaussian Mixture Models (GMMs) to represent join
result distributions. The other (traditional) type of join pairs tuples
from two inputs for inequality comparison and is modeled by a
cross-product followed by a selection [25]. Our system supports
such joins with exact result distributions in GMMs and efficient
methods for pruning tuples with low existence probabilities.

5.1 Joins using Probabilistic Views
Let us first consider Query 1 in §2.1. Given each object location,

it retrieves the corresponding temperature for this location. Most
notably, the two common join attributes (X, Y) in the object location
stream are uncertain and modeled by continuous random variables
(in contrast, the join attributes in the temperature stream are the
fixed sensor locations and hence deterministic). This kind of join
is inherently difficult to support for two reasons. First, given a
location tuple i, it is not possible to enumerate the values of (Xi, Yi)
modeled by continuous random variables. Second, since each value
of (Xi, Yi) has probability 0, any join result that pairs a specific value
of the location tuple and a temperature tuple also has probability 0.
These issues are inherent in equijoins involving continuous random
variables. For instance, if we change the (X, Y) attributes in the
temperature stream to also be probabilistic attributes (e.g., returned
by a mobile sensor), the equijoin between the location stream and
the temperature stream on (X, Y) still has the above two issues.

To attain proper result distributions for equijoins involving con-
tinuous random variables, we introduce the notion of a probabilis-
tic view. In the example of Query 1, a probabilistic view on the
temperature stream is defined to be the distribution of Temp given
(x, y), denoted by pTemp(t|x, y). Then, for each tuple i in the loca-
tion stream, the process of iterating all possible values of (Xi, Yi)
and retrieving the corresponding temperature distribution can be
compactly represented by fXi ,Yi (x, y)pTemp(t|x, y), yielding a joint
distribution fXi ,Yi ,Temp(x, y, t). Below we give formal definitions
of such equi-joins using a probabilistic view.

Definition 3 We denote a stream by S(A∗, B∗, S̄), where A is a
vector of attributes that can be deterministic or probabilistic (de-
noted by A∗ = A or Ap), B is another vector of deterministic or
probabilistic attributes that are related to attributes in A, and S̄ is
a vector for the rest of the attributes. The probabilistic view of B
as a function of A, denoted by VB|A(S), is a distribution of B for a
given value of A, characterized by pB(b|A = a).

Following the definition, we call the B attributes that the view re-
turns the view attributes, and say that they view-depend on the A
attributes. In the temperature stream, the view attribute is Temp
and it view-depends on the attributes X and Y. Given specific argu-
ments, e.g., (X=1, Y=2), the view gives a distribution of temperature
pTemp(t|X = 1, Y = 2).

Given an equi-join query, the suitable probabilistic view can be
recognized by the compiler based on the following observation: As
in traditional databases, equi-joins only include one copy of the join
attributes, say R.(X, Y), in the output; the other copy of the join
attributes, S.(X, Y), is used only for comparison but suppressed
from output. This implies a probabilistic view for the other input, S,
and the view is defined for the S attributes included in the output,
e.g., S.Temp, dependent on the join attributes.

Definition 4 Given two independent streams R(Ap, R̄) and S(A∗,
B∗, S̄) with the probabilistic view VB|A(S), an equi-join of R and
S on A using the probabilistic view, denoted by R 1

A
v S, is a join

of R and VB|A(S): For any tuple i in R, denoted by (Ai, R̄i), the
join combines the tuple with the view VB|A(S) and outputs a tuple
(Ai, R̄i, B) with the joint distribution defined as:

fAi ,R̄i ,B(a, r̄, b) ≡ fAi ,R̄i
(a, r̄) · pB(b|S.A = a).

In this definition, the join preserves each tuple in R and extends
it with the attributes in B from S. It is evident that this defini-
tion gives a proper joint distribution for the result tuple because
fAi ,R̄i ,B(a, r̄, b) integrates to 1 over a, r̄, b.
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Figure 5: Compare equi-joins in the discrete domain (using PWS) and
in the continuous domain (using a probabilistic view).

Given Definition 4, an important observation is that our equijoins
of continuous random variables using a probabilistic view are con-
sistent with the possible worlds semantics for equijoins of discrete
random variables. Fig. 5 illustrates the connection: In Fig. 5(a),
T1 shows a discrete distribution of an object location, T2 shows
discrete distributions of temperature given two specific locations,
and T3 shows a join result for each possible world comprising a
unique (location, temperature) pair. Fig. 5(b) shows the continuous
version of these tables. In particular, the probabilistic view serves
the same purpose as T2, i.e., a distribution of temperature for each
location. Then the joint distribution of (Loc, Temp) is equivalent
to the distribution of all possible worlds computed by the product
of the location distribution and the temperature distribution given a
specific location.

Closed-form result distributions in GMMs. Given the above
definitions, we seek a closed-form solution to join result distributions
in our data model. Recall that the PODS data model describes
uncertain attributes using (multivariate) Gaussian Mixture Models
(GMMs). Next, we propose a special model for the probabilistic
view, which we call order-1 linear regression, that allows us to
obtain join result distributions also in GMMs. While the assumption
of order-1 linearity may seem restrictive, it actually can be applied
to the view at either a global or local scale, allowing implementation
choices for both accuracy and efficiency.

Our theorem below offers join result distributions in GMMs when
both the join attributes A and the view attributes B are deterministic
in the input S on which the view VB|A(S) is defined. It also offers
a foundation for extending our solution to other types of attributes
used to define the view.

Theorem 5.1 Given R(Ap, R̄), S(A, B, S̄) with the view VB|A(S),
and R 1

A
v S, assume order-1 linear regression to model the view:

B = Aβ + E (7)

where A, B, and E are row vectors, β is a parameter matrix, and
E is normally distributed with mean 0 and covariance matrix ΣE.
For each tuple i in R, if (Ai, R̄i) follows a GMM, a mixture of m
components identified by the parameters (pc, µc, Σc), (c = 1..m),
then based on Definition 4, the join of tuple i and VB|A(S) yields a
distribution of (Ai, R̄i, B) which also follows a GMM, a mixture of
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Figure 6: Query plan for the join using a probabilistic view (Q1).

m components with parameters (pc, µ′c, Σ′c), (c = 1..m):

µ′c = (µc, µc β̄), β̄ =
(

β
0

)
, Σ′c =

(
Σc Σc β̄

β̄
TΣc ΣE + β̄

TΣc β̄

)
.

Theorem 5.1 fully characterizes each join result distribution with all
its parameters. In practice, β and ΣE are unknown. They can be esti-
mated using regression over the tuples in S, denoted by (Aj, Bj, S̄j),
(j = 1 · · · n). The least squares estimates of β and ΣE are:

β = (ÃTÃ)−1ÃTB̃ (8)

ΣE = B̃T(In − Ã(ÃTÃ)−1ÃT)B̃/(n− k), (9)

where Ã = (AT
1 , · · · , AT

n )T , B̃ = (BT
1 , · · · , BT

n )T , In is the iden-
tity matrix of size n, and k is the size of any vector Ai.

We next consider other types of attributes used to define the
view; that is, at least one of the join and view attributes in the view
input S is probabilistic. Many smoothing techniques are available
for creating the view. In our work, we opt to sample from the
distributions of those probabilistic attributes, collect the samples
into a new input S’, and apply Theorem 5.1 to the original input
R and the new view input S’. This method allows us to obtain a
closed-form solution to the join result distribution and guarantees
that it is also in the form of GMMs. Note that sampling here is on a
Gaussian Mixture distribution, hence easy and fast, and the samples
are used to build an order-1 regression model. This is different from
a sampling approach that constructs the full join result distribution
directly from the samples—the lack of a model-based view and
the need to sample over the joint space makes this approach less
desirable, as we shall show in §6.2.

Evaluation Techniques. The query plan for Query 1 with a
join and a probabilistic view is depicted in Fig. 6. The plan first
applies the query-specified windows to the inputs: A Now window
feeds each location tuple as the left input to the join. An update
window, [Partition By sensor_id Rows k], contains the most recent k
temperature tuples from each sensor; the probabilistic view Vtemp|x,y
is maintained over the update window and is the right input to the
join. The join extends each location tuple with the temperature
presented by the view, and returns a joint distribution.

Given the closed-form result distribution, the main implementa-
tion issue is the view construction using regression. While recent
research has applied regression to build models and views for sensor
data [14, 10], our work differs by exploring the tradeoffs of applying
order-1 linear regression at a global versus local scale.

Global regression applies regression equations (Eq. 8 and Eq.
9) to all S tuples in the current update window to construct the
view. As proposed in recent work [14], the view can be maintained
incrementally by updating intermediate matrices for β, e.g., ÃTÃ
and ÃTB̃ in Eq. 8. Then, when an R tuple arrives, the view is
refreshed by completing the matrix operations for β and ΣE. A



fundamental limitation of global regression is that the order-1 linear
assumption may not hold over the entire view. For Query 1, the
temperature may not be a linear function of the location but rather,
say, a quadratic function. In that case, global regression may result
in severe error when its assumption fails to hold.

Local regression is motivated by the statistical theory that a
smooth function can be approximated by a low degree polynomial,
e.g., a linear function, in the neighborhood of any point. We design
a local regression method as follows: Given each R tuple following
a GMM, use the means and the variances of the components of the
GMM to define a sufficient local regression region (LRR). As a
simple example, the LRR for an R tuple that follows N(µ, σ) can
be [µ−mσ, µ + mσ] with m ≥ 2. Then, retrieve the subset of S
tuples that reside in the LRR and apply regression to these tuples.

A key advantage of this method is that it does not require the
assumption of global linearity, hence allowing more accurate view
construction. However, a very small set of tuples in the LRR may
not have enough data points to achieve the accuracy (which is a
data problem, not a model problem). When this problem occurs,
we can collect more data points by adjusting the LRR appropriately
(as shown experimentally in §6.2). Computation-wise, regression is
applied to a small set of tuples, hence with a low cost.

5.2 Joins using the Cross-Product
Depending on the application, a join can also be modeled using

a cross-product followed by a selection [25]—in this case, only
inequality predicates are allowed to avoid join results of zero prob-
ability. An example is Query 2 in §2.1: it compares every pair of
objects for proximity in location. Our system supports such joins
with result distributions in GMMs. Our system can further filter the
results of the cross-product that have low existence probabilities.
Since computing the tuple existence probability based on the join
condition requires an expensive integral, we devise linear transfor-
mation for GMMs to reduce the dimensionality of integration and
hence improve efficiency. Due to space constraints, details of these
techniques are omitted here, but can be found in [28].

6. PERFORMANCE EVALUATION
We now evaluate our techniques for joins and aggregates, and

compare them to sampling-based methods ([12] for aggregates and
our own method for joins) to demonstrate our performance benefits.
We further perform a case study in a real-world tornado detection
application [20], and show that our techniques have enabled better
detection results and stream speed computation.

6.1 Evaluation of Aggregation
We first use synthetic streams with controlled properties to eval-

uate our techniques for aggregates. Our data generator produces a
tuple stream with one continuous uncertain attribute. Each tuple is
modeled by a mixture of two Gaussian components. The means of
the two components are uniformly sampled from [0, 5] and [5, 50]
respectively to model complex real-world distributions from asym-
metric to bimodal (the resulting workload is much harder than those
using Gaussian distributions only such as in [25]). The standard
deviation of each Gaussian component is within [0.5, 1] and the
coefficient is uniform from [0, 1].

We evaluated avg over the above tuple stream. The windows
used can be tumbling (default) or sliding, and the sizes are measured
by the number of tuples N. The accuracy metric is the variation
distance (VD) defined in §4.3. The default accuracy requirement is
VD ≤ 0.1. Throughput numbers were obtained from a server using
a 3Ghz dual-core xeon processor with 1GB memory for use in Java.

Expt 1: Compare our algorithms. We first compare the three

algorithms, exact derivation, sort-group for approximation, and
CF fitting for approximation, that constitute our hybrid solution.
We varied the window size N, since it directly affects the result
distribution and the computation needed.

Fig. 7(a) shows the throughput results. As expected, the through-
put of exact derivation and sort-group is high when N is small, e.g.,
up to 10, but deteriorates quickly afterwards because the exact result
formulas generated grow exponentially in N. Sort-group has an
increased cost to simplify these result formulas. In contrast, CF
fitting works well for large numbers of N, e.g., after 10. This is due
to the smoother result distributions in this range, hence easier to fit,
and the one-time fitting cost being amortized over more tuples.

Fig. 7(b) shows that most algorithms satisfy the requirement of
VD ≤ 0.1. This is because the approximation algorithms compare
with the true distributions through either direct VD comparison or
fitting with a small residual. We observe that the hardest range is 5
to 10 tuples, where the result distributions are complex and require
a mixture of many components to fit. An example of the true and
fitted distributions for 5 tuples is shown in Fig. 7(c). From 15 tuples
onwards, the result distributions become smoother with fewer peaks.
CF fitting accuracy is low for less than 10 tuples since we limited
the number of components in fitting to gain some performance.

We further evaluated our algorithms under different data char-
acteristics, e.g., different ranges of means and variances. In all
cases, we observe the same trends for both accuracy and throughput,
and the crossing points among the three algorithms stay the same.
We also note that our workload is already hard by involving an
asymmetric or bimodal distribution in each tuple. If most distribu-
tions are Gaussians instead, sort-group and CF fitting both improve
performance but with a similar crossing point.

The above results suggest the configuration for the hybrid so-
lution. When the number of tuples N is smaller than 5, we use
exact derivation. For the range of [5, 10], we use the sort-group
algorithm. After that, we switch to CF fitting. In addition, when
N is large enough (e.g. > 20), the result distributions are mostly
a smooth Gaussian. These distributions can be computed directly
using the Central Limit Theorem (CLT). Hence, we can use CLT as
an optimization when N ≥ 30 (e.g., in Expt 3 below).

Expt 2: Compare to histogram-based sampling. Next, we
compare our hybrid solution with the histogram based sampling
algorithm [12]. Given N tuples, this algorithm (1) generates k · µ
samples for each tuple, (2) performs aggregation over them to get
k · µ result samples, and (3) sorts the result samples and builds a
histogram with k buckets and µ samples for each bucket. Since we
found the accuracy of this algorithm to be more sensitive to k, we
varied k among 30, 100, and 150 while fixing µ to 50.

Figs. 7(d) and 7(e) show the results. Our hybrid algorithm outper-
forms all settings of the histogram algorithm in both throughput and
accuracy. For accuracy, only the histogram with k = 150 ensures
VD ≤ 0.1. The other two violate this in the “hard” range of 5 to 15
tuples (hence their throughput numbers are omitted). These results
confirm the advantages of our algorithm over sampling since we can
adapt to the accuracy requirement while maximizing the throughput.

Expt 3: Vary the VD requirement. To further study our adap-
tivity to accuracy requirements, we varied VD from 0.05 to 0.2. We
used sliding windows with the size N gradually increasing from 5
to 50, so we can examine different ranges of the hybrid solution.
The window slides by 10 tuples or N, whichever is smaller. We also
made the histogram algorithm incremental by maintaining necessary
samples from the previous window. Fig. 7(f) shows the throughput
results (when the VD requirement is met). Our algorithm is shown
to outperform the histogram algorithm for all values of VD. More-
over, we can achieve better throughput under a relaxed condition.
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Figure 7: Experimental results for aggregation using our algorithms and histogram-based sampling H(k) (with µ=50)

Similar results are observed for tumbling windows and different
slide sizes and hence omitted here.

6.2 Evaluation of Joins
We next evaluate our join techniques. We focus on the equi-joins

between R=(Ap) and S=(A, B∗), where B can be deterministic or
probabilistic. In our discussion below, we first consider B being
deterministic and then summarize similar results observed when B is
probabilistic. Besides our join technique based on the probabilistic
view, we also develop a sampling technique that constructs the full
join result distribution directly from samples, without using a model-
based view or our closed form solution to the join result distribution.
We compare these techniques in both accuracy and throughput.

Histogram-based sampling. For each R tuple, this method takes
samples from the distribution of R.Ap. It then attempts to extend
each sample a for R.Ap with a sample b for S.B (as the join). To do
so, the method searches all S tuples in the update window for the
two S tuples whose S.A values are closest to the given sample a. It
then applies linear interpolation to the S.B values in these two tuples,
with added random noise to facilitate later histogram construction, to
obtain a sample b. Finally it uses all the samples (a, b) to construct
an equi-depth 2-dimensional histogram as an approximate distribu-
tion for each join result (Ap, Bp). The histogram setting H(k, µ)
depends on the number of buckets per dimension, k, and the number
of samples per bucket, µ. To build a 2-dimensional histogram for
each join result, we create k2µ samples for the attribute Ap of each
R tuple, resulting in k2µ samples for the each join result (Ap, Bp).

In our experiments, the R stream is an object location stream from
an RFID inference system [29] where each tuple has a Gaussian
distribution (using a mixture distribution will not incur more cost
given our closed-form solution). The S stream is produced by our
temperature simulator, which generates tuples by adding random
noise to the underlying function between temperature and location.
This function can be linear or quadratic in this study. The query-

specified update window size (UW) on S is 1, i.e., containing the
most recent temperature reading from each sensor. R and S tuples
arrive at the same rate. Throughput measures the number of R tuples
pipelined through the join.

Expt 4: Sampling versus regression. We compare the sampling
method with our join method using global or local regression for
view construction. We first generate the temperature stream by as-
suming that temperature is a linear function of location with added
noise. The local regression region (LRR) is set to be 18. As seen
in Fig. 8(a), the sampling method produces results far from the
true result distributions (VD > 0.7) while regression methods are
much more accurate (VD < 0.1). This is because the interpolation-
based sampling only takes two points into consideration, thus is
more sensitive to the temperature reading error. In contrast, our
regression-based view uses more points to better estimate the under-
lying function and the random noise. The VD of sampling improves
as µ increases, e.g., from H(10,10) to H(10,50), because it uses more
samples to construct the histogram. However, the VD worsens when
k increases, e.g., from H(10,50) to H(30,50). This is because when k
is too large, the area of each bucket is very small, and the samples in
each bucket mostly fit the noise added during interpolation. While
it is possible to keep increasing µ, Fig. 8(b) shows that the sampling
method is already very slow due to the use of a large number of
samples: the throughput of H(10,10) is 37 tuples/sec and that of
H(10,50) is 4. On the other hand, our global regression gains a
throughput of 1547 and local regression gains 44843, outperforming
sampling by 2-4 orders of magnitude.

Expt 5: Global versus local regression. We next use a quadratic
function to generate the temperature stream and compare global
versus local regression. Since the sampling method performs poorly
again, we omit its results here. Since local regression is sensitive
to the number of data points available, we vary its local regression
region LRR in a wide range (which does not affect global regression).
As Fig. 8(c) shows, global regression has poor accuracy since its
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Figure 8: Results of joins using sampling H(k, µ), global regression (Global R.), and local
regression (Local R.).

(a) Current CASA system (m/s).

(b) PODS with distribution-based analysis (m/s).

Figure 9: Radial velocity maps of a true tor-
nadic region from CASA and PODS.

global linearity assumption is not true any more. The VD of local
regression (UW=1) first improves as the increased region gives more
points for regression. Then it degrades because the region is too
large to meet the local linearity assumption—the local regression is
becoming more like global regression. A further optimization for
local regression is to enlarge the update window UW, e.g., using
the most recent 5 readings from each sensor. The rationale behind
this is that the underlying function usually changes slowly, and
using several old tuples from the past few seconds will not add
much stale information. Fig. 8(c) shows such improved VD with
UW=5 and 10. Fig. 8(d) shows that increasing the LRR reduces
the throughput as the regression uses more points. Despite that,
local regression outperforms global regression by a wide margin. In
practice, if we choose a reasonable setting, e.g., LRR=6 and UW=5,
local regression can gain both high accuracy and efficiency.

In another set of experiments, we generated the stream S=(A, Bp)
where the attribute B is probabilistic. As stated in §5, we sample
each S tuple on the attribute B, collect all the samples into a new
input S′, handle the rest as if S′ has a deterministic attribute B. We
made similar observations about the advantages of our join method
over sampling and the tradeoffs between global and local regression.

6.3 Case Study: Tornado Detection
We now demonstrate the effectiveness of capturing uncertainty

using distributions in a real-world tornado detection system [20].
We first modified the velocity analysis module in Fig. 1 to generate
velocity distributions in GMMs. In the FFT module, the current sys-
tem takes a weighted average from the discrete FFT distribution fF.
Instead, we apply a model-based analysis: Step 1 Strength Filter.
If the radar signal strength is below a threshold, we output zero and
skip Step 2. Step 2 GMM Fitting. Create a Gaussian distribution
from the mean and variance of fF. Return the distribution for output
if it passes the goodness test against fF, for both the Gaussian shape

Table 1: Result of a real tonadic dataset of 947s from 84 scans.
Analysis Time Detection Time False Positives

CASA 182.1 s 4486 s 2137
Step1 180.06 s 640 s 1125
Step3 170.78 s 956 s 1650
Step1+3 176.01 s 441 s 313
Step1+2+3 (PODS) 581.9 s 392 s 9

and high concentration around the mean. If the goodness test fails,
fit a mixture of two Gaussians from fF and remove any component
with a large variance as noise. Step 3 Smoothing. We average the
distributions of high and low frequency stream segments and across
neighboring regions. For avg over GMMs, we apply the techniques
in §4.2 to compute the result distribution. Since the current tornado
detection algorithm does not take distributions as input, we feed the
mean of each result distribution to the detection algorithm.

Our case study used a real tornadic dataset collected in Okla-
homa on May 8, 2007, containing raw data of 84 radar scans in
947 seconds. As true velocity changes gradually in space and the
tornado detection algorithm expects smooth input, we first exam-
ine the spatial smoothness of velocity. The comparison between
Fig. 9(a) and 9(b) shows that our techniques yield much smoother
velocity maps. Specifically, the Strength Filter removes most color-
ful dots (i.e., noise) produced from the regions with weak signals
(indicating the lack of interesting weather events); the GMM Fitting
smoothes data by removing noise in the regions with strong signals;
the Smoothing step finally smoothes data across regions, which is
especially important for the boundaries between weak-signal regions
and strong-signal regions.

We measure the analysis speed, detection speed and detection
result quality. To explore the effect of each step, we show the
breakdown of these measurements in Table 1. As shown in rows
1-3, both Step 1 and Step 3 can significantly reduce the detection
time because data is smoother, but have only a limited effect on



false positives. We further combine Step 1 and 3 as shown in row 4,
resulting in further reduction of detection time and false positives.
While tornado detection can now be performed at stream speed,
the remaining 313 false positives still result in a poor quality of
detection results. When we turn on Step 2 for model fitting and
model-based analysis, the number of false positives drops to 9 across
all 84 scans as shown in row 5. The reason for this remarkable effect
is that Step 2 removes noise in the regions with strong radar signals
on which the detection algorithm focuses. Although the analysis
time increases due to model fitting, given pipeline parallelism, the
overall system can still run at stream speed since each of the analysis
phase and the detection phase is faster than the radar sensing speed.
As such, our model fitting and model analysis approach is shown to
provide high-quality detection results while enabling stream-speed
data analysis and tornado detection.

7. RELATED WORK
Previous sections have discussed closely related work. Below, we

survey several broader areas.
Probabilistic stream processing has gained research attention

very recently. Existing work [7, 16, 19] adopts the finite and discrete
tuple model as in probabilistic databases. As stated previously,
most of the techniques proposed for discrete variables cannot be
applied to problems with continuous variables. Furthermore, most
of these techniques compute the mean or a few higher moments
of result distributions [7, 16]. In contrast, PODS computes the full
result distribution that enables subsequent operators to compute their
result distributions as well as visualization in scientific applications.

Models and views of sensor data. Recent work on sensor net-
works [9, 14] builds statistical models to capture correlations among
attributes. Given a query, such models enable reduced costs of data
acquisition and communication. FunctionDB [27] transforms dis-
crete sensor observations into continuous functions and supports
querying over these functions. More relevant to our work, in partic-
ular, our equi-join technique, is the work that supports views over
uncertain data and uses inference to evaluate queries defined on a
view [10, 18]. In contrast, our work uses a closed-form solution to
derive join result distributions once the view is constructed, hence
gaining much higher throughput than the inference-based approach.

Probabilistic databases with continuous uncertainty. Two re-
cent workshop papers [1, 26] consider the extension of probabilistic
databases with continuous-valued attributes. While they mainly
present the motivation or initial design, they made similar arguments
as in our paper for a suitable model for continuous random variables
and the need to compute distributions, not just a few moments.

8. CONCLUSIONS
In this paper, we presented the PODS system for uncertain data

stream processing, in particular, its unique data model based on
GMMs and advanced techniques for aggregates and joins under the
model. These techniques are grounded in statistical theory to ensure
correctness, and also amenable to approximation and optimization
for improved performance. Our techniques further produce result
distributions in GMMs, hence confirming the practicality of our data
model. Our results show that PODS outperforms sampling methods
in accuracy and speed in stream processing. A case study further
reveals that PODS can improve a real tornado detection system with
better quality of results and stream-speed processing.

In the future, we plan to extend our work in a few directions
including the support of a broader set of relational operators, query
optimization, inter-tuple correlations using advanced techniques
such as lineage, and a hybrid system that explore the combination
of both discrete and continuous random variables.
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