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Abstract—This paper considers a large margin discriminative
semi-Markov model (LMSMM) for phonetic recognition. The
hidden Markov model (HMM) framework that is often used for
phonetic recognition assumes only local statistical dependencies
between adjacent observations, and it is used to predict a label
for each observation without explicit phone segmentation. On
the other hand, the semi-Markov model (SMM) framework
allows simultaneous segmentation and labeling of sequential data
based on a segment-based Markovian structure that assumes
statistical dependencies among all the observations within a
phone segment. For phonetic recognition which is inherently a
joint segmentation and labeling problem, the SMM framework
has the potential to perform better than the HMM framework
at the expense of slight increase in computational complexity.
The SMM framework considered in this paper is based on a
non-probabilistic discriminant function that is linear in the joint
feature map which attempts to capture long-range statistical
dependencies among observations. The parameters of the dis-
criminant function are estimated by a large margin learning
framework for structured prediction. The parameter estimation
problem in hand leads to an optimization problem with many
margin constraints, and this constrained optimization problem
is solved using a stochastic gradient descent algorithm. The
proposed LMSMM outperformed the large margin discriminative
HMM in the TIMIT phonetic recognition task.

EDICS Category: SPE-RECO

I. INTRODUCTION

In automatic speech recognition (ASR), a continuous-
density hidden Markov model (HMM) which is considered
as a probabilistic generative model has been popularly used.
A generative model represents the joint probability of the
observation and label sequences, and by the Bayes rule, it is
used to compute the posterior probability of the label sequence
given the observation sequence. For tractable inferences (often
by dynamic programming), conditional independencies among
observations are incorporated into the generative model for
sequential labeling task such as the ASR that has an exponen-
tially large number of possible label sequences to consider.
A generative HMM for ASR specifically imposes a frame-
based Markovian structure on the label sequence in addition
to the conditional independencies on the observation sequence.
But, a generative HMM is limited in capturing long-range
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statistical dependencies, and to overcome this limitation it
must use multiple overlapping features across frames. For
example, the distribution of the state duration of a generative
HMM is restricted to a geometric form parameterized by
the self-transition probability, even though it is inconsistent
with the actual duration distribution. A generative HMM is
further limited in that the HMM parameters estimated by
maximizing the joint probability do not lead to minimum
prediction error rate. This has led to interest in discriminatively
trained generative HMMs and discriminative HMMs.

Various discriminative training (DT) algorithms have been
proposed to train generative HMMs. Conventional DT al-
gorithms include the maximum mutual information (MMI)
[1], minimum classification error (MCE) [2] and minimum
word/phone error (MWE/MPE) [3]. The MMI maximizes an
approximate posterior probability while the MCE, MWE and
MPE approximately minimize the string error rate, word error
rate and phone error rate on the training data, respectively.
These DT algorithms, however, are liable to the over-fitting
problem when the number of parameters is relatively large in
comparison to the number of training data. For better gener-
alization, recent DT algorithms have directly tried to increase
the margin between the logarithm of the joint probability of the
correct label sequence and that of a competing label sequence
by adopting the large margin learning framework of a support
vector machine (SVM) [4]-[8]. The large margin estimation
(LME) [4], [6] defines a criterion to maximize the minimum
positive margin among the correct label sequences. On the
other hand, the soft margin estimation (SME) [5], soft large
margin estimation (SLME) [9] and large-margin MCE (LM-
MCE) [7], [8] consider both the incorrect label sequences and
the correct label sequences by minimizing the weighted sum of
the empirical risk and a generalization term which is associated
with the margin.

Although the objective functions are similar, the motivations
behind the SME, SLME and LM-MCE are different. The SME
is motivated from the generalization bound of the classifier in
statistical learning theory [10] by minimizing the error risk
for the training data and simultaneously maximizing a user-
defined soft margin. In [11], it has been shown that the SME
improves the performances over the MCE on the mid-sized
vocabulary continuous speech recognition (CSR) (Sk-word
Wall Street Journal) task [11]. The SLME is based on a variant
of the soft margin SVM, and the performance improvement
over the MCE on the small vocabulary CSR (TIDIGITS) task
has been shown in [9]. In contrast to the SME and SLME,
the LM-MCE is an extension of the MCE by incorporating



the discriminative large margin in the sigmoid-loss function
and is the only large-margin DT algorithm that has performed
better than the MCE in the large vocabulary CSR (LVCSR)
(120k-vocabulary telephony CSR) task.

Even though discriminatively trained generative HMMs
have been shown to perform better than generatively trained
generative HMMs in terms of prediction accuracy, these
are limited to modeling local statistical dependencies using
a frame-based Markovian structure in addition to assum-
ing conditional independencies on the observation sequence.
To overcome these limitations, discriminative HMMs have
been applied to ASR. While generative HMMs represent the
joint probability, discriminative HMMs either define a non-
probabilistic discriminant function or directly represent the
posterior probability. Sha et al. [12], [13] defined a non-
probabilistic discriminant function based on the unnormalized
Gaussian distributions and the HMM framework. As a side
note, the authors also propose a large margin learning algo-
rithm with a soft-max approximation. Gunawardana et al. [14],
Sung et al. [15] and Morris et al. [16] directly model the
posterior probability as an exponential distribution by HMM-
like conditional random fields (CRFs). A discriminative mod-
els such as the CRF can relieve the restriction to incorporate
long-range statistical dependencies in nature, since it does
not assume conditional independencies on observations and
allows for multiple interacting features [17]. However, all the
aforementioned discriminative HMMs for ASR still impose
frame-based Markovian structures in addition to conditional
independencies on the observation sequence.

While most HMMs considered in the past assume only local
statistical dependencies between adjacent observations and
predict a label for each observation without explicit segmen-
tation, the semi-Markov model (SMM) allows simultaneous
segmentation and labeling of sequential data with a segment-
based Markovian structure [18], [19]. ASR is inherently a
joint segmentation and labeling problem. In comparison with
the HMM framework, the SMM framework has the extended
capability to use a richer class of segmental features defined
over segment boundaries. Therefore, the SMM framework has
the potential to perform better than the HMM framework for
ASR.

Several forms of SMMs and segment models have been
proposed, including the explicit duration HMM [20]-[22], the
stochastic segment model [23], [24], the polynomial trajectory
segment model [25], the linear trajectory model [26], [27],
the nonstationary-state HMM [28] and the segmental HMM
[29], [30]. However, these models have not fully exploited
the benefits of a SMM. Almost all previous efforts to adopt
the SMM framework have been devoted to either the in-
corporation of an explicit duration model into a generative
HMM framework or the modeling of feature dynamics within
a given segment by trajectory models under a frame-based
Markovian structure!. In other words, in the past, the frame-
based observations within a segment are assumed to follow a

ISeparate from the HMM and the SMM, hidden dynamic models have
been proposed as the super-segmental models with multi-level hidden dynamic
variables to capture the long-term correlation on the entire sequence based on
the physical properties of speech generation [31]

Markov process (frame-based Markovian assumption); frame-
based observations within a segment are assumed either to be
conditionally independent given both the segment length and
label or to follow a Markov process. All SMMs considered
in the past are generative in nature, and the improvements
obtained by the previous generative SMMs over the generative
HMMs were only marginal [21], [22], [32]-[35] while the
performances of HMMs have been much improved by recent
discriminative training methods and discriminative models

(1151, [71H9], [11]-[16].

For other tasks such as activity recognition and natural lan-
guage processing [36]—[38], discriminative SMMs have been
shown to perform better than discriminative HMMs. However,
in the speech recognition community, a discriminative SMM
has not been explored extensively.

In this paper, we propose a large margin discriminative
SMM (LMSMM) for phonetic recognition. In the task of
phonetic recognition, a sequence of phonetic labels must be
obtained from a speech utterance without any given seg-
mentation information. SMM is capable of simultaneously
performing phonetic segmentation and labeling with segment-
based features. The contribution of this paper is that this is
the first study on large margin discriminative model under
the SMM framework for phonetic recognition®. In contrast
to what were proposed using the semi-Markov CRFs [38],
[40], we define not a posterior probability but an explicit
discriminant function and estimate the function parameters
by structured SVM (SSVM) [41] which is a large margin
learning framework for structured prediction. The proposed
discriminant function is linear in the segment-based joint
feature map which consists of the transition feature func-
tion, duration feature function and content feature function.
The function parameters are estimated, such that the SSVM
increases the score margin obtained from the discriminant
function by scaling it with a loss function. This estimation
process offers better generalization ability than other learning
criteria for structured prediction [10], [42]. The parameter
estimation problem leads to an optimization problem with
many margin constraints. The stochastic gradient descent [43]
with both the hard-max and the soft-max margins [12], [13] is
used to solve the optimization problem of SSVM in the primal
domain, since it leads to fast convergence and can handle a
large number of margin constraints. Experimental results based
on the TIMIT phonetic recognition show that the proposed
LMSMM outperforms the large margin discriminative HMM
(LMHMM) [12], [13].

The rest of the paper is organized as follows. Section
IT presents the proposed discriminative SMM for phonetic
recognition. Section III describes the large margin training for
the discriminative SMM based on the SSVM and the stochastic
gradient descent algorithm. A number of experimental and
comparative results are presented and discussed in Section IV,
followed by a conclusion in Section V.

2 A preliminary version of this paper has been published at [39].
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Fig. 1. A phonetic recognition example based on one-state monophone

model. Given an utterance of “have”, the acoustic feature vector X is
extracted from the t-th speech frame, and X = {x1,...,x14}. Phonetic
recognition of X yields y where under the HMM framework, y =
{/h/,....;/h/,]ae/, ..., Jae/, v/, ..., /v/} while under the SMM frame-
work, y = {(4, /h/), (10, /ae/), (14, /v/)} which means the phone A is in
the first segment and ending at the fourth speech frame, and so others.

II. DISCRIMINATIVE SEMI-MARKOV MODEL FOR
PHONETIC RECOGNITION

Phonetic recognition transcribes an utterance into a se-
quence of phonetic labels with their position. Let &', ) and
L be the space of the acoustic feature vector sequences,
phonetic label sequences and phonetic labels, respectively.
The phonetic recognizer predicts a phonetic label sequence
y(€ V), given a sequence of D-dimensional acoustic feature
vectors X(€ X) = {x;(€ RP)}_; which is extracted from a
speech having a length of T' frames, such that

y = argmax F(X,y; w) (1)
yey

where F' : X x )Y — R is the discriminant function that
assigns a score to every paired input and output sequence, and
w € RM is an M-dimensional parameter vector. An example
of the phonetic recognition based on one-state monophone
model is shown in Fig. 1. Given an utterance of “have”, the
acoustic feature vectors X = {xy, ..., X14} are extracted from
all T = 14 frames. Then, the phonetic recognizer finds a
sequence of phonetic labels y which maximizes F(X,y;w).
Here, the definition of output sequence y is different according
to whether we use a HMM or SMM framework. In describing
multi-state HMM, phonetic labels in one-state HMM corre-
spond to state labels in multi-state HMM, and each frame is
assigned to exactly one hidden state in both models.
We assume that F' is a linear discriminant function as

F(Xa y; W) = <W’ (I)(X> y)> 2

where ®(X,y) : X x Y — RM is the joint feature map
which maps a paired input and output sequence into an
M-dimensional feature space to characterize the statistical
dependencies on input and output pairs. Discriminant func-
tion can either be defined non-probabilistically or be derived
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Fig. 2. An undirected graph of discriminative HMM.

probabilistically by directly modeling the posterior probability
p(y|X,w). When modeling the posterior distribution by a
member of the exponential family and decoding based on
the maximum a posteriori criterion, F(X,y; w) and ®(X,y)
should be a function of logp(y|X,w) and a function of
sufficient statistics, respectively.

The inference problem for phonetic recognition is to find
the optimal label sequence, argmaxyy(w,®(X,y)), given
X and w. Note that if we define y = {{1,¥s..., 47} where
£i(€ L) is the phonetic label of the ¢-th frame, the number
of possible y grows as O(|£|T). This combinatorial explosion
makes inferences intractable. Therefore, a Markovian assump-
tion between labels has been adopted to decompose & into
a sum of local feature functions for tractable inferences. In
the following section, we describe two discriminative Markov
models for phonetic recognition: previously proposed discrim-
inative HMM and the proposed discriminative SMM.

A. Discriminative HMM

A discriminative HMM for phonetic recognition assumes a
frame-based Markovian structure and predicts a phonetic label
for each observation without explicit phone segmentation. An
undirected graph of discriminative HMM is illustrated in Fig.
2. Here, we assume a one-state HMM. Each observation is
assigned to exactly one hidden state and one phonetic label, i.e.
y = {l1,05.... L7}, where ¢; € L is the phonetic label of the
t-th observation. Henceforth, the terms frame and observation
will be used interchangeably. For example, the correct label
sequence y associated with the utterance of “have” in Fig. 1
is {/h/,...,/h/, Jae/, ..., Jae/, Jv/,..., /v/}. Even though a
graph in Fig. 2 is based on the assumption of one-state HMM,
the structure of a multi-state HMM does not differ from the
basic graph structure in Fig. 2 in that a phonetic label in one-
state HMM corresponds to a state label in multi-state HMM
and each frame is assigned to one hidden state in both models.

In the discriminative HMM, ¢; depends only on ¢;_1, ;11
and the acoustic feature vector of the ¢-th observation x;. This
frame-based Markovian property decomposes a joint feature
map ®(X,y) into a sum over frame specific features ¢ as

(X, y) =D b(li1,01,%1) 3)

t=1

where ¢ consists of two feature functions defined by pairs
of adjacent labels and by pairs of label and acoustic feature
vector.



Even though discriminative HMMs including HMM-like
CRFs can originally relax the independence assumptions be-
tween adjacent observations, previous discriminative HMMs
for phonetic recognition defined only frame-based local fea-
tures under a graph structure shown in Fig. 2 [12]-[16]. Sha
et al. [12], [13], Gunawardana et al. [14] and Sung et al.
[15] defined local features derived from the Gaussian-mixture
HMM while Morris et al. [16] defined local features using
frame-level posterior estimates of phone and phonological
attribute classes by multilayer perceptrons.

Using a frame-based Markovian property, an efficient infer-
ence algorithm, called Viterbi algorithm, for phonetic recog-
nition is derived as follows. Let V (¢, £) be the maximal score
for all partial labelings starting from 1 to ¢, such that the last
label is ¢. Dynamic programming can be used to carry out the
following recursion

V(t,0) = max (V(t—1,€’)+<w,¢(€’,€,xt)>). )

The optimal y is obtained by backtracking the path corre-
sponding to maxy V (T, £). The recursion requires the compu-
tation of (w, @) at O(|£]?T) times.

B. Discriminative SMM

Phonetic recognition is inherently a joint segmentation and
labeling problem of speech observations. In comparison with
the HMM framework, the SMM framework [18], [25], [32],
[40], [44], [45] provides the ability not only to label but
to simultaneously segment an input sequence with segment-
based rich features and therefore, has the potential to perform
better for this task. In the past, the benefits of a SMM had
not been fully exploited. Previously considered SMMs exploit
only local statistical dependencies among observations (frame-
based features) using a frame-based Markovian structure.
Almost all previous efforts using SMM for ASR were limited
to either the incorporation of an explicit duration model into
a generative HMM framework [20]-[22] or the modeling
of feature dynamics within a given segment by trajectory
models under a frame-based Markovian structure [26]-[30],
[46]. Thus, several studies have shown that there is virtually
no performance difference between the generative SMM and
the generative HMM [21], [22], [32]-[35]. On the other hand,
many studies report significant performance improvement us-
ing the discriminative HMM over the generative HMM [1]-
[5], [9], [11]-[13], [16]. Moreover, for other tasks such as
activity recognition and natural language processing [36]-
[38], the discriminative SMMs have been shown to perform
better than discriminative HMMs. However, the potential of
the discriminative SMM has not been explored in the speech
recognition community. This motivates the study of LMSMM
for phonetic recognition.

The proposed discriminative SMM for phonetic recogni-
tion defines a linear discriminant function F' as in (2). An
undirected graph of discriminative SMM based on one-state
monophone model is shown in Fig. 3. A discriminative SMM
assumes a segment-based Markovian structure and can be used
for segmentation and phone label prediction. It assigns variable
number of frames to a hidden state that represents a segment.

Fig. 3.

An undirected graph of discriminative SMM.

Fig. 4. A typical example of segmentation and labeling.

Additionally, the observation behavior within a segment is
non-Markovian. Thus, y is defined as a sequence of phonetic
segments, i.e. y = {s1,52...,57}, where the j-th segment
sj = (nj,¢;). Here, n;, ¢; and J denote the ending frame
of the j-th segment, the phonetic label of the j-th segment
and the total number of segments, respectively. For instance,
the correct segment sequence y associated with the utterance
of “have” in Fig. 1 is {(4,/h/), (10, /ae/), (14, /v/)}. The
diagram in Fig. 4 describes a typical example of segmenta-
tion and labeling. The segment {X,; ,{1,...,Xy,} bears the
phonetic label ¢; € £, and ng = 0 and ny; = T (there are a
total of 1" frames, and 7T is the last frame index of the .J-th
segment) while for all j, n;11 > n;. Note that the number of
segments J itself is a variable.

In discriminative SMM, s; depends only on s;_y, $;41
and X. This segment-based Markovian property decomposes
a joint feature map ®(X,y) into a sum over segment features

¢ as

(I)(Xv Y) = :

J

J
(b(ﬂj_l,ﬁj,nj_l,nj,X). (5)

=1

In the following subsections, detailed segment feature function

and efficient inference algorithm for discriminative SMM are

discussed.

C. Segment Feature Function

To capture the statistical characteristics within individual
segments and between adjacent phonetic segments of variable
length, we construct the segment feature function ¢ by con-
catenating the transition feature function ¢!, duration feature
function ¢ and content feature function ¢¢ as follows

d(lj—1,l5,n5-1,n4,X)
= (@' (tj—1, )", (8 (45, m5-1,m5))",
(0°(Uj,nj—1,mg, {xehiZ, )T 1T (6)

where components of each feature function are described
below.



1) Transition Feature: Under the SMM framework, the
transition feature qﬁ&,_e) is defined as an indicator function
for phonetic transition from ¢’ to £. This is shown below

Glory(lim1,45) = (Lj1 =1, £ = 1) @)

where §(¢;_1 = ¢, £; = () is the Kronecker delta function
that is equal to one when ¢;_; = ¢ and ¢; = ¢ and zero
otherwise. Here, the elements of ¢’ are transition features for
all pairs of phonetic labels: ¢* = [?E/h/,/h/y ¢f/.h/,/ae/)7 e
where £ = {/h/, /ae/,...}. Transition features aim to capture
statistical dependencies between two neighboring phones and
are related to the bigram language model in that the weights
of transition features in the discriminant function of the SMM
framework (w in (2)) can be considered the logarithms of
unnormalized transition probabilities.

2) Duration Feature: The gamma distribution is known to
be a good model for the distribution of the phone durations
[47], and we define the duration feature for phone ¢, gzb‘j, as the
sufficient statistics of the gamma distribution. This is given as

log(nj —nj-1)
ng —nj—1

1

OF (L nj_1,m;) =

The elements of ¢¢ are duration features for all phonetic labels
such that ¢¢ = (6, )", (¢%,.,)",--]"- A direct consequence
of the frame-based Markovian assumption in the HMM is that
phone durations have a geometric distribution defined by the
probability of the self-transition. This is not adequate to model
the actual phone duration distribution. On the other hand, a
segment-based Markovian structure of the SMM permits an
explicit duration model using the gamma distribution, which
provides a suitable distribution shape for modeling the phone
durations.

3) Content Feature: Content features are defined by both
the labeled segment and all observations within a phone
segment. In most cases, state observation probabilities of
generative HMMs are Gaussian. Thus, Gaussian sufficient
statistics calculated for each observation are widely used as
content features of discriminative HMMs for ASR [12]-[15],
[48], [49]. However, these frame-based content features are
limited in capturing long-range statistical dependencies on the
observations.

The discriminative SMM allows a non-Markovian behavior
within a segment, and we use the averages of acoustic feature
vectors within a phone segment to construct a segment-based
content feature that captures long-range statistical dependen-
cies on inputs. First, we divide a segment into a number of
bins and then take averages of the Gaussian sufficient statistics
of the acoustic feature vectors within each bin. Let A be a
(D + 1)-by-(D + 1) symmetric matrix and vec(A) be the
((D + 1)(D + 2)/2)-dimensional vector whose elements are
from the upper triangular part of A. The content feature for

the pair of the phone ¢ and the k-th bin, ¢fe k) is given by’
Oy Wy mj—1,mg {xehi 1)

B(¢) { XiX;  Xi
= vec T
ng —mnj_1 tezbk ( x4

} )5(@ —0 ©

where
nj—nj_1
b, = - I (k- 1)+ 1,..
k {n] 1+ B(Z) ( )+ PR
ng —nj—1
- ——Fk k 1,...,B(¢ 10
nj 1 + B(E) }a e{ 9 9 ( )}a ( )
and B(¢) denotes the number of bins according to

the phonetic label ¢. The elements of ¢° are content
features for all pairs of phonetic label and bin: ¢¢ =
(DG 1) Dy 2) T 0 (6 aes 1) 5 (D ey .2) T -+ 1"
The statistical characteristics of acoustic feature vectors
may vary within a segment. Thus, we divide a segment
into a number of bins and assign different w to each bin.
This is similar to modeling smooth trajectories of acoustic
feature vectors by deterministic mappings®, and bins can be
regarded as sub-states [18]. In addition, the content feature
in each bin, which is obtained by the averaging, becomes
less sensitive to variation in acoustic feature vectors across
frames. In our case, the number of frames in each bin is
on average 2.6 (26ms), and the statistical characteristics
of the acoustic feature vectors within a bin does not vary
significantly. This idea of feature averaging is in accordance
with the segmental features proposed in [45], [SO]. However,
there are other long-range features such as the temporal
pattern (TRAP) features [51] and modulation spectrum (MS)
features [52], [53]. In these approaches, temporal trajectories
of spectral energies in individual critical bands over windows
of upto one-second length are used as features for pattern
classification where the artificial neural network is often used.
In comparison to the TRAP and MS features, the advantage
of the proposed content features is that under the SMM
framework, it leads to a linear discriminant function which is
of low computational complexity, and the linear discriminant
function allows a large margin training based on the SSVM
to be used.

Since the average of the Gaussian sufficient statistics in
each bin is calculated and the content features for all phonetic
label and bin pairs are concatenated with the Kronecker delta
function, the dimension of the proposed content feature of each
segment is fixed to w >, B).

D. Initial Estimation of Parameters

The definitions of ¢!, ¢? and ¢° can be related to the
probabilistic model in the SMM framework in that if we
select w properly, then F' in (2) is (approximately) equal to

3(9) is based on a single Gaussian assigned to each bin. The extended
content feature pertaining to the multiple Gaussian mixtures is described in
the next subsection.

4A segment is divided into bins which have the same lengths without a
forced alignment.



log p(X, y|w). To see this, we first decompose log p(X,y|w)
as follows:

(1)

In the SMM framework, we can further decompose the first
term of the right-hand side of above equation into two parts:

log p(y|w) = log p({(nj, ;) }]—1|w)
=log p({£; }/_1|w) +log p({n; }/_, [{¢;}/_1, w) (12)
J J
=> logp(t;l¢;—1, WwHD _logp(n;
j=1 j=1

Therefore, if we set the parameter associated to the transition
feature (b’ée,’@) as the logarithm of the transition probability
from ¢’ to ¢, i.e.

logp(X,y|w) = logp(y|w) + log p(X|y, w).

— nj_l wj, W) (13)

= logp(¢|'),
then the first term of the right-hand side of (13) becomes

J
Zlogpe 10 1, w) = Z IRW,

where w! = [w(/h/ /h/),w(/h/ Jae))? ...]T. Likewise, note that
we model the phone duration by the gamma distribution, i.e.

Wipr gy (14)

15)

logp(nj - nj—ﬂgij)
nj —Nj—1

0y,

J

= (v, —1)log(n; —nj_1) —
—(7e; log 0, +1og I'(7e,))

where 7, and 6, are the shape parameter and scale parameter
for phone ¢, respectively. If we set

(16)

e —1
= ~ : (17)
—(velog b +log (7))
the second term of the right-hand side of (13) can be expressed
as

~Sa,

J J
ZIng( — Ny 1|£],W Z g]anj—hnj» (13)
=1 =
where w? = [(w}, )T, (w],. )T, ..]".

Similarly, the conditional independencies among random
variables in the SMM lead to the decomposition of the second
term of the right-hand side of (11) as

J

log p(X[y, w)=Y _logp({x}12,,, ,411¢j;n5-1,15, W)
j—l
ZZ Z log p(x:|¢;, k, w)(19)
j=1lk=1 "= L ich,

Here, we further decompose the segment-level value into the
sum of bin-level averages and use the Gaussian mixture to
model the acoustic feature vectors in each bin as follows:

Q
log p(x [0, k, w) =10g > (0.0 0)N (Xl t(0.1.0) Xt k) (20)

q=1

where ¢, @@ and ¢ denote the mixture component, the number
of mixtures and the mixture weight, respectively. To obtain
a linear discriminant function, we approximate the above
mixture by the single most dominant Gaussian as

log p(x¢|¢, k, w) N (|t k,q) B k,g)) 2D

X D (22)

NlOgC(qu *)

_L Z(Te Jo) ek YHta) {xthtT
2\ |(ke,kig)) X (0kg) (e k,q*) Xy

where ¢* = argmax, ¢ k)N (Xt |10, k,0): Z(0.k,0))>

Ts—1
(Hes))” B0 1o, k)
D _ 1
2|E(l,k,q)‘ 2)’ (23)

and A e B denotes the matrix inner product such that Ae B =
tr(AT B). Note that the approximation of multiple Gaussian
mixtures by the single most dominant Gaussian is performed
not only once for initialization but every time the segment
feature function ¢ is computed for inference and training.
Here, the matrix inner product is between two symmetrical
matrices; therefore, if we set the parameters of the content
feature by using a reparameterization matrix of the mixture
E(elk ) H(Ek,q)

parameters as follows:
51
= e (ha),  Hkght (24)
(Kt a)” E(e k,q) €,k q)

where w(, ;) = [(w&,]€71))T7 - (w&,kyQ))T]T and vec(A) is
equal to vec(A) with the off-diagonal terms multiplied by two,
then,

!
Cek,q)

—2log(c(e) (27)

Wit kq) =

J
log p(Xly, w) Z (€, m5-1,m5, {xe }2 n;_ +1)) (25
where w¢ :.[(Wfﬂ}/’l)) 7(WE‘/h/’m.)T, S Note that in the
case of multiple mixtures, we modify ¢@7 k) N (9) such that
gb(z B = =10,..., ¢¢ (e ksgn)r 0]7'. Thus, if w is assigned accord-
ing to (14), (17) and (24), the linear discriminant function F'
in (2) is (approximately) equal to log p(X, y|w):

log p(X, y|w) =~ (w, ®(X,y))

where w = [(w')T, (w?)T, (w¢)T]T, and the dimension M
of the feature space mapped by ¢ becomes

(D+1)2(D+2)ZB(€)

(26)

M=I[LP+|L]+Q Q27)

Note that in our task, the segmentation information is
provided only during training while in the testing, the phonetic
recognition is performed via simultaneous phonetic segmen-
tation and labeling. TIMIT [54] provides phone segmentation
information, and we used it during training (see Section IV);
however, other speech corpora generally do not provide such
information, and this information must be obtained either by
manual segmentation or by using the Viterbi algorithm. For
good starting point, we estimate initial parameters wg by the
maximum likelihood (ML) criterion: log p(¢|¢'), 7, 0, ¢, pu and
> are first estimated by the ML criterion with segmentation
information, and then wy is set by (14), (17) and (24). From
Wy, a large margin training is performed where w is not



constrained for valid probabilities any more. However, the
constraint of w¢ to maintain positive definiteness of the matrix
in (24) can be imposed for a stable performance while w is
updated by large margin training. And this constraint is easily
satisfied by the projection using eigenvector decomposition
after each update [13]. Also, the most dominant component
q* is determined such that ¢* = argmax,l(w(ce,k’q),¢fé7k7q)>,
where Qﬁ‘(:A ko) is equivalent to qﬁfé, k) in (9).

E. SMM Inference

Let V(t,£) be the maximal score for all partial segmenta-
tions such that the last segment ends at the ¢-th frame with
label ¢, and let U(t, ) be a tuple of length d and previous
label ¢’ occupied by the best path where phone ¢’ transits to
phone / at time ¢ — d. Similar to the Viterbi algorithm for the
HMM inference, we can derive the recursion of the Viterbi-
like dynamic programming for efficient SMM inference as

Ut l) = argmax (V(t —d, ")+
(d,e)e{L,....R(O)} X L
(wooll Lt —d X)) @)
t,0) = Vt—d,
Vit (d,l’)e{??ﬁ%(f)}xﬁ( ( )+
(w, (¢, 0,1 — d,t,X))) (29)

where R(¢) is the range of admissible durations of phone ¢
to ensure tractable inference. Once the recursion reaches the
end of the sequence, we traverse U (t, ¢) backwards to obtain
segmentation information of the sequence. An implementation
of the recursion in (28) and (29) requires O(T|L|>_, R(¢))
computations of (w, ). In the task of phonetic recognition
based on one-state monophone model (see Section IV), we
set » ,R(¢) = 1280 and |£| = 48. Thus, if we assume
that the computational complexities for calculating (w, ¢) are
about the same for HMM and SMM frameworks, the SMM
inference requires about 26 times more computation than the
HMM inference. To save computation, the maximum values
in (28) and (29) are obtained by searching through not the
whole search space {1,..., R({)} x L but a subspace of lower
resolution - {1,dy,2dy, ..., R({)} x L where d; > 1 is the
search resolution for the phone ¢ (longer-length phones have
larger d; than shorter-length phones). In our implementation,
the SMM inference takes about 4 times more computation than
the HMM inference.

III. LARGE MARGIN TRAINING

This section describes a method to train the discriminative
SMM parameters. Given a set of training pairs {(X;,y:)}¥,
where y; is the sequence of phonetic segments for the i-th
input X;, and N is the number of training pairs, the goal of
training is to find w so that the decision criterion in (1) leads
to the minimum prediction error rate on unseen data. In this
paper, we use a large margin learning framework for structured
prediction, SSVM [41], due to its better generalization ability
than other learning criteria such as the conditional maximum
likelihood by maximizing the separation margin scaled with a

loss function [10], [42]. We adopt the stochastic gradient de-
scent [43] to solve the optimization problem of SSVM due to
the theoretical and experimental proofs of fast convergence and
robustness in handling a large number of margin constraints.
In the following, we first review SSVM, and then explain the
stochastic gradient descent algorithm to solve our optimization
problem.

A. Structured Support Vector Machine

The SSVM finds w such that the separation margin is
maximized (equivalent to the minimization of the square of
the magnitude of w), and the sum of the slack variables
&; is minimized under the constraints that the difference
between the discriminant function given (X;,y;) and the
discriminant function given (X;,y),y # y:, is at least larger
than the scaled margin subtracted by the slack variable for all
1=1,...,N as follows [12], [13], [41], [55]:

1 c X
. - 2 ~ .
min 2||w|| tN ;& (30)
st (W, AP(X;,y)) > Ayi,y) — &
where
(W, Ad(x;,y)) = F(Xiyisw)— F(X;,y;w)
= (W, ®(x;,y:) — ®(x5,y)), (3

and C > 0 is a constant that controls the trade-off between
margin maximization and training error minimization, and
A(y;,y) is a loss function which quantifies the difference
between y and y,. The separation margin is scaled with a
loss function so that the margin constraint with high loss is
penalized much more than that with low loss. This is illustrated
in Fig. 5. The discriminant functions given the correct segment
sequence and other two incorrect segment sequences are
denoted by circle, rectangle and triangle, respectively. Let the
loss between circle and rectangle be larger than that between
circle and triangle. By scaling the separation margin with
a loss, the rectangle is further away from the circle than
the triangle is from the circle. Thus, we reduce the risk of
predicting the rectangle which has high loss.

A loss function is usually a nonnegative function with the
following property: Vi,

{ Alyi,y) >0, ify #yi,
Alyi,y) =0, ify =y
In [4], the zero-one loss function is used; however, it does
not allow different penalties to be given to constraints with
different loss: Vy € Y\ yi, A(ys,y) = 1. In [5], [12], [13],
[55], a loss function based on the Hamming distance between
y and y; is used where the Hamming distance is defined as the
number of mismatches between y and y; at frame level. In this
paper, we use a loss function based on the Hamming distance
to provide greater penalty to the constraint with higher loss
than that with lower loss, and the loss is defined as

(32)

T
Alyiy) =) 6(6 # L) (33)
t=1



F(X,.y;w) O ' F(X,y;w),
0.4 F(X,.y:w),

O vy, vy,

Scale the
margin by Ay,.y)

Fig. 5. The circle, rectangle and triangle denote the discriminant function
given the correct segment sequence and the other two incorrect segment
sequences, respectively. By scaling the margin, the rectangle which has a
high loss is further away from the circle than the triangle which has a low
loss is from the circle.

where /; is the phonetic label of the ¢-th frame of y;. Even
though the string-based phone error rate by edit distances is
a more appropriate measure for phonetic recognition, we use
the frame-based phone error rate as in (33) due to the additive
decomposability of the Hamming distance. If the loss function
is decomposed in the same manner as the joint feature map,
we can add the loss function to each segment in the inference,
and thus, the computational complexity for the loss-augmented
inference is much reduced. Detailed explanations are given in
the next subsection.

B. Stochastic Gradient Descent

It is not easy to solve the constrained optimization problem
of (30) due to the large number of margin constraints: e.g.
given only 40 phones, the number of possible segmentations
involving 5 phonetic labels (¢1£2¢304(5) is about 1.02 x 108.
Thus, an optimization method which considers all possible
number of constraints requires large computational complexity,
and its implementation is difficult.

To reduce the number of constraints, optimization methods
such as the soft-max approximation, cutting plane algorithm
and subgradient method have been proposed [12], [13], [41],
[43], [56]. In [12], [13], the large number of margin con-
straints associated to each training input is reduced to a single
constraint by approximating the hard-max margin to the soft-
max margin. In [41], [56], the cutting plane algorithm, also
known as the column generation algorithm, is used to reduce
the number of margin constraints by accumulating the most
violating constraint in each iteration. In [43], a subgradient
method which considers only the most violating constraint
associated to each training input in each iteration is used. In
this paper, we use two optimization methods based on the
stochastic gradient descent due to its fast convergence [13],
[43]: the stochastic subgradient descent using the hard-max
margin and the stochastic gradient descent using the soft-max
margin.

1) Stochastic Subgradient Descent using Hard-max Mar-
gin: The constrained optimization problem of (30) can be
converted into an unconstrained optimization problem given

by
1 N
min ; fi(w) (34)

where Vi,

1

fz(W) = §||W||2 +C| - <W7¢(Xiayi)>
+ max (<W7 ®(X;,y)) + A(yi,y))] (35)
Y#Yi N

and [ ]+ denotes the hinge loss. Using the nonnegativity of the
loss function in (32), the above equation can be expressed as

1

i) w4+~ (. 20X, )+ A1) G0

Due to the hard-max that appears in (36), f;(w) is not
differentiable with respect to w. Thus, we use the subgradient
of f;(w) given by

where the most competing label sequence with respect to w
is defined as

y

Since we use a decomposable loss based on the Hamming
distance in (33), a slight modification of Viterbi-like dynamic
programming in (28) and (29) leads to a similar efficient infer-
ence to find y;. The stochastic subgradient descent algorithm
using the hard-max margin is summarized in Algorithm 1.

Algorithm 1 Stochastic subgradient descent with hard-max

Choose: wy and step size sequences {j,}22 ;.
T=1
repeat
Select a training sample (X;,y;) randomly.
Decode the most competing label sequence:

y; = argmax (— (w1, A@(X;,y)) + A(yiry) ).
yey
Calculate the subgradient of f;:
gi(w‘rfl) =Wr_1— CA@(me;k)
Update w,_; by subgradient descent:
Wr =Wr_1— M‘rgi(wr—l)~
T=717+1.
until convergence

The exact form of the step size schedule is given as p, =
TJTFON, where 79 = 0.02. This step size satisfies the Robbins-
Monro conditions [57]: >°°7, 1 = oo and Y07, p2 < oo.

These conditions need to be satisfied for convergence.




2) Stochastic Gradient Descent using Soft-max Margin:
The objective function f;(w) in (35) can be approximated by
replacing the hard-max with the soft-max as follows:

fiw) = SIwl? + [ = (w, @K y0) + Zu(w)] i, G9)

where the soft-max Z;(w) (a tight upper bound on the hard-
max) is defined as

Zi(w) = log Z (W, (X y))+A YY)
Y#Yi

(40)

The soft-max is differentiable with respect to w, and the
gradient of the approximated objective function is given by

(W) =w—C |8(Xi,y;) — 2| Vi,

) = - [0(Xey) - 500 v
The gradient of the soft-max can be efficiently calculated by a
dynamic programming based on the forward and backward
procedures, as described in the Appendix. The stochastic
gradient descent algorithm using the soft-max margin is sum-
marized in Algorithm 2.

(41)

Algorithm 2 Stochastic gradient descent with soft-max

Choose: w, and step size sequences {p}>2
T=1
repeat
Select a training sample (X;,y;) randomly.
Calculate the forward and backward variables.
Calculate the gradient by (41).
Update w,_; by gradient descent:
Wr =Wr_1— ,u‘rgi(WT—l)-
T=17+1
until convergence

The step size schedule for stochastic gradient descent in
Algorithm 2 is same with that for stochastic subgradient
descent in Algorithm 1.

IV. EXPERIMENTS

We performed phonetic recognition experiments on the
TIMIT speech corpus which contains 6,300 phonetically-rich
utterances spoken by 630 speakers consisting of 438 males
and 192 females, from 8 major dialect regions [54]. Following
the standard partitioning of the corpus by National Institute
of Standard Technology, we split the data into a training
set (462 speakers and 3,696 utterances), development set (50
speakers and 400 utterances) and test set (118 speakers and
1,136 utterances), without overlaps [58]. The test set was
again split into the traditional core test set (192 sentences) and
the rest enhanced test set (944 sentences) [59]. We extracted
39-dimensional acoustic feature vectors which consist of 12
mel-frequency cepstral coefficients, log energy and the corre-
sponding delta and acceleration coefficients, where the frame
size is 25ms and the rate is 10ms. Following the standard
regrouping of phonetic labels [60], 61 TIMIT phonetic labels
were reduced to 48 labels, and each context-independent
monophone label was represented by a one-state LMSMM,
one-state LMHMM and three-state LMHMM. We initially

estimated the function parameters by the ML criterion, and
then we updated the estimates by large margin training based
on the SSVM and the stochastic gradient descent algorithm.
Note that during training, the phone boundary information
was provided. Therefore, the Baum-Welch algorithm was not
necessary in the initial ML training for the one-state LMSMM
and one-state LMHMM. However, phonetic recognition on the
development set and test set was performed by simultane-
ous phonetic segmentation and labeling. For the three-state
LMHMM, the Baum-Welch algorithm was used in the initial
ML training, and the forced alignment by the Viterbi algorithm
was used for the approximated correct state-label sequence
in the large margin training. The preset values, C'(> 0) and
R(¢)(e {1,...,50}), were determined using the development
set for best performance. Depending on the phonetic label,
different number of bins can be used, however here we set
B(¢) = 3, V¢ for comparisons with three-state LMHMMS.

We compare the results obtained by LMSMMs with those
obtained by LMHMMs [12], [13] according to 1, 2, 4 and
8 Gaussian mixtures per bin under the same experimental
setup. Note that multiple Gaussian mixtures are approximated
by the single most dominant Gaussian to formulate the linear
discriminant function. This is shown in (21). For the perfor-
mance evaluation, 48 phonetic labels were again reduced to 39
labels [60], and then both the frame error rates based on the
Hamming distances and the phone error rates based on the edit
distances were calculated. Tables I and II show the frame error
rates and the phone error rates on the test set, respectively,
when the soft-max margin was used. For various number of
mixtures, LMSMMs consistently outperformed both one-state
LMHMMSs and three-state LMHMMs in terms of both the
frame and phone error rates. Actually, the error rates obtained
by LMHMMs are slightly different from those obtained by Sha
et al. [12], [13]. This is due to the differences in ML baselines.
They also used a batch gradient descent with a line search
to determine the step size in each iteration while we used
a stochastic gradient descent without a line search. Recently,
the LMHMM without any approximation was proposed using
a variant of the bundle algorithm to solve a non-convex
optimization (NCO) problem [61]. In comparison to the NCO-
LMHMM [61], the performance of the LMSMM is better than
that of the NCO-LMHMM. Although their bundle algorithm,
which can be considered as a cutting plane algorithm, solves
the original NCO problems for LMHMMs, it requires a more
complex procedure involving quadratic programming, and due
to the constraint accumulation, it is difficult to extend it for
use in a LVCSR task.

Table III shows the phone error rates on the test set ac-
cording to the hard-max margin and the soft-max margin. The
LMSMMs using the soft-max margin performed better than
those using the hard-max margin. Compared to LMHMMs
using the hard-max margin, LMSMMs using the hard-max
margin produced better results. The stochastic subgradient
descent algorithm using the hard-max margin was about three
times faster than the stochastic gradient descent algorithm
using the soft-max margin, since the hard-max margin needs
only the Viterbi recursion to find the most competing output
sequence while the soft-max margin have to perform forward



TABLE 1
TEST SET FRAME ERROR RATES (%) BY HAMMING DISTANCES

Core test set Enhanced test set
I-mix | 2-mix | 4-mix | 8-mix | I-mix | 2-mix | 4-mix | 8-mix
ML (one-state HMM) 39.5 344 32.5 30.8 39.2 34.0 32.1 30.5
One-state LMHMM 29.2 28.6 28.0 27.1 29.0 28.3 27.7 26.9
ML (three-state HMM) 354 31.1 29.4 28.6 35.3 30.9 28.9 28.3
Three-state LMHMM 29.0 27.9 27.3 26.8 28.8 27.9 27.0 26.6
ML (SMM) 329 29.9 28.2 27.7 32.7 29.8 28.1 27.6
LMSMM 27.9 27.2 26.8 26.4 27.5 27.1 26.7 26.3
TABLE II
TEST SET PHONE ERROR RATES (%) BY EDIT DISTANCES
Core test set Enhanced test set
1-mix | 2-mix | 4-mix | 8-mix | I-mix | 2-mix | 4-mix | 8-mix
ML (One-state HMM) 42.8 36.8 34.0 32.2 42.1 36.3 334 31.0
One-state LMHMM 31.3 30.7 29.9 28.6 30.2 29.7 29.1 28.0
ML (Three-state HMM) 37.7 33.2 30.1 29.1 37.3 32.5 29.2 28.6
Three-state LMHMM 30.2 28.8 28.0 27.6 29.5 28.2 27.6 27.2
ML (SMM) 35.9 32.1 29.6 28.5 35.1 31.3 28.9 28.1
LMSMM 28.9 28.0 27.3 27.1 28.2 27.5 27.1 26.8
TABLE IV
5 ' : : LMSMM (Soﬂ‘_max) ] PHONE ERROR RATES (%) OBTAINED BY 1-MIXTURE LMSMM

= B = LMSMM (Hard-max)

Phone error rates (%)

# of passes through the training set

Fig. 6. Evolutions of phone error rates on the development set according to
the hard-max and soft-max (LMSMM, 1-mix).

and backward recursions and the gradient computation. How-
ever, as shown in Fig. 6, where we plot evolutions of phone
error rates on the development set according to the hard-
max and soft-max of I-mixture LMSMM, the phone error
rates obtained by the soft-max margin are lower than those
obtained by the hard-max margin. In the hard-max margin,
margin constraints for all other competing output sequences
except one particular output sequence, which are the most
competing with previous parameter values, are not guaranteed
to be met when parameters are updated. On the other hand,
the soft-max margin increases the margin between the correct
output sequence and the upper bound of all competing output
sequences.

Table IV shows the phone error rates obtained by 1-mixture
LMSMM according to different compositions of segment fea-
tures. Partial combinations achieved phone error rates higher
than 28.9% obtained by the combination of whole features.
Additionally, the performance of LMSMM without segment
binning (B(¢) = 1, V) is worse than that obtained by
segment binning. We also estimated the SMM parameters by
the perceptron training. The performances obtained by the

ACCORDING TO DIFFERENT COMPOSITIONS OF FEATURES ON THE CORE
TEST SET. N B MEANS THAT THE SEGMENT BINNING WAS NOT USED IN
THE CONTENT FEATURE: B(¢) = 1, V.

1-mix ¢+ ¢° | ¢t +¢° | ¢ + ¢? + ¢°(NB)
ML(SMM) 409 36.6 38.7
LMSMM (Soft-max) 313 29.7 304
TABLE V

PHONE ERROR RATES (%) OBTAINED BY PERCEPTRON TRAINING OF SMM
PARAMETERS ON THE CORE TEST SET.

8-mix
28.4

4-mix
29.1

2-mix
30.7

1-mix
32.5

SMM-+Perceptron

perceptron training are worse than those obtained by the large
margin training, as shown in Table V. These comparative
results show that the proposed joint feature map and the
enhancement of margins scaled by Hamming loss lead great
improvements in performances.

Note that the general structure, the discriminant function and
the inference algorithm of the SMM are different from those
of the HMM. The inference algorithm of the SMM in (28)
and (29) considers both partial segmentations and segment-
labelings while the HMM inference in (4) takes into account
just partial frame-labelings. Therefore, even though the pro-
posed SMM with three bins is based on similar Gaussian
modeling of the observations, it produces different recognition
results compared to the three-state Gaussian HMM. Moreover,
the SMM framework allows averaging of the Gaussian suf-
ficient statistics within each bin such that the SMM is less
sensitive to variation in acoustic features. This averaging is in
accordance with the segmental features proposed in [45], [50].
Disregarding large margin training and the proposed duration



TABLE III
TEST SET PHONE ERROR RATES (%) ACCORDING TO HARD-MAX AND SOFT-MAX

feature, we experimentally show that the proposed SMM with
three bins and the three-state HMM are different models
leading to different performance even when both models are
using similar Gaussian modeling of the observations. The ML
baseline of the SMM with three bins achieved phone error rate
of 36.6% (in Table IV) which is lower than 37.7% (in Table
IT) obtained by the ML baseline of the three-state Gaussian
HMM.

By including large margin training, we notice that the
performance difference between the LMSMM without dura-
tion feature and three-state LMHMM has been reduced. This
suggests that large margin training had a more positive impact
on the HMM than the SMM. The incorporation of the duration
feature certainly improved the performance of the LMSMM
but it is not clear how explicit phone duration features can
be incorporated in the LMHMM framework such that the
discriminant function is in linear form (a requirement for
large margin training based on the SSVM). In conclusion, the
performance improvement attained by the proposed LMSMM
over the LMHMM is mostly attributed to the benefit of the
general structure of SMM over that of HMM.

In the preliminary version [39], performance evaluations
of LMSMMs were conducted only on the core test set by
the hard-max margin. However, here, we used both the hard-
max margin and the soft-max margin and obtained better
performances on both the core test set and the enhanced set
by the soft-max margin. Moreover, we also performed three-
state LMHMMs for performance comparisons with LMSMMs
while in the preliminary version, it was shown that LMSMMs
performed better than the one-state LMHMMs.

Even though none of the LMSMMs in the experiment gives
the lowest phone error rate of 23% on the core test set
in the task of TIMIT phonetic recognition by complicated
deep belief networks reported in [62] and the performance
improvements of LMSMMs over LMHMMSs become smaller
as the number of mixtures increases, the proposed LMSMM is
significant in that this is the first large margin discriminative
model under the SMM framework for phonetic recognition
that significantly improves the performance over the genera-
tive SMM. While the performances of generative SMMs are
lower than those of LMHMMs, the proposed LMSMMs give
better results than those obtained by LMHMMs under the
same experimental setup. In addition, in comparison to the
previous long-range segmental features such as the TRAP
and MS features, the proposed long-range segmental feature
leads to a linear discriminant function with small additional
computational complexity. The linear discriminant function
allows a large margin training based on the SSVM.

Core test set Enhanced test set
I-mix | 2-mix | 4-mix | 8&-mix | 1-mix | 2-mix | 4-mix | 8-mix
One-state LMHMM (Hard-max) 33.0 324 30.8 29.6 31.9 31.4 30.1 29.0
Three-state LMHMM (Hard-max) 30.8 29.8 29.0 28.5 30.2 29.3 28.7 28.1
LMSMM (Hard-max) 29.9 29.2 28.6 28.3 29.0 28.4 28.1 27.9
LMSMM (Soft-max) 28.9 28.0 27.3 27.1 28.2 27.5 27.1 26.8
TABLE VI

PHONE ERROR RATES (%) OBTAINED BY BATCH LEARNING OF LMSMM
PARAMETERS ON THE CORE TEST SET.

I-mix | 2-mix | 4-mix | 8-mix
LMSMM-+Batch (Hard-max) 30.1 29.6 28.8 28.6
LMSMM-+Batch (Soft-max) 29.3 28.6 27.9 27.8

Compared to the batch learning, the online learning is
known to converge faster and produces a system with better
generalization capability. As shown in Fig. 6, the proposed
algorithm converged within 5 passes through the training set.
The benefit of batch learning is that it can be performed in
parallel which is important for LVCSR tasks. In the TIMIT
phonetic recognition task, we performed batch learning under
the proposed LMSMM framework by accumulating gradi-
ents/subgradients through the training set before updating the
parameter vector. As shown in Table VI, the phone error rate
of the batch learning is a little higher than that of the online
learning, but it is lower than that of the three-state LMHMM.

The LMSMM has the potential to further improve its
performance, since the LMSMM offers more flexibility to
facilitate the incorporation of different segment-based feature
maps and segmentation loss functions. The use of boundary
frame features, variance features across frames and a loss as a
function of segmentation boundaries might improve the perfor-
mance. Furthermore, a context-dependent triphone model and
a multi-state model might also improve the performance. To
apply context-dependent triphone model for phonetic recog-
nition using the proposed LMSMM framework, we need to
convert monophone-based labeling to triphone-based labeling
and construct a decision tree to cluster the triphones. We leave
this work for the future.

A multi-state LMSMM is much more complex than the
proposed one-state LMSMM with mulitple bins, since there
are many possible state sequences to consider for a given
phone boundary. In addition, it will be very difficult to
formulate a multi-state LMSMM with a discriminant function
that is in linear form. As an alternative, we consider subphone
models.

Since the sub-segmentation information such as the bound-
aries of beginning, middle and ending segments of each
phone is necessary during training, and no existing database
provides this type of segmentation information, we obtained
boundary segmentation information (beginning, middle and
ending of each phone) using the Viterbi algorithm on a
three-state LMHMM and then built a subphone LMSMM
without binning. As shown in Table VII, the performance



TABLE VII
PHONE ERROR RATES (%) OBTAINED BY SUBPHONE LMSMM WITHOUT
BINNING ON THE CORE TEST SET.

1-mix | 2-mix | 4-mix | 8-mix
subphone LMSMM (Hard-max) 29.6 29.0 28.5 28.2
subphone LMSMM (Soft-max) 28.7 27.7 27.2 26.9

is a little better than that obtained by one-state monophone
LMSMM with three bins. This can be attributed to the fact
that subphone LMSMM considers variable length subphones
during inference. The analysis using more bins and multi-state
models are left for future research.

An implemented code of the LMSMM is available at
http://mmp .kaist.ac.kr/~swkim.

V. CONCLUSION

In this paper, we propose the LMSMM for phonetic recog-
nition. The SMM framework can be better suited for this
task than the HMM framework in that SMM framework is
capable of simultaneous phonetic segmentation and label-
ing with segment-based features. We define not a posterior
probability but an explicit discriminant function and estimate
the function parameters by SSVM which is a large margin
learning framework for structured prediction. The proposed
discriminant function is linear in the segment-based joint
feature map which consists of the transition feature function,
duration feature function and content feature function. As
the function parameters are estimated, the SSVM increases
the score margin obtained from the discriminant function by
scaling it with a loss for better generalization. The stochastic
gradient descent with both the hard-max margin and the soft-
max margin is used to solve the optimization problem of
SSVM in the primal domain due to its fast convergence and
capability to handle a large number of margin constraints.
Experimental results showed that the proposed LMSMM out-
performed the LMHMM from experiments on the TIMIT
phonetic recognition.

APPENDIX
FORWARD AND BACKWARD PROCEDURES FOR
COMPUTING THE GRADIENT OF THE SOFT-MAX

The forward variable «(t,¢) and the backward variable
B(t, £) for the i-th training sample are defined as

ailt,)= 3 (w2 (Xiy ) +Ay) “2)
yeyg,
and
Bt )= Y (w2 X0y ) +A(yiy")) @)

B
Y€

where y, and yge denote respectively all possible partial
segmentations from 1 to ¢ such that the last segment ends at the
t-th frame with label ¢ and all possible partial segmentations
from ¢ 4+ 1 to 7" such that phone /¢ transits to a certain phone

at time ¢. The forward and backward variables are calculated
recursively from the previous variables as

R(¢)

ai(t,0) = 3 Z[ai(t —d, 0

d=1 ¢
Xe(<w,¢<éce,t—d,t7xi>>+A(y,-,é,t—d,t>)} (44)

and

-

)

=1 ¢
Xe((Wﬁi’(f,@',t,ter’Xi))JrA(yw'75',tyt+d))] (45)

[ﬂi(t +d, ")

U

where the Hamming distance within a segment, which is
labeled ¢ in the interval [t; + 1, 2], is given by

to
Alyi bt b)) = > 8l #0). (46)

t=t1+1

Using the forward or backward variables, we can compute the
soft-max over all possible ys including y; as

7, = log ) e((W2XKim)+AE:¥))

y
= log Z a; (T, £) =log B;(0, start). 47)
lel

The gradient of Z; with respect to the m-th element of w,
Wy, 1S expressed as

6(6277 _ 6<W7<1>(X11,y7‘,)>>
eZi — (W, 2(X;,y4)) 0w,
6271 % — 6<W7¢)(Xi7§’i)>¢m (X17 yl)

_ Owm (48)
eZi — e{w,®(X;,y4))

0Z; 1

ow,,

where ¢,, is the m-th element of ®, and

R(0)

0Z; 1 « , ,
s = EZZ SN w6t —d t, Xi)ay(t—d, )

t=1¢eL d=1 ¢
« Bilt, ()e((w,¢(€’7é,t7d,t7Xi))+A(yi,&tfd,t)).

(49)
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