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ABSTRACT

Cooperation diversity schemes employing space-time block
coding (STBC) techniques have been proposed for wireless net-
works to increase network capacity and coverage even when each
node is equipped with a single antenna. Such schemes allow several
relay stations distributed in space to assist the transmission between
a given source-destination pair. A key design problem in cooperative
networks is to take advantage from spatial diversity by reducing the
amount of signaling and processing overhead as far as possible. In
this paper, capitalizing on randomized STBC (RSTBC), a coding
method which has been recently developed for decode-and-forward
(D&F) relay nodes, a totally decentralized cooperative communi-
cation scheme is proposed for amplify-and-forward (A&F) relays,
where each relay is unaware of both the effective STBC being em-
ployed by the other nodes and the number of cooperating stations.
Numerical results are provided to highlight the effectiveness of the
proposed scheme in comparison to its D&F counterpart.

Index Terms— Amplify-and-forward relaying, cooperative
wireless networks, relay design, space-time randomized coding.

1. INTRODUCTION

Multiantenna techniques offer significant improvements in link reli-
ability through the use of multiple antennas at the transmitter and/or
receiver side, without involving system losses in terms of delay and
bandwidth efficiency. However, due to space and power constraints,
the use of multiple antennas might not be feasible at mobile sta-
tions in cellular systems, as well as in ad hoc or multihop wire-
less networks. To overcome such practical limitations and not to
renounce the performance enhancement introduced by multiantenna
approaches, a viable strategy consists of exploiting cooperative di-
versity arising from the presence of multiple terminals distributed in
space [1], which may serve as relay stations. Decode-and-forward
(D&F) and Amplify-and-forward (A&F) relaying are popular coop-
eration protocols: in the former one, the relay node forwards the
source symbols if it has correctly decoded; in the latter one, the relay
node amplifies the received signal and retransmits it to the destina-
tion. One possible approach for involving more than one cooperative
relay without a significant loss in spectral efficiency is to use space-
time block coding (STBC) among the relays [1].

The use of conventional STBC rules in a distributed fashion is a
challenging design problem. The main impediment stems from the
fact that, to provide diversity and coding gains, coordination among
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the source, the destination and the relays is strictly needed before
using a specific STBC, which is typically designed for a fixed num-
ber of transmit antennas. Unfortunately, due to the distributed and
ad hoc nature of cooperative links, the number of virtual antennas
(i.e., cooperating nodes) is generally unknown and time-varying.
With reference to D&F relaying, randomized STBC (RSTBC) was
proposed in [2], which does not require a preliminary coordination
among the participants in the cooperative communication. Such a
strategy allows achieving diversity order equal to the minimum be-
tween the number of cooperating nodes N and the number of anten-
nas L assumed in the space-time code structure, irrespective of the
number of relays; moreover, under the maximum likelihood (ML)
detection rule, it approaches the performance of centralized STBC
D&F-based schemes [1], both in diversity and coding gain.

In general, D&F cooperation protocols provides performance
gains under the assumption that each relay node can decide whether
it has correctly decoded or not. However, such an assumption im-
poses practical limitations on the D&F cooperative systems. More-
over, if the assumption of correct decision at the relay nodes is not
met exactly, because of the errors at the relay nodes, error propa-
gation from the relays to the destination [1] would highly degrade
system bit-error-rate (BER) performance. In this paper, we focus
on A&F relaying. Since this operation mode requires no decoding
at relay nodes, it involves a less processing burden with respect to
D&F relaying and, thus, it is well-suited to systems with simple re-
lay units such as wireless sensor networks and practical ad hoc or
multihop wireless networks. In [3], A&F cooperation protocols us-
ing full-rate linear dispersion space-time codes were analyzed and it
is shown that, for very large values of the total transmitted power, the
system approximatively achieves diversity order equal to the mini-
mum between N and the block length K and, additionally, at low
and high signal-to-noise ratio (SNR), maximum coding gain. How-
ever, the work of [3] did not account for code design criteria of the
space-time codes in a decentralized fashion. In this paper, relying
on the idea of randomized coding, we propose a distributed A&F
cooperation protocol which is fully decentralized and admits single-
symbol ML decoding. Numerical simulation results show that the
proposed diversity scheme performs comparably to its centralized
counterpart and outperforms the D&F-based RSTBC scheme of [2],
even in the high SNR region where errors at the relay nodes are rare.

2. SYSTEMMODEL

The considered wireless network is composed of N randomly
and independently placed relay nodes, one source station (S) and
one destination terminal (D), each one employing a single trans-
mit/receive antenna. The channel between each node pair is assumed
frequency non-selective and quasi-stationary, i.e., it is characterized
by a single fading coefficient that remains constant within one frame
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of data symbols but may vary from frame to frame. Specifically, for
i ∈ {1, 2, . . . , N}, let fi and ηi denote the channel gain and the
distance, respectively, between S and the ith relay, whereas gi and
μi denote the channel gain and the distance, respectively, between
the ith relay andD; the coherence time of fi is larger thanK symbol
intervals, whereas the coherence time of gi is larger than P sym-
bol intervals.1 The channel vectors f � [f1, f2, . . . , fN ]T ∈ C

N

and g � [g1, g2, . . . , gN ]T ∈ C
N are statistically independent of

each other and are modeled as follows: f ∼ CN (0N ,Σf ), with
Σf � diag(σ2

f1
, σ2

f2
, . . . , σ2

fN
) ∈ R

N×N , and g ∼ CN (0N ,Σg),
with Σg � diag(σ2

g1 , σ2
g2 , . . . , σ2

gN
) ∈ R

N×N , whereas we define
σ2

fi
� η−ρ

i and σ2
gi

� μ−ρ
i , where ρ is the path-loss exponent.

Following the related literature, e.g., [1, 2], perfect synchronization
is assumed at the symbol level among all the terminals.

Let S send the block a � [a1, a2, . . . , aK ]T ∈ C
K composed

of independent and identically distributed (i.i.d.) zero-mean symbols
having variance σ2

a, with the aid of theN relays. The random vector
a assumes equiprobable values inA � {α1, α2, . . . , αQ}. The co-
operative transmission takes place in two phases. In Phase I, which
spans a time interval ofK consecutive symbol periods, S broadcasts
to all the potential relays the vector a and, consequently, a block of
K consecutive samples of the discrete-time baseband equivalent re-
ceived signal at the ith relay can be expressed as yi = fi a+ni, for
i ∈ {1, 2, . . . , N}, where ni ∼ CN (0K , σ2

i IK) denotes additive
white Gaussian noise (AWGN), which is statistically independent
of a, f and g, with ni1 and ni2 statistically independent of each
other for i1 �= i2. Observe that in this framework the power con-
straint of the source transmission is Ps � E(‖a‖2) = K σ2

a. In
Phase II, all the N relays simultaneously transmit in the same fre-
quency band a block of data containing the information of a. Let
xi ∈ C

P denote the block of P ≥ K data transmitted by relay i, the
baseband equivalent discrete-time signal received at D assumes the
form2 yd = Xg + nd, whereX � [x1,x2, . . . ,xN ] ∈ C

P×N and
nd ∼ CN (0P , σ2

d IP ) denotes AWGN, which is statistically inde-
pendent of a, f , g and {ni}N

i=1. Note that the code rate turns out to
beK/P and the transmission time for Phase II is equal toP symbols
intervals. Finally, assuming coherent detection at the destination, the
block yd received in Phase II is used by D to produce the optimal
(in the minimum SEP sense) ML estimate baopt of a.
3. PROPOSED COOPERATIVE DIVERSITY SCHEME

In the sequel, we assume that the ith relay has perfect knowledge
of the fading coefficient fi previously obtained via training. Herein,
we describe our proposed randomized coding rule, by explicating

1Boldface upper [lower] case letters (e.g.,A or a) are matrices [vectors];
Cm×n [Rm×n] is the field of m × n complex [real] matrices; Cm [Rm]
is a shorthand for Cm×1 [Rm×1]; {a}i is the ith element of a; |a| denotes
the magnitude of a ∈ C; ∗, T , H , −1 denote the conjugate, the transpose,
the Hermitian and the inverse of a matrix; let a = [a1, a2, . . . , an]T ∈ Cn

and I ⊆ {1, 2, . . . , n}, the ith entry {a[∗]I}i of the vector a[∗]I is {a∗}i

if i ∈ I , otherwise {a[∗]I}i = {a}i; 0m ∈ Rm, is the null vector and
Om×n ∈ Rm×n and Im ∈ Rm×m are the null and the identity matri-
ces; ‖a‖ is the Euclidean norm of a; A = diag(a1, a2, . . . , an) ∈ Cn×n

is a diagonal matrix whose (i, i)th entry is ai; E[·] and j � √−1 denote
ensemble averaging and imaginary unit; a circular symmetric complex Gaus-
sian random vector x ∈ Cn with mean μ ∈ Cn and covariance matrix
K ∈ Cn×n is denoted as x ∼ CN (μ, K).

2For a fair comparison with the results of [2], it is assumed that there
is no direct link between S and D. For instance, this is the case when the
distance between S and D is large enough such that the direct link strength
is negligible. However, our framework can be straightforwardly modified by
allowing S to re-transmit the block a in Phase II together with the N relays.

the structure of the aforementioned matrix X. Let us focus on the
processing carried out at the ith relay, with i ∈ {1, 2, . . . , N}. The
relay undertakes three actions. As a first step, the received signal yi

is scaled by the factor λi > 0 and multiplied by f−1
i , thus obtaining

the new data block

zi = λi f−1
i yi = λi a + λi

eni∈C
Kz }| {

ni f−1
i = λi a + λi eni , (3.1)

where eni ∼ CN (0K , |f−1
i |2 σ2

i IK). Since we have assumed that
there is complete CSI at the relays, an appropriate constraint [1] is
to ensure that a given transmitted power is maintained, that is,

λi =

s
Pi

σ2
a + |f−1

i |2 σ2
i

, (3.2)

which keeps the power constraint E(‖zi‖2) = K Pi > 0. In the
second step, as done in standard space-time coding [4], the vector
zi is mapped onto a space-time code matrix C(zi) ∈ C

P×L, where
P is the block length and L denotes the number of antennas in the
underlying space-time code. The impact of L on the system perfor-
mance will become clear in Section 4; for the moment, we underline
only that there is no relationship between L and the number of co-
operating relays N . The STBC is distributed among the relays such
that each node virtually acts as a single antenna in a multiple an-
tennas transmitter, by transmitting a random linear combination of
the columns of C(zi). Therefore, as a last step, let ri ∈ C

L be a
random vector containing the linear combination coefficients for the
ith node, with E(‖ri‖2) = 1, the code xi ∈ C

P transmitted by
the ith relay is given by xi = C(zi) ri. For the time being, we do
not make any specific assumption on the statistical model of the ran-
domization matrix R � [r1, r2, . . . , rN ] ∈ C

L×N , which collects
the randomization vectors used by all the relays; we highlight only
that the proposed coding rule is completely decentralized since the
ith relay chooses ri locally from a given distribution, which does
not depend on the node index i. It is noteworthy that, apart fromR,
the matrix X = [C(z1) r1, C(z2) r2, . . . , C(zN ) rN ] also depends
on the source block a, the channel vector f and the noise vectors
{ni}N

i=1 at all the relays. Hence, to explicitly write the block re-
ceived at D by separating the source signal from the effective noise
contribution, we have to focus on a specific code structure.

In this paper, we consider complex orthogonal space-time block
codes (COSTBCs) [4], which are able to achieve full diversity at a
low symbol-by-symbol ML decoding complexity. In complex OS-
TBCs, the code matrix C(zi) is a widely linear (WL) transforma-
tion of zi � [zi,1, zi,2, . . . , zi,K ]T given by (3.1), i.e., the entries
of C(zi) are complex linear combinations of the complex variables
zi,1, zi,2, . . . , zi,K and their conjugates z∗i,1, z

∗
i,2, . . . , z

∗
i,K . Follow-

ing [4], we assume for the space-time coded matrix C(zi) the fol-
lowing orthogonal structure:

C(zi) =
KX

k=1

zi,k Φk +
KX

k=1

z∗
i,k Ψk , (3.3)

whereΦ1,Φ2, . . . ,ΦK ,Ψ1,Ψ2, . . . ,ΨK are constant weight ma-
trices in C

P×L designed such that the columns of C(zi) are orthog-
onal vectors, i.e., C(zi)

H C(zi) = ‖zi‖2 IL, ∀zi ∈ C
K − {0K},

which imposes that P ≥ L necessarily. In this case, accounting for
(3.1), it is readily seen that C(zi) = λi [C(a) + C(eni)]. Conse-
quently, the signal received by D can be decomposed as

yd =
NX

i=1

λi gi C(a) ri + wd = C(a)h + wd , (3.4)
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where h � [h1, h2, . . . , hL]T = R Λg ∈ C
L is the “composite”

channel seen byD, withΛ � diag(λ1, λ2, . . . , λN) ∈ R
N×N , and

wd �
NX

i=1

λi gi C(eni) ri + nd (3.5)

denotes the effective noise at the receiver. It should be observed
that the receiver can estimate from (3.4) the vector h by completely
ignoring what f , g and R are. Specifically, estimation of h can
be performed by resorting to standard training-based identification
methods. In this case, each data transmission is preceded by a train-
ing period, wherein all the cooperating relays transmit a symbol se-
quence known toD, by using certain randomization vectors {ri}N

i=1

that will be maintained until a new training phase is initiated.
A nice property of COSTBC rules is that C(·) can be designed

so as to obtain a linearized signal model at the destination. This can
be accomplished if there exists a subset I ⊆ {1, 2, . . . , P} such that

[C(β) γ][∗]I = D(γ) β , for any β ∈ C
K and γ ∈ C

L , (3.6)

where D(γ) ∈ C
P×K is a complex orthogonal WL transforma-

tion of γ , i.e., DH(γ) D(γ) = ‖γ‖2 IK , ∀γ ∈ C
L − {0L},

whose structure is similar to that of C(β) and whose weight matrices
are uniquely determined from Φ1, Φ2, . . . ,ΦK ,Ψ1,Ψ2, . . . ,ΨK ,
which are known at D. It can be shown [5] that (3.6) holds if and
only if the pth row of C(·), ∀p ∈ I, has all its non-zero entries
conjugated (conjugate row), whereas the pth row of C(·), ∀p ∈
{1, 2, . . . , P}−I, has all its non-zero entries non-conjugated (non-
conjugate row). For instance, the well-known 2×2 COSTBC design
of proposed by Alamouti, for which P = K = L = 2, fulfills con-
dition (3.6) with I = {2}. By virtue of (3.6), from (3.4) and (3.5),
one has the linearized (L) model

yd,L � 1

‖h‖2
DH(h)y

[∗]I
d = a +

1

‖h‖2
DH(h)w

[∗]I
d| {z }

wd,L∈CK

, (3.7)

with

w
[∗]I
d =

NX
i=1

λi D(gi ri) eni + n
[∗]I
d . (3.8)

Although at first sight the signal model (3.4) might appear similar
to that reported in [2, Eq. 3], there is a key difference. The effec-
tive noise wd ∈ C

P at the receiver depends on the source-to-relay
channel vector f and on the relay-to-destination channel vector g,
as well as on the randomization matrix R. This implies that, given
both g and R, the vector wd may be additive correlated Gaussian
noise (ACGN); instead, assuming correct decision at the relays, the
noise term at the receiver is AWGN in [2]. To this respect, capi-
talizing on the linearized models (3.7) and (3.8), it is readily seen
that wd,L ∼ CN (0K ,Kd,L) conditioned on R, f and g, where
Kd,L � E[wd,L wH

d,L |R, f , g] = 1
‖h‖4 DH(h)Kd D(h), with

Kd � E[w
[∗]I
d (w

[∗]I
d )H |R, f , g]

=

NX
i=1

λ2
i |f−1

i |2 σ2
i D(gi ri)DH(gi ri) + σ2

d IP . (3.9)

Interestingly, if the STBC used by the relays has full rate 1, i.e.,
P = K, one has D(gi ri) DH(gi ri) = DH(gi ri)D(gi ri) =
|gi|2 ‖ri‖2 IK , which implies that the vector wd,L turns out to be
AWGN, whose autocorrelation matrix assumes the simplified form

Kd,L =
1

‖h‖2

 
NX

i=1

λ2
i |f−1

i |2 σ2
i |gi|2 ‖ri‖2 + σ2

d

!
IK . (3.10)

In this case, optimum ML decoding corresponds to the decision rule

ba = arg min
a∈A

‖yd,L − a‖2 . (3.11)

For instance, this is the case of the Alamouti’s code for L = 2.
However, in the case of COSTBC design, it was proven in [6] that
the code rate cannot be greater than 3/4 for L ≥ 3. In such a case,
the noise is correlated at the destination, thus, under the assumption
that realizations of h and Kd,L are perfectly known at the receiver,
one-shot optimum ML decoding can be obtained by preventively
whiteningwd,L. Although the matrixKd,L could be estimated atD,3

a simpler receiving strategy consists of resorting to the suboptimal
detector which is designed as if the effective noise vector wd were
AWGN, i.e., it implements the rule (3.11). This detector turns out to
be optimum for COSTBC exhibiting full rate 1, which happens when
L = 2 as previously mentioned. However, for L ≥ 3, we will show
that the suboptimum detector achieves satisfactory performance.

4. NUMERICAL PERFORMANCE ANALYSIS

In this section, to perform a comparative performance study of the
proposed A&F randomized approach and its D&F counterpart de-
veloped in [2], we resort to Monte Carlo computer simulations. We
remember that both schemes are decentralized by construction: the
code order L is independent of the actual number of cooperative
nodes, and this allows to decentralize the relay selection procedures.
We also report the performance of the A&F centralized approach. In
a centralized scheme [1], if N ≥ L, the nodes are divided into L
equal groups and each group emulates a pre-assigned single antenna
in a L-dimensional virtual multiple-antenna transmitter.4 IfN < L,
the nodes emulate N out of the L preselected virtual antennas. For
simplicity, in the subsequent examples, we consider the case when
N is a multiple of L, i.e.,N = M L, withM ∈ Z. In this case, the
centralized A&F schemes can be still described by (3.4) and (3.5),
withR being a deterministic matrix given by

R =
h
e1, . . . , e1| {z }

M

e2, . . . , e2| {z }
M

. . . eL, . . . , eL| {z }
M

i
, (4.1)

where e� � [0T
�−1, 1, 0T

L−�]
T ∈ R

L.
In all the experiments, the following simulation setting is

adopted. All the nodes are uniformly and independently distributed
in a circle of radius 10 meters centered around D. The position of
D is kept fixed, while the position of S changes randomly from run
to run, with the distance between S and D set to 10 meters. The
source uses QPSK signaling, i.e., ak ∈ {±1/

√
2 ± j1/

√
2}, for

k ∈ {1, 2, . . . , K}, thus σ2
a = 1. We set the path-loss exponent

ρ = 2; the transmitted power from the ith relay is equal to Pi = 1;
the noise power at the relay is assumed equal to the noise power at
the destination, i.e., σ2

d = σ2
i = σ2 and, consequently, the SNR is

defined as γ � 1/σ2. For the considered decentralized approaches,
the entries of R are i.i.d. circularly symmetric complex Gaussian
random variables with zero mean and variance 1/L. Finally, as per-
formance measure, we resorted to the average BER (ABER) at the
receiver output as a function of the SNR ranging from 0 to 30 dB:
for each of the 104 Monte Carlo run carried out (wherein, besides
the network configuration, all the channel coefficients, independent

3It is easily seen that Kd,L = E[yd,L yH
d,L |R, f ,g] − σ2

a IK , where

E[yd,L yH
d,L |R, f ,g] can be consistently estimated from the received data.

4If N is not a multiple of L, then at the remaining nodes, the power is
equally distributed among the L antennas.
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Fig. 1. ABER versus γ (Example 1,N = 4).

sets of noise, data sequences and randomization coefficients are
randomly generated), an independent record of 102 symbols is con-
sidered to evaluate the ABER. Note that, for all the methods under
comparison, transmission and reception processes are simulated in
both Phase I and II. Thus, for the D&F scheme, the obtained results
account for incorrect decisions at the relays.

Example 1: Alamouti space-time code of order L = 2

In this example, we consider as space-time coding rule the full-
rate Alamouti code of order L = K = P = 2 given by

C(a) =

»
a1 a2

−a∗
2 a∗

1

–
=⇒ D(h) =

»
h1 h2

h∗
2 −h∗

1

–
. (4.2)

We remember that, in this case, the decision rule (3.11) is optimum,
i.e., ba = baopt. In this example, the number of relay nodes is equal to
N = 4. It is apparent from Fig. 1 that the proposed randomized A&F
scheme achieves the same diversity order of its centralized counter-
part, by paying only a negligible performance penalty in the high
SNR regime in terms of coding gain. Remarkably, the randomized
A&F cooperative protocol outperforms the randomized D&F coding
rule proposed in [2] for all the considered values of the SNR. Specif-
ically, for an ABER of 10−4, the SNR required for the randomized
D&F scheme is about 4 dB more than that for the proposed random-
ized A&F approach. This performance gap is essentially due to the
error propagation from the D&F relays to the destination, because
of the errors at the relay nodes. Numerical results, not reported here
due to the lack of space, show that the ABER at the output of the ML
detector regarding the “worse” relay node, i.e., the one that is farthest
from the source, varies from 10−2 to 10−3, for 18 ≤ γ[dB] ≤ 23,
whereas it varies from 10−3 to 10−4, for 24 ≤ γ[dB] ≤ 27, and,
finally, it is below 10−4, for γ ≥ 28 dB. Henceforth, we can state
that, if the BERs at the relay nodes are not really negligible, noise
propagation from the proposed A&F relay nodes to the source is less
harmful than error propagation from the D&F relay nodes of [2].

Example 2: Alamouti space-time code of order L = 3

In this example, we consider as space-time coding rule the

Fig. 2. ABER versus γ (Example 2, N = 6).

Alamouti code of order L = K = 3 given by

C(a) =

264
a1 a2 a3

−a∗
2 a∗

1 0
−a∗

3 0 a∗
1

0 −a∗
3 a∗

2

375 =⇒ D(h) =

264
h1 h2 h3

h∗
2 −h∗

1 0
h∗

3 0 −h∗
1

0 h∗
3 −h∗

2

375 ,

(4.3)
whose rate is K/P = 3/4. We remember that, in this case, the
decision rule (3.11) is suboptimum. In this example, the number of
relay nodes is equal to N = 6. Results of Fig. 2, besides confirm-
ing the superiority of the randomized A&F coding strategy with re-
spect to its D&F counterpart for all the considered SNR values, show
that the A&F-based receivers based on the suboptimum decision rule
(3.11), which ignore the fact that the noise correlation matrix (3.9)
is not diagonal, exhibit very satisfactory performances. In particular,
the proposed randomized A&F scheme essentially achieves the same
performance of the centralized space-time code in terms of both di-
versity order and coding gain.
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