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Abstract

Spatio-Temporal Interest Point (STIP) has been widely
used for human action recognition. However, the perfor-
mance of the STIP based methods are still limited in real-
istic datasets which often include large variations in illu-
minations, viewpoints and camera motions. One reason of
the low performance is that the STIPs only reflect the local
change in videos, which is not enough to obtain stable infor-
mative features for action representation in realistic scene.
To tackle the problem, we proposed an approach to selecting
the “stable STIPs” with the spatio-temporal distribution of
STIPs in neighbor region. Then, BoW feature is constructed
to represent actions with these selected points. The experi-
mental results on KTH dataset and HMDB (the largest real-
istic human action dataset) demonstrate that the proposed
approach has obvious effect on improving the recognition
rates of realistic data.

1. Introduction

Recently human action recognition has been a hot re-

search topic in computer vision community, due to its wide

application prospects, e.g., video surveillance, human com-

puter interaction and multimedia retrieval. And STIP+BoW

[1, 2, 3, 4, 5] have become one of the most popular method-

s for human action recognition because of its robustness to

the motion clutters in background. Some other work, such

as [6], proposed similar idea. With such methods, very high

recognition accuracies have been reported on early simple

action datasets, e.g., the KTH dataset [7] and the Weiz-

mann dataset [8], where only one subject performs some

controlled movements with a clear background and frontal

viewpoint.

However, it is still a challenge work to perform action

recognition on realistic uncontrolled datasets. For example,

the baseline method of STIP+BoW in [9] achieves very low

average recognition accuracies on the newly published H-

MDB, which is the largest realistic human action dataset.

(a) (b)

(c)

Figure 1. (a) STIPs in video data; (b) the neighboring relations of

points in spatio-temporal space. Different icons represent the vi-

sual words the points belonging to; (c) concurrence relationship

graph generated with the context information of neighbors. Every

vertex corresponds to a visual words, and every directed edge rep-

resents the relationship of two words. This graph is used to select

stable points.

That is because realistic datasets have much larger varia-

tions in illumination, pose, viewpoint, camera motion and

data source (the clips are collected freely from Internet and

movies). Due to the large variations, STIPs detected by cal-

culating the local changes on small scales are not stable for

action representation.

In this paper, we propose an approach to select the stable

STIPs for action recognition in realistic scene. To measure

the stability of STIPs, we utilize the neighbor context a-

mong STIPs in a supervised style. As shown in Figure 1(c),

a statistical graph reflecting the spatio-temporal distribution

of STIPs in neighbor region is firstly learnt from the train-

ing data for each action class. The stability of a STIP is

the degree of its context fitting the graph, and, accordingly,

we use the stable STIPs to construct BoW feature for the
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final action classification. We test our method on KTH and

HMDB datasets. The experimental results demonstrate the

effectiveness of the proposed method. The recognition ac-

curacy on HMDB dataset has been greatly improved from

22.8% to 51.2%.

The rest of the paper is arranged as follows. The second

section describes some related work on action recognition.

Section 3 details the proposed approach of stable STIP s-

election. Experimental results are presented in Section 4.

Section 5 concludes this paper.

2. Related work
In early work, some researchers proposed to use tem-

plate matching [10] and holistic features, e.g., body shape

[11, 12] and silhouette [13], to classify human actions.

These methods depend largely on tracking or extraction

of human bodies. As motion tracking and human body

extraction are still challenging problems on realistic data

with large variations in illumination, viewpoint, etc. Thus,

this kind of methods cannot achieve stable and satisfy-

ing results on realistic dataset. Instead of the holistic fea-

ture based paradigm, many researchers applied STIP+BoW

based method to reducing the effects of both background

motion noises and tracking errors. Firstly, a set of STIPs

are detected by different detectors based on local spatio-

temporal change in a video clip, such as Harris3D detector

[14], Cuboid detector [1] and Hessian detector [15]. Then,

BoW model [16] can be naturally used to represent an ac-

tion sequence. To model the co-occurrence relationships

among words, a number of topic models, e.g., probabilistic

Latent Semantic Analysis (pLSA) [17] and Latent Dirichlet

Allocation (LDA) [18], have also been introduced to action

recognition.

Recently, some other methods have been proposed to

model spatio-temporal relations among STIPs on larger s-

cales. Savarese et al. [19] proposed the spatial-temporal

correlograms to encode the long range temporal informa-

tion into the local motion features. Kovashka and Grauman

[20] tried to use the context information of neighbor points

to form a new feature which is more stable by the restraint

of the context information. Hu et al. [21] utilized the vol-

umetric context to calculated a local histogram and use the

histogram as a new feature.

In this paper, we also propose to use context information

of local STIPs for action recognition. However, instead of

forming new spatio-temporal features, our goal is to selec-

t the stable STIPs in realistic actions by using the context

information and enhance the final BoW feature. [22] pro-

posed an idea of selecting stable STIPs, and the difference

is that the visual vocabulary is generated with the features

in all classes. Our work learns vocabularies separately in

all classes and constructs concurrence relationship graphs,

which can describe the stable relationship of STIPs of dif-

(a) (b)

Figure 2. (a) N vertices, which correspond to N visual words, and

edges from Vi in feature space; (b) the distribution of neighbors of

point pi and pj in spatio-temporal space. Different icons represent

which words the points belong to.

ferent actions, for every class with different methods.

3. Our methods

Our method has 4 steps, i.e., STIP detection and descrip-

tion, concurrence relationship graph construction, STIP se-

lection, and BoWs concatenation.

3.1. STIP detection and Description

There are various kinds of STIP detectors and local de-

scriptors in the previous work. As the Harris3D detec-

tor and the HOG-HOF descriptor in [4] achieved state-

of-the-art performance, it has become a baseline method

for action recognition. Thus, in this paper, we also apply

Harris3D+HoG-HoF to detect and describe STIPs in a video

clip. As the STIP detection only depends on the information

of local spatio-temporal changes, the detected STIPs are not

stable for represent human actions with large variations in

videos.

3.2. Concurrence Relationship Graph construction

With the detected STIPs and the corresponding local de-

scriptors, a codebook with the size of k is built with k-

means clustering for each action class. Then, k-NN is used

to decide the label of each STIP. Finally, each STIP can be

described as pi =< xi, yi, ti, li >, where < x, y > is the

spatial position of the point, t records the frame number in

the video, and l is the corresponding index of visual code, l
belongs to 1, 2, ..., k. Thus, a video clip can be described as

a stack of STIPs.

To select the stable local STIPs, we adopt the contex-

t information of STIPs on larger scales. We assume that a

STIP should have a stable occurrence relationship with its

neighboring STIPs. For example, in the action of “shootbal-

l”, a STIP corresponding to “wrist bending” commonly has

neighboring STIPs corresponding to “elbow bending” and
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“ball throwing”. To build the context relationship, we gen-

erate a graph where each vertex denotes a code in the learnt

codebook and the edges denotes the concurrence relation-

ships between the codes. Figure 2 (a) shows the relationship

from Vi to the other visual codes < V1, V2, ..., Vk >. The

edge value is decided by the concurrence strength of two

visual codes. To calculate the concurrence strength of Vi to

the other vertices, we firstly select all STIPs with l = i in

the training clips of the action class.

Then, for one STIP pi shown in Figure 2(b), we select

maximum n nearest STIPs in spatio-temporal space, the dis-

tance between two points, pi(xi, yi, ti) and pj(xj , yj , tj),
is measured by a Euclidean alike distance in the spatio-

temporal coordinates, x-y,t.

Dij =
√
dsij

2 + λdtij
2

(1)

where

dsij =

√
(xi − xj)

2
+ (yi − yj)

2
(2)

dtij = |ti − tj | (3)

and λ is a parameter to balance the different scales between

space and time. The setting of λ follows the video data. The

size of videos in HMDB dataset is 320 by 240. A man has

a scale of about 70 pixels. Assuming the man is 1.8 meters

in height, one meter in actual life corresponding to about

40 pixels in video. We suppose that human motion velocity

is 1 meter per second. As the frame rate of video is 25

frames per second, one meter on temporal scale corresponds

to about 25 pixels. So λ is set to 3 according to (40/25)2.

For each STIP with l = i, a k dimensional vector

< n1, n2, ..., n3 > is obtained, where nj is the number of

neighboring STIPs with l = j. After accumulating the vec-

tors of all STIPs with l = i, a neighbor distribution his-

togram, Ei =< ei1, ei2, ..., eik >, of the i-th code is ob-

tained, where eij is the concurrence strength from Vi to Vj .
We repeat the procedure over all codes, and a concurrence

relationship graph is generated finally like Figure 1(c).

Figure 2(b) illustrates that concurrence relationship in

this work is not a symmetrical relation due to the constrain-

t of maximum number of the nearest neighboring STIPs.

So there are two directed edges with different values be-

tween two vertices. In this work, the maximum number of

neighboring STIPs is set as 10. To enhance the selectivity

of the concurrence relationship graph, we calculate a graph

for each action class.

3.3. STIP selection

The concurrence relationship graph describes the neigh-

boring distribution of STIPs. We can utilize it to make de-

cision whether or not a STIP pi =< xi, yi, ti, li > in a

video clip is noise. Firstly, we find the nearest n neighbor-

ing STIPs < pi1, pi2, ..., pin > of pi, and their correspond-

ing labels < li1, li2, ..., lin >. Then, for each neighboring

STIP, we find the corresponding edge value in the concur-

rence relationship graph. Because the edge value represents

the strength of concurrence relationship between two codes,

the sum of the edge values of all neighboring STIPs denotes

the degree of the centering STIP fiting its context for a cer-

tain action. Thus, if the sum value is smaller than a cer-

tain threshold, the STIP can be regarded as an unstable one.

Here, we use stability index di to describe the point’s degree

of being a stable point.

di = 1/n

n∑
j=1

elilj (4)

where li is code label of pi, and elilj is the value of the edge

from Vli to Vlj . The larger di is, the higher the probability

of pi being stable STIP is. If di is smaller than a threshold

T , pi will be removed.

3.4. BoWs concatenation and SVM classification

The neighbor relationship of one action is different from

that of another action. Thus, for C action categories, we

learn C codebooks < B1, B2, ..., BC > and C correspond-

ing graphs < G1, G2, ..., GC >. Given a video clip from

the dataset, we select STIPs with different concurrence re-

lationship graphs of C classes, separately. For example, for

Bi and Gi of the i-th action, we firstly label all STIPs in

the video clip by hard voting with Bi and remove the un-

stable STIPs with concurrence relationship graph Gi. Then

we get a BOW feature Hi with the selected STIPs. By such

analogy, we can getC BoW features, i.e., a histogram series

H =< H1, H2, ..., HC > (5)

is generated as the final feature vector by concatenating C
histograms in fixed order.

We employ a multi-class Support Vector Machine

(SVM) [23] for action classification. RBF kernel

K(u, v) = exp(−γ ∗ |u− v|2) (6)

is used in our work. Like [9], the two parameters, the cost

term and kernel bandwidth, are optimized using a greedy

search with a 5-fold cross-validation on the training data.

4. Experiment

In this section, we introduce two datasets, i.e., KTH and

HMDB dataset, in experiments and the corresponding ex-

perimental setting. Then, the experimental results on the

two datasets and the results analysis are presented.
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Figure 3. Sample frams of 51 action categories on HMDB dataset.

4.1. Datasets and experimental setting

KTH action dataset [7] is one of the most popular dataset-

s for action categorization, which is a controlled dataset

where only one subject performs some simple movements

in every video. It contains six types of human actions

(“walking”, “jogging”, “running”, “boxing”, “hand wav-

ing” and “hand clapping”) performed several times by 25

subjects in 4 scenarios: outdoors, outdoors with scale varia-

tion, outdoors with different clothes and indoors. There are

totally 599 videos taken over homogeneous backgrounds

with 25fps frame rate. Every category has 100 videos ex-

cept “handclapping” which has 99 videos. The spatial res-

olution is 60x120 pixels and the average length is about 15

seconds.

HMDB [9] shown in Figure 3 is currently the largest real-

istic human motion database. The sources of the videos are

very wide. Most of these videos are from movies, and a

few from public databases such as the Prelinger archive, Y-

ouTube and Google videos. The dataset contains 6849 clips

divided into 51 action categories, each containing a mini-

mum of 101 clips.

Experimental setting: As we try to construct a graph mod-

el, which is robust to illuminations, viewpoints and camera

motions for every actions, we do not separate the dataset by

scenes, and the assignment of training data and test data on

the KTH dataset is: 70 video clips in one category as train-

ing data, which are selected randomly, and the rest clips as

test data. We cluster 40 codes for each action class and the

maximum number of nearest STIPs is set to 10. Only 10

edges with higher value from one vertex are reserved. In

this paper, we empirically set the threshold of stability in-

dex to 0.2.

For the HMDB dataset, as each category contains a min-

imum of 101 clips, following the benchmark systems on the

HMDB dataset, we selected 70 training clips and 30 test

Table 1. Comparison of the performance among different methods.

Method 10 actions 51 actions

Gist [24] - 13.4%

Laptev et al. [4] 54.3% 20.4%

C2 [9] - 22.8%

Action Bank [25] - 38.0

Our method 79.3% 51.2%

clips. The concurrence relationship graphs are generated

from the training data, and we also only use the features

of training data to train SVM model. As the data is more

complex than the KTH data, we cluster 50 codes for every

action category, and set the threshold of stability index to

0.2, because more unstable STIPs need to be removed. The

other parameters are the same with the ones of KTH.

4.2. Experimental results

The recognition rate of our method on the KTH is

90.50%, which is equal to the performance of the method

without STIP selection. Our method removes only 2.55%

of STIPs. As the selected STIPs are almost the same with

the original ones, we do not demonstrate the selection result

in figure.

The stabilized videos of HMDB are used in our ex-

periment. We firstly select 10 categories from 51 action

categories for a preliminary verification. The 10 action

categories include “shoot ball”, “ride bike”, “ride horse”,

“dive”, “fencing”, “golf”, “pullup”, “pushup”, “climb”, and

“walk”. Figure 4 shows the result comparison between

benchmark method and our method. We find the perfor-

mance of our method is much better than the result of

benchmark method. Then we test our method on the whole

dataset with 51 action categories. The confusion matrix of

51 action categories is shown in Figure 5. Table 1 shows

the average recogniton rates of different methods. The re-

sult illustrates that our method can improve the performance
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Figure 4. Comparison between the results of benchmark and our

method on 10 categories. The vertical axis represent the recogni-

tion rate of different actions.
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Figure 5. Confusion Matrix for 51 action categories on HMDB

dataset.

greatly. An average of about 55% of STIPs are removed by

our method in the dataset.

4.3. Result analysis

The results on the two datasets demonstrate that our

method can efficiently enhance the recognition rate on the

realistic dataset, while the effect is not obvious on KTH

dataset. The reason is that there are almost no redundant

points on KTH data because of the relatively simple scenes.

Figure 6 shows the distribution of original STIPs and the

STIPs selected by our models on a video clip of HMDB

dataset. From the comparison among the selection results

with different graph model, we can find that most of the un-

stable STIPs are removed by the corresponding graph mod-

el. Although the other models can select STIPs, the dis-

tribution of selected STIPs are not fit for the action. The

sharp contrast of the performance between KTH and HMD-

B demonstrates the significance of our method for realistic

data.

5. Conclusions
In this paper, we have presented an approach to select-

ing the stable STIPs for recognizing realistic actions. The

contribution of our work is that we select the stable STIPs

by building concurrence relationship graphs of visual words

with context information. Our work can improve the recog-

nition rate greatly. The method can be widely adopted for

general STIP selection from the proposed method. Thus lots

of previous STIP based methods can get much more bene-

fits. Actually, the graphs contain more information about

the pattern of actions, and we can make the graphs as the

templates of different actions. So we intend to mine them

in our future work.
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