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Abstract. Data mining is an iterative process. Users issue series of si-
milar data mining queries, in each consecutive run slightly modifying
either the definition of the mined dataset, or the parameters of the mi-
ning algorithm. This model of processing is most suitable for incremental
mining algorithms that reuse the results of previous queries when answe-
ring a given query. Incremental mining algorithms require the results of
previous queries to be available. One way to preserve those results is to
use materialized data mining views. Materialized data mining views store
the mined patterns and refresh them as the underlying data change.
Data mining and knowledge discovery often take place in a data wa-
rehouse environment. There can be many relatively small materialized
data mining views defined over the data warehouse. Separate refresh of
each materialized view can be expensive, if the refresh process has to
re-discover patterns in the original database. In this paper we present
a novel approach to materialized data mining view refresh process. We
show that the concurrent on-line refresh of a set of materialized data
mining views is more efficient than the sequential refresh of individual
views. We present the framework for the integration of data warehouse
refresh process with the maintenance of materialized data mining views.
Finally, we prove the feasibility of our approach by conducting several
experiments on synthetic data sets.

1 Introduction

Data mining, or knowledge discovery in databases, is a non-trivial process of
finding valid, novel, useful, and ultimately understandable patterns and regula-
rities in very large data volumes [5]. Data mining systems are quickly evolving
from specific to general-purpose systems that are tightly coupled with the exi-
sting relational database technology. Integration is usually performed in the data
warehouse, which serves high quality data to various mining techniques. Mining
processing characteristics differs significantly from typical database workload.
Hence, new methods of data mining query processing and optimization are be-
ing developed. One of these methods is incremental discovery of patterns.



The patterns discovered as the result of the execution of a data mining algo-
rithm can be regarded as an answer to a sophisticated database query. A user
defines the set of mined data using standard SQL commands and determines
the parameters governing a given data mining algorithm. In response, relevant
patterns are returned to the user for evaluation. Users usually do not achieve sa-
tisfying results immediately. It is an iterative process, where in each consecutive
step the user evaluates the patterns and, suitably to the needs, expectations, and
experience, modifies either the mined dataset, or algorithm parameters, or both.
Because of this iterative and repetitive nature of mining processing, a data mi-
ning system must efficiently exploit the results of previous queries when fulfilling
user requests. Data warehouses facing similar requirements in on-line analytical
processing are materializing the results of queries as snapshots and rewrite in-
coming queries to use the materialized data. The same principle applies to data
mining systems, where previously discovered patterns are stored in materialized
data mining views and used to efficiently answer user queries.

The main problem in using materialized patterns gathered during mining
is the freshness of the patterns. Each update of the source data can potentially
invalidate some or all patterns stored in a materialized data mining view. This is
particularly important in a data warehouse, where refresh of the source data hap-
pens regularly, often on a daily or even hourly basis. To cope with this problem,
incremental mining techniques were proposed that aim at efficient maintenance
of materialized patterns by running the base algorithm only on the difference set,
and minimizing the number of full data reads necessary to validate the patterns.
The main drawback of this approach is the fact, that the proposed methods
refresh materialized data mining views separately, disregarding the properties of
the data warehouse environment.

The refresh cycle of modern data warehouses becomes more and more fre-
quent. As the result, the volume of the data loaded upon each refresh becomes
relatively smaller as compared to the size of the entire data warehouse. On the
other hand, the number of materialized data mining views defined in a data wa-
rehouse increases. In practice, materialized data mining views that span entire
fact tables are rare. Instead of having a single large materialized data mining
view, users define several well-focused views that cover a specific area of analysis
(e.g., buyers of a particular product, purchases made during particular time of
day, etc.). Usually, only a small subset of a huge fact table is used as the data so-
urce for such materialized data mining view. Consequently, the probability that
a given tuple contained in the data loaded into a data warehouse upon refresh is
likely to influence the patterns stored in a materialized data mining view is much
smaller than assumed in traditional approaches. In such circumstances, using the
entire load of new data and repeating incremental maintenance procedures for
all materialized data mining views separately is a waste of resources.

We propose to tackle the problem of materialized data mining view main-
tenance from another perspective. Our solution is concurrent online refresh of
a set of materialized data mining views. In our approach the maintenance of
materialized data mining views becomes an integral part of the data warehouse



refresh process. When a tuple is loaded into the warehouse, materialized data
mining views that could become affected by that tuple are updated simultane-
ously. In this paper we present a framework for online maintenance of a set of
materialized data mining views. We argue that our assumptions are reasonable
with respect to practical data warehouse implementations. Our contribution is
the following. We demonstrate the structure for fast lookup of candidate mate-
rialized data mining views that could become affected by an insert of a tuple.
We present a novel algorithm for concurrent online incremental mining and we
experimentally prove the feasibility of the proposed approach by comparing our
algorithm with other algorithms. Experimental comparison of our algorithm with
two algorithms proposed in the literature so far (Apriori and IUA) shows that
our algorithm outperforms previous proposals.

The remainder of the paper is organized as follows. Following this paragraph
we present the related work and definitions of basic terms used throughout the
paper. The idea of using materialized results of previous data mining queries to
answer subsequent user requests is presented in Section 2. In Section 3 we pre-
sent a novel approach to the materialized pattern maintenance problem which
consists in concurrent online refresh of materialized data mining views. Experi-
mental evaluation of our approach is presented in Section 4. The conclusions are
contained in Section 5.

1.1 Related Work

The problem of association rule mining was introduced in [2]. The paper identi-
fied the discovery of frequent itemsets as a key step in association rule mining. In
[3] the authors presented basic algorithm called Apriori, which quickly became
the seed of several other data mining algorithms. The first algorithm for mainta-
ining discovered association rules using incremental technique, called FUP, was
proposed in [4]. In [13] a new Incremental Updation Algorithm (IUA) was pro-
posed. IUA minimized the number of full database scans to discover association
rules in the updated data using the idea of the negative border of the collection
of frequent itemsets [7].

The work on materialized views started in the 1980s. Multiple algorithms
for view maintenance were developed [12]. Further research led to the creation
of cost models for materialized view maintenance and applying views to enforce
integrity constraints in databases. A summary of view maintenance techniques
can be found in [6]. Materialized data mining views were first proposed in [10],
and quickly became an important tool in data mining query optimization [8, 9,
14]. To the best of our knowledge the idea of concurrent online refresh of a set
of materialized data mining views has not been presented yet.

1.2 Basic Definitions

Let I = {i1, . . . , in} be a set of literals called items. Let D be a set of variable
length transactions and ∀T ∈ D : T ⊆ I. We say that the transaction T sup-
ports an item x if x ∈ T . We say that the transaction T supports an itemset X



if it supports every element x ∈ X . The support of an itemset is the number of
transactions supporting the itemset. The problem of discovering frequent item-
sets consists in finding all itemsets with the support higher than user-defined
minimum support threshold denoted as minsup. An itemset with the support
higher than minsup is called a frequent itemset. Given a collection of frequent
itemsets L. The negative border NBd(L) of the collection L consists of all sets
si, such that si /∈ L ∧ ∀s′

i
⊂ si : s′

i
∈ L.

An association rule is an implication of the form X → Y where X ⊂ I, Y ⊂ I
and X ∩ Y = ∅. X is called the body of the rule whilst Y is called the head of
the rule. Two measures represent statistical significance and strength of a rule.
The support of a rule is the number of transactions that support X ∪ Y . The
confidence of a rule is the ratio of the number of transactions that support
the rule to the number of transactions that support the head of the rule. The
problem of discovering association rules consists in finding all rules with support
and confidence higher than the user-specified thresholds of minimum support
and confidence, called minsup and minconf respectively.

2 Data Mining Using Materialized Views

MineSQL [11] is a multi-purpose data mining query language which uses data
mining queries to express data mining tasks. The syntax of MineSQL resembles
standard SQL and provides excellent means of integration of data mining re-
quests with the underlying database management system. MineSQL allows to
issue commands that discover frequent itemsets, association rules, and sequen-
tial patterns. MineSQL uses additional data types (e.g. SET, ITEMSET, RULE) as
well as operators and functions for those data types (e.g. CONTAINS, BODY(x),
HEAD(x)). The following data mining query discovers all association rules with
support higher than 2.5% and confidence higher than 70%, which contain an
item ‘Bordeaux Pomerol ’ in the body of the rule. Mining is performed over
transactional data on premium customers for the 2nd half of the year 2004 .

MINE RULE r, HEAD(r), BODY(r)

FOR products FROM (

SELECT SET(product) AS products

FROM PurchaseFacts

WHERE time_id >= ’01.07.2004’

AND time_id <= ’31.12.2004’

AND customer_type = ’Premium’

GROUP BY transaction_id )

WHERE SUPPORT(r) > 0.025

AND CONFIDENCE(r) > 0.7

AND BODY(r) CONTAINS TO_SET(’Bordeaux Pomerol’);

In traditional databases a view defines a mapping function from a set of base
relations to the derived relation. The function is computed upon each reference
to the view. Views hide complex data structures from a user and provide an



additional independence layer between an application and the underlying data-
base schema. Changes occurring in the database schema are reflected only in the
view definition with no impact on the end-user application. In order to avoid
computational overhead, the contents of the view can be materialized in the
database. The materialized copy of the data can be quickly accessed, thus by-
passing expensive computation of the view. Data stored in a materialized view
are not automatically refreshed when base relations change. Therefore, view ma-
intenance techniques are necessary to reflect changes that occur in base relations
of a materialized view. Often, modifications of base relations affect only a part
of the materialized view. Incremental view maintenance techniques avoid recom-
putation of the entire view contents by determining the parts of the materialized
view that should be updated.

Similarly to traditional database views, data mining views can be used to
simplify application development, hide the complexity of data mining algori-
thms behind standard view interface, and enable incremental mining techniques
by materializing results of data mining queries for further processing. Consider
the following MineSQL statement that defines a materialized data mining view
v_saint_emilion.

CREATE MATERIALIZED VIEW v_saint_emilion

REFRESH 7 AS

MINE RULE r, BODY(r), SUPPORT(r), CONFIDENCE(r)

FOR products FROM (

SELECT SET(product) AS products

FROM PurchaseFacts

WHERE time_id >= ’01.01.2004’

AND time_id <= ’31.12.2004’

GROUP BY transaction_id

HAVING AVG(price) >= 10 )

WHERE SUPPORT(r) > 0.025

AND HEAD(r) CONTAINS TO_SET(’Saint Emilion’);

The definition of the view contains two classes of constraints: database con-

straints appear within the WHERE clause in the SELECT subquery, whereas mining

constraints appear within the WHERE clause in the MINE statement. Database
constraints delimit the part of the database that constitutes the source dataset.
Mining constraints define patterns that are interesting to the user. Materialized
data mining view not only separates the user from the technical details of the
underlying mining algorithm, but provides the storage for discovered patterns.
Every pattern in a materialized data mining view has a timestamp representing
its creation time and validity period. One can provide the REFRESH clause that
defines the period after which the contents of the materialized data mining view
should be refreshed. Materialized views can be refreshed manually or automati-
cally. The refresh of a materialized view could be performed by an incremental
mining algorithm, or could involve the recomputation of the entire view.

The importance of materialized data mining views stems from the fact that
the contents of the materialized data mining view can be used to efficiently an-



swer a data mining query which is similar to the materialized view definition.
Depending on the relations between a query and the view definition, several
different mining methods are available. These methods include incremental mi-
ning, complementary mining, verifying mining, and full mining. Data mining
query optimization using materialized data mining views is covered in [8, 14].

3 Concurrent Online Refresh of Materialized Data

Mining Views

Data warehouse is an integrated collection of high-quality data supporting deci-
sion making. Based on this data, users can define multiple, possibly overlapping,
collections of related data that serve as data sources for data mining queries. We
argue that in typical applications users perform a focused selection of source data
of interest and constraint their data mining activities to the selected subsets of
the original data. We attribute this behavior to the fact that very large volumes
of data produce patterns that are too general to be useful in analysis and deci-
sion making. Rather, users concentrate on smaller sets of data that are relevant
to a given data mining query. After determining the subset of interesting data
and setting the parameters of a mining algorithm, users can store their mining
activity as a materialized data mining view and decide on the refresh frequency.
Therefore, one should perceive a data warehouse as an environment for multiple
different materialized data mining views that can be refreshed and maintained
independently. Moreover, as changes to the data warehouse do not happen con-
tinuously over time, but are loaded in chunks during periodical data warehouse
refresh, the refresh of materialized data mining views can be integrated with
the process of the entire data warehouse refresh. It is worth noticing that during
data warehouse refresh, when new tuples are loaded into base tables, they do not
necessarily invalidate all materialized data mining views. Whether a tuple inva-
lidates the patterns stored in a materialized data mining view or not, depends
solely on the definition of the materialized data mining view, in particular, on
the database constraints of the view.

In our implementation we are using a special index table to store the defi-
nitions of materialized data mining views. For all database tables that are used
as the source for data mining views, table attributes are mapped to columns
in the index table. Each materialized data mining view is described as a sin-
gle row in the index table. In addition to columns representing attributes of
relational tables, the index table stores the thresholds of minimum support and
confidence provided in the view definition. If the definition of the materialized
data mining view contains a database constraint defined on a base table attri-
bute, this fact is reflected in the index table by inserting the relational operator
(=,≤,≥, 6=,etc.) with the associated constant value into the appropriate column
of the index table. A special symbol ’*’ is used if attributes of a base table are
used in the materialized data mining view without any constraints. The index
table is used to quickly decide, which of the materialized data mining views de-
fined in the data warehouse are affected by the insertion of a given tuple. This



is done by comparing the values in the inserted tuple with the constants stored
in the appropriate attributes of the index table.

Each materialized data mining view is implemented as a relational table.
The table contains both frequent itemsets constituting the answer to the data
mining query, and the negative border of the collection of frequent itemsets. Each
itemset is represented as a single row having two attributes: a numerical attribute
containing the support of the itemset and a collection of items implemented as
a nested table of varying length. This schema can be easily extended to support
the storage of association rules. Given an association rule X → Y . Both X
and Y must be frequent itemsets. Therefore, both itemsets appear in the base
relational table. The row representing the itemset X has an additional column
HEADS which is a nested table of head objects. Each head object consists of the
numerical confidence measure and the pointer to the itemset forming the head of
the rule (in the above example the pointer points to the location of the itemset
Y ). Analogously, every itemset has an additional column BODIES implemented as
a nested table of body objects. Again, each body object consists of the confidence
measure of the rule and the pointer to the itemset forming the body of the rule.
Pointers are either artificial primary keys or physical row addresses. Using bi-
directional pointers to rule elements allows for fast lookup of rules containing a
given itemset in the body or the head of the rule.

The algorithm for concurrent online refresh of materialized data mining
views, denoted OUA for Online Updation Algorithm, proceeds as follows. The
insertion of new tuples into the data warehouse base table triggers the verifica-
tion procedure. First, definitions of all materialized data mining views defined
on the updated base table are retrieved from the index table. Next, values of
attributes of a newly inserted tuple are compared to the values of attributes
used in database constraints of materialized data mining views. The comparison
is performed using a special function which selects appropriate relational opera-
tors to test, whether the tuple satisfies all constraints defined in the definition
of a materialized data mining view. If the comparison succeeds, the procedure
updates the view.

Given a materialized data mining view MDMV and a newly inserted tuple
t that affects the view. Let L denote the collection of frequent itemsets present
in the materialized data mining view MDMV . Let NBd(L) denote the negative
border of the collection of frequent itemsets L and let Ck denote the collection
of candidate itemsets of the size k.

In the first step the set of items contained in the newly inserted tuple t
is divided to form the collection of one-element candidate itemsets C1. For all
elements in C1 the algorithm searches for itemsets s ∈ L ∪ NBd(L), such that
s = c, and increases the support count of these itemsets. If, during this step,
an itemset from the negative border NBd(L) becomes frequent, it is moved
to L and the negative border is expanded to reflect this move. Next, itemsets
C1 ∩ L are used to generate the set of candidate 2-itemsets C2. Observe that
only 2-itemsets contained in the inserted tuple are used to grow L and NBd(L).
This procedure repeats until no more candidate k-itemsets can be generated



(candidates are generated using standard apriori-gen procedure of the Apriori

algorithm). After processing all new tuples the algorithm checks if the negative
border of the collection of frequent itemsets should be updated. This happens if
there is a set that moved from the negative border to the collection of frequent
itemsets. This step may require a full database scan.

Example 1. Given the materialized view MDMV with L = {A, B, C, AB, AC}
and NBd(L) = {BC}. Let the newly inserted tuple t = 〈A, B, C〉. First, all
elements of the tuple t are used to create the collection of candidate 1-itemsets
C1 = {A, B, C}. This collection is compared with L ∪ NBd(L) and the appro-
priate support counts are incremented. No itemsets are moved from the nega-
tive border to the set of frequent itemsets. Next, the set L1 is determined as
L1 = C1 ∩ L = {A, B, C}. These itemsets are used to generate the set of candi-
date 2-itemsets C2 = {AB, AC, BC}. Again, these itemsets are compared with
L ∪ NBd(L) to increase appropriate support counts. As the result, the itemset
BC is moved from NBd(L) to L and the negative border NBd(L) is expan-
ded with the itemset ABC. As in previous step, the set L2 is determined as
L2 = C2 ∩ L = {AB, AC, BC}. This procedure repeats until no new candida-
tes can be generated. Support counts for itemsets from the expanded negative
border are determined during additional database scan.

4 Experimental Results

All experiments were conducted on Dell Pentium M 1,4 GHz with 768 MB of
RAM running Windows 2000 and Oracle 9i. Data sets were created using DBGen
generator from the Quest Project [1]. Original database contained 100 000 trans-
actions, the average size of the transaction was 40, and the number of different
items was set to 100 000. For comparison we have chosen the basic Apriori algo-
rithm (no incremental mining at all) and Incremental Updation Algorithm [13].
The size of the base table update varied from 500 to 5000 new transactions (i.e.,
from 0.5% to 5% of the original data volume). The percentage of the original base
table covered by the materialized data mining view varied from 2.5% to 50%, the
support threshold changed from 1.5% to 5%, the number of materialized data
mining views that were simultaneously updated varied from 5 to 20.

The results of experiments are depicted in Figures 1-4. As expected, our al-
gorithm works best when the number of materialized data mining views is large
and the degree of coverage of base table is small. Again, we argue that this si-
tuation is typical for most applications using data mining techniques within the
data warehouse environment. An important factor that affects the performance
of our algorithm is the size of the update. For larger updates the cost of proces-
sing of each tuple separately surpasses the gain of not reading the update several
times (especially when the number of concurrently updated materialized views
is small). In such cases Incremental Updation Algorithm is a winner. We be-
lieve that this result is not discouraging, because we are observing a continuous
shrinking of the data warehouse refresh window. Our algorithm is best suited
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Fig. 1. time vs. support, 2.5% coverage
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for frequently refreshed warehouses, where the contents of the data warehouse
must be synchronized with operational databases on a daily or hourly basis.

5 Conclusions

In this paper we have presented Online Updating Algorithm, which implements a
novel approach to materialized data mining view maintenance problem. Instead
of performing separate refresh of a set of materialized data mining views we pro-
pose to update them simultaneously, during the data warehouse refresh process.
Our algorithm outperforms previously proposed methods in environments where
many materialized data mining views are defined over relatively small subsets of
source data. We argue that this assumption holds in most practical applications,
hence our algorithm provides improvement over other approaches.
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