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Abstract—In this paper, we present a hardware architecture
for implementing an interior point method for model predictive
control (MPC) on field programmable gate arrays (FPGA). The
FPGA implementation allows the solution of quadratic programs
occurring in MPC at very high speed. Experiments show that
our hardware implementation is able to outperform an software
implementation running on a high-end CPU while consuming
significantly less power making it well-suited for embedded
industrial control applications. In contrast to existing FPGA
implementations, the proposed solution exploits the MPC-specific
problem structure with the direct linear equation solver and uses
an efficient predictor-corrector algorithm. Moreover, the modular
design of the architecture simplifies customization or extension
to special control problem classes. The proposed FPGA solution
can broaden the applicability of solving complex or large MPC
problems in embedded computing platforms that were so far
considered out of reach.

I. INTRODUCTION

Model predictive control (MPC) represents one of the most
important paradigms in the control of industrial applications.
Although there exist many different variants of MPC, they
all share the same basic ingredients: a model to predict the
evolution of the the physical state of the controlled plant
over time, an optimization procedure which computes the
control action in accordance with the control objectives, and a
receding horizon strategy. The control objectives are encoded
in the objective function and the constraints of an optimization
problem whose decision variables are the future control actions
(inputs) and the corresponding predicted plant states. More
specifically, given the current measured (or estimated) plant
state, the optimization problem uses a discrete-time model to
predict the evolution of the plant’s state over a finite prediction
horizon. The solution of the problem is a finite sequence of
optimal control inputs. Although a control strategy for the
next time steps is then readily available, only the first control
move gets applied to the plant. In the next sampling time
instant the entire procedure is repeated, i.e. the current state is
measured to compensate for modeling errors and disturbances,
and the optimization problem is solved for the shifted horizon.
Consequently, the problem is solved on-line at each sampling
instant, typically by using an iterative algorithm. For more
detailed information on MPC, the reader is referred to [1],
[2].

Until recently, MPC has been mainly restricted to processes
with rather slow dynamics and with sampling times ranging
from a few minutes to many hours, such as the ones encoun-
tered in the areas of processing (petro)chemicals, minerals and
metals. The main reason for this restriction can be traced
to the huge computational demand that optimization-based
algorithms pose to the computational hardware. However, the
ever increasing computational capacity as well as algorithmic
advances enabled MPC implementations that achieve solution
times in the sub-second range. Examples of these efforts are
the MPC-tailored algorithms proposed in [3]–[5].

While MPC problems are traditionally solved with high
performance general purpose CPUs, a rather recent trend is
to employ FPGA-based implementations to push the limits of
MPC even further, see, e.g. [6]–[11]. These solutions render
MPC feasible for embedded control applications that require
solution times in the milli- or even micro-second range and a
deployment of the control algorithm on a low power hardware
platform.

Our objective is an FPGA implementation of a high-speed
solver for mid-scale MPC problems. In particular, our hard-
ware implementation is based on the MPC-structure exploiting
interior point method presented in [5]. In the scope of this
work, the algorithm is analyzed with the goal to realize a fast
and flexible FPGA implementation. We make the following
contributions to advance the state-of-the-art in FPGA-based
MPC solvers:

• To the best of our knowledge, the presented solution is
the first hardware implementation of an interior point
solver that exploits the inherent problem structure of
MPC in the context of a predictor-corrector scheme. The
linear system underlying the optimization procedure is
solved directly using a block-wise Cholesky factorization
to support the efficient implementation of the predictor-
corrector scheme.

• The solution is a parameterizable hardware architecture
that can be adapted to the problem dimensions. The
modular design based on systolic arrays can be easily
extended/customized to more generic or specialized MPC
problem classes. Examples of these are exploitation of
simple box constraints or support for quadratic inequality



constraints.
The rest of this paper is organized as follows. In Section II,

we compare our solution with other approaches and previous
FPGA implementations to motivate our work. The target
optimization algorithm is described briefly with emphasis on
some of its specific features in Section III. In Section IV the
hardware architecture is described from a system-level design
point of view and the core modules are presented. The analysis
and experimental results are provided in Section V. Finally,
conclusions are summarized in Section VI.

II. RELATED WORK

A linear quadratic MPC problem is typically formulated
as a quadratic programming (QP) problem which is then
solved at each sampling instant using an iterative procedure.
Algorithmically, one usually distinguishes between interior
point methods (IPM), active-set methods (ASM), and first-
order (gradient-based) methods.

Despite their simplicity, first-order methods only recently
gained increased attention in the control community with
the application of Nesterov’s fast gradient method to input-
constrained problems in [3]. Extensions to more generic MPC
problems were then proposed by several authors and high-
speed FPGA implementations in fixed-point arithmetic were
presented in [10], [11]. Although the reported execution times
of these implementations are indeed impressive, they are
limited to simple constraints (such as box constraints modeling
actuator saturation). Moreover, their sensitivity with respect
to problem conditioning, and the sub-linear convergence rate
in the dual domain, limits the applicability of gradient-based
methods to generic and/or badly conditioned MPC problems
that are not uncommon in practice.

Both ASM and IPM solvers have a long track record of
successful application in the area of MPC. Compared to the
worst case exponential complexity of ASMs, the computa-
tional effort of IPMs grows only polynomially [12]. ASMs
are typically applied to a problem formulation in which the
equality constraints have been eliminated to yield a smaller
but dense QP. Generally, problems where the number of
states is relatively large and the prediction horizon is long,
favour a structure exploiting IPM [13]. This is also concluded
in [6], where the authors compare the two approaches from
an FPGA implementation point of view. Moreover, the latter
paper reports an increased numerical robustness of IPMs in
comparison with ASMs.

The computational bottleneck of IPMs is caused by solving
a linear system of equations in every iteration of the algorithm.
The equations can be solved either directly by factorization
and substitution, or indirectly by iteratively improving an ap-
proximation of the solution. Iterative approaches are generally
advantageous for large, sparse systems. Moreover, they require
only basic mathematical operations and exhibit a relatively
simple data flow which renders them well-suited for hardware
implementations. Not surprisingly, recent IPM implementa-
tions for MPC are based on indirect solution methods. The ar-
chitecture proposed in [9] applies a primal barrier method to a

dense QP formulation that can handle actuator box constraints.
The underlying linear system is solved using the conjugate
gradient method. The applicability of the implementation,
however, is limited by its restriction to box constraints and
the dense problem formulation which renders the approach
unfavourable for larger prediction horizons. The FPGA im-
plementation in [7] uses the minimum residual (MINRES)
method to solve the indefinite linear system arising in a
primal-dual method. Although the approach takes advantage of
sparsity by using compressed diagonal storage for the banded
linear equation matrix, the inherent MPC problem structure is
not explicitly exploited for a predictor-corrector scheme.

In contrast to iterative approaches, direct methods can
efficiently solve the same system of equations for different
right hand-side vectors once the matrix factorization is com-
puted. This makes them well-suited for Mehrotra’s predictor-
corrector IPM which requires significantly fewer outer itera-
tions than conventional IPMs [14].

MPC-structure exploiting IPMs with direct linear equation
solvers have initially been presented in [4] which employs
a block-wise Cholesky factorization to a primal IPM. The
paper inspired the development of the primal-dual solver
FORCES [5], a C code generator based on Mehrotra’s algo-
rithm that can handle generic multi-stage control problems and
even supports quadratic inequalities. The generated code does
not only take advantage of the block-banded MPC structure
but also exploits problem specific properties such as diagonal
cost matrices or box constraints. The result is a highly efficient
code that has been proven to outperform many competing top-
class solvers [5].

Based on the efficient FORCES algorithm, we propose
an FPGA implementation, which is composed of multiple
systolic-array based pipelines. It is able to achieve faster
execution speed than the software version of FORCES and the
FPGA-based IPM solver from [7]. Moreover, its computation
resources usage is not related to the length of the horizon
in the MPC problem. Further attractive features of our IPM
implementation will be discussed in Section IV.

III. OPTIMIZATION ALGORITHM

Our target MPC problem can be cast into a more general
multi-stage optimization problem as shown below.

min
yi,i=1...N

N∑
i=1

1

2
y T
i Hiyi + fTi yi

s.t. gi(yi) ≤ 0 , i = 1, . . . , N ,

L1(y1) = 0 ,

Li(yi, yi−1) = 0 , i = 2, . . . , N ,

(1)

where yi := [xTi , u
T
i ]T ∈ Rny denote the stage variables

comprising predicted plant states xi ∈ Rnx and control
inputs ui ∈ Rnu . The objective function is given by positive
semidefinite cost matrices Hi ∈ Rny×ny and affine vectors
fi ∈ Rny . In the context of MPC, the number of stages N
is referred to as prediction horizon, and x1 is equal to the
measured (or estimated) current state.



We assume that the inequality constraint functions
gi : Rny 7→ Rnineq are linear and that the feasible set has
non-empty interior. Throughout this paper, we assume that
gi are affine functions. The equality constraint functions
Li : Rny 7→ Rnx are given by:

L1(y1) := D1y1 + c1 ,

Li(yi, yi−1) := Ci−1yi−1 +Diyi + ci , i = 2, . . . , N ,

where Ci−1 ∈ Rnx×ny , Di ∈ Rnx×ny , and ci ∈ Rnx describe
the discrete-time dynamics of the controlled plant.

Mehrotra’s primal-dual IPM [14] has been shown to be
highly efficient to solve the Karush-Kuhn-Tucker (KKT) op-
timality conditions associated with (1) with Newton’s method
[15]. The algorithm details are presented in [12]. Here, we
introduce Mehrotra’s predictor-corrector primal-dual IPM fol-
lowing the description in [5] and [12].

Linearizing the KKT conditions of (1) yields the following
structured linear equation system:

H CT JT (y)

C

J(y) I

S Λ




∆y

∆v

∆λ

∆s

 = −


rC

rE

rI

rs

 , (2)

where

C :=



D1 0 0 . . . 0

C1 D2 0 . . . 0

0 C2 D3 . . . 0
...

...
. . . . . .

...
0 0 . . . CN−1 DN

 , J(y) :=


∇g1(y1) 0 . . . 0

0 ∇g2(y2) . . . 0
...

...
. . .

...
0 0 . . . ∇gN (yN )

 ,

S := Is, Λ := Iλ,

and H :=
[
HT

1 , . . . ,H
T
N

]T
, v :=

[
vT1 , . . . , v

T
N

]T
, s :=[

sT1 , . . . , s
T
N

]T
, and λ :=

[
λT1 , . . . , λ

T
N

]T
. si ∈ Rnineq

≥0

are slack variables introduced for the inequality constraints.
vi ∈ Rnx and λi ∈ Rnineq

≥0 are dual variables associated with
the equality and inequality constraints, respectively. I denotes
the identity matrix. If some variables have smaller size in some
stages, they are padded with zeros to allow fixed-size variables
in all stages.

A. Predictor-corrector IPM

Due to limited space, only the main steps and critical
matrix operations of the Mehrotra’s IPM (see Algorithm 1)
are introduced in the following.

As illustrated in Algorithm 1, in each iteration the linear
system (2) is solved twice with the same coefficient matrix
A but different right-hand sides: first for the so-called affine-
scaling step (line 4), and second for the centering-corrector
step (line 7), as described in [12]. Once the search direction
∆zaff is computed, a line search is performed to determine the
maximum updating step size along this direction. The second
right-hand vector bcc is generated based on the direction ∆zaff
and step size αaff obtained in the affine-scaling step. After
the centering-corrector step is finished, the current iterate z is
updated using the combined direction ∆z and the final step
size α which is again obtained from a line search.

Algorithm 1 Predictor-corrector primal-dual IPM
Require: z ← (y, v, λ, s), choose initial point z0 with v0 ←

1, λ0 ← 1
1: repeat
2: Generate coefficient matrix A
3: Generate right-hand vector baff for affine-scaling step
4: Solve A∆zaff = baff

5: αaff ← max(0, 1], s.t.

[
λ+ αaff∆λaff

s+ αaff∆saff

]
> 0

6: Generate right-hand vector bcc for center-corrector step
7: Solve A∆zcc = bcc

8: ∆z ← ∆zaff + ∆zcc

9: α← max(0, 1], s.t.

[
λ+ α∆λ

s+ α∆s

]
> 0

10: z ← z + α∆z
11: until (convergence criteria fulfilled or maximum iteration

number reached)

The computation of the search direction comprises gen-
erating a potentially large matrix and solving the resulting
linear equation systems. The corresponding computations are
the performance bottleneck in any interior point method and
a fast implementation of these operations is crucial for the
application of MPC to high-speed applications, see, e.g., [4].

B. Block-wise linear solver

As in the FORCES code, the inherent block-banded problem
structure of MPC is exploited in our implementation when
solving the linear systems in lines 4 and 7 in Algorithm 1: all
linear algebra kernel operations are performed on small blocks
instead of the full matrix. Elimination of the variables ∆y, ∆λ
and ∆s from (2) yields the so-called normal equations [15]
while still preserving the block-banded structure.

Y∆v = β . (3)

The new coefficient matrix Y in (3) is symmetric positive
definite with tri-diagonal block-banded structure and thus
can be factorized efficiently using a block-wise Cholesky
decomposition as described in [5]: Y = LY L

T
Y , where

Y :=



Yd1 Ysd1 0 . . . 0

Ysd
T
1 Yd2 Ysd2 . . . 0

...
. . . . . . . . .

...
0 0 Ysd

T
N−2 YdN−1 YsdN−1

0 0 0 Yd
T
N−1 YdN

 , LY :=



Ld1 0 0 . . . 0

Lsd1 Ld2 0 . . . 0

0 Lsd2 Ld3 . . . 0
...

...
. . . . . .

...
0 0 . . . LsdN−1 LdN

 ,

and

Yd1 = Ld1Ld
T
1 , (4a)

Ydi − Lsdi−1Lsd
T
i−1 = LdiLd

T
i , 2 ≤ i ≤ N , (4b)

Ysd
T
i = LsdiLd

T
i , 1 ≤ i < N − 1 . (4c)

Ldi ∈ Rnx×nx are lower triangular and Ydi, Ysdi, Lsdi ∈
Rnx×nx are dense matrices. Equations (4a) and (4b) are solved
with Cholesky decompositions with the respective matrices
on the left hand side. In Equation (4c), Lsdi is obtained by
matrix substitution, which is realized by the vector forward
substitutions for the row vectors of YsdTi .



Fig. 1. Block diagram of a systolic-array based pipeline for the block-wise Cholesky factorization in (4).

Using (4a)-(4c), Y can be factorized in an iterative process
that only involves N Cholesky decompositions of relatively
small matrices of size nx. Each block corresponds to the sub-
problem for one horizon step of the entire problem in (3).
Since Ldi depends on Lsdi−1, there is a data dependency
between two neighboring sub-problems. Therefore, the entire
factorization is coupled via (4b) and thus these sub-problems
must be solved successively.

To solve the entire problem efficiently, we can apply various
levels of pipelining in the hardware design to accelerate
the algorithm. Solving (3) can be separated into three main
computation steps: generation of Y , factorization of Y , and
solution of LY L

T
Y ∆v = β by vector forward and back-

ward substitutions. Each of these steps processes the data
of one sub-problem after the other, and together they form
a stage-level pipeline. Moreover, there exist parallelization
and pipelining opportunities at a more fine-grained level as
well. For example, the factorization stage can be realized
by a column-level pipeline: the calculation of Ldi has an
intrinsic column-wise data dependency, so that Lsdi can be
calculated column-wise to achieve same data processing rate.
The corresponding computation structure will be discussed in
more detail in Section IV.

IV. HARDWARE IMPLEMENTATION

A. Number representation

An important design choice for the implementation of an
algorithm is the employed number representation, i.e. fixed-
point or floating-point. The algorithm at hand contains var-
ious operations including division, matrix substitution and
Cholesky factorization. Since in IPMs the linear equation
system to be solved in each iteration becomes ill-conditioned
as the solution of the optimization problem is approached, a
number representation with a high dynamic range is preferable.
Therefore, we currently use single precision floating point
numbers as most of the existing FPGA implementations of
IPMs.

Our current target FPGA platform is the Xilinx Virtex7,
and its floating-point unit (FPU) IPs are used for the floating-
point computations. In the Virtex7, Xilinx IPs adopt ARM’s
AXI interface [16], which is also used in the system design.
The FPU IPs support all necessary floating-point operations

and the provided parametrization allows to trade-off resource
usage and performance in a wide range.

B. Systolic-array based pipelines

The full algorithm comprises dozens of matrix and vector
operations that also have complex data dependencies. To
mitigate the complexity of the full architecture, our design is
based on the systolic array architecture template [17]. Systolic
arrays were firstly applied to high performance multi-processor
systems, and are now widely used in ASIC design for signal
processing, for example in digital wireless communication.

The hardware system is partitioned into five systolic-array
based pipelines. Their main functions are summarized as
follows.

• Generate matrix Y and its factor matrix LY in (3).
• Generate vector β in (3).
• Solve (3).
• Generate (∆v,∆λ,∆s).
• Compute the search step size α and update vector z.

These pipelines also support parallel and pipelined exe-
cution at the stage level as long as is permissible by the
algorithm. For example, the calculations for matrix Y and
vector β are independent of each other, so that the first two
pipelines work fully in parallel. The data flow among all
pipelines is realized via shared memory modules to buffer
and reuse data. In each pipeline, there are many concatenated
computation, memory, and switch modules. For each module,
we apply the simplified handshake interface compatible to
the AXI4-stream protocol [18] to enable spontaneous data
transfer. Inside each module, one finite state machine controls
the interface and data processing circuits.

The modular design simplifies the integration of problem-
tailored or extended computation modules. For example, we
designed specialized modules that benefit from the compu-
tational simplifications resulting from box constraints. Simi-
larly, an extension of the same modules to support quadratic
inequalities instead of linear ones as described in [5] is also
conceivable.

Fig. 1 shows the critical part of the pipeline which im-
plements the block-wise Cholesky factorization algorithm de-
scribed in (4). This partial pipeline will serve as a running
example to further illustrate our hardware implementation. The



Fig. 2. Timing diagram of the hardware implementation of Cholesky factorization.

arrows connecting the modules depict the data transfer using
the handshake interface.

The matrix computations in (4a) and (4b) are mapped into
the modules called Vector Subtraction, Cholesky Factorization
and Matrix-Matrix Multiplication. Likewise, the Matrix Sub-
stitution module implements (4c). The input data are fed into
these modules with different throughput rates ranging from a
single element of a vector over a column of a matrix to an
entire matrix per cycle. After a known delay, the output data
will be collected by memory modules and/or fed into another
modules. The delay of each pipeline module (cycle cost) is
affected by the inner parallelism of the modules, which also
affects the throughput of their interfaces. Especially for matrix
computations, higher parallelism implies more resource usage
but faster computation in the hardware implementation.

C. Computation modules

In the pipelined architecture, there is no need to always aim
at the highest parallelism in all modules, since the pipeline
throughput is determined by the slowest or the most time
consuming module in the pipeline. Computation modules
consume most of the time to perform the linear algebra
operations. Since minimum delay is the main criterion for
an effective MPC solver and the Cholesky decomposition
constitutes the computationally most demanding operation in
the IPM, our design aims at a fast Cholesky implementation
by fully exploiting its parallelization potential. The level of
parallelism and the throughput of this module essentially
dictates the inner parallelism of the other modules to match
the throughput with minimum resource usage without affecting
the entire system performance.

Because of its important role in the algorithm, the imple-
mentation of the Cholesky factorization will be discussed in
the following in more detail.

1) Background: The Cholesky factorization is used to de-
compose a symmetric positive definite n×n matrix A in such
a way that A = LLT , where L ∈ Rn×n is a lower triangular
matrix that is computed using the following equations:

Lj,j := (Aj,j −
j−1∑
k=1

L2
j,k)

1
2 ,

Li,j := 1
Lj,j

(Ai,j −
j−1∑
k=1

Li,kLk,j), i > j.

It follows from these equations that L can be calculated
column-wise from left to right, since the calculation of one
column depends on all the columns calculated before it.
Therefore, the Cholesky decomposition has intrinsic column-
wise data dependencies. In the following we describe the
details of our implementation.

We replace the square root (SQRT) and divide (DIV)
operations in the computation of Lj,j by reciprocal square
root (RSQRT) and multiply (MUL). This change of operations
is justified by the fact that the factor matrices are only
used for forward/backward substitution where the necessary
division can then be substituted by a multiplication. Since the
Xilinx FPU [19] allows realization of the RSQRT and MUL
operations with a smaller computational delay and at the same
time fewer logic resources than the SQRT and DIV operations,
the modified Cholesky factorization is better suited for high-
speed and efficient implementation:

L̃j,j := (Aj,j −
j−1∑
k=1

L2
j,k)−

1
2 ,

Li,j := L̃j,j(Ai,j −
j−1∑
k=1

Li,kLk,j), i > j.

(5)

2) Architecture: The hardware implementation of the
Cholesky factorization uses a column-wise computing struc-
ture following the corresponding data dependency mentioned
before. There are n− 1 parallel element-level pipelines corre-
sponding to the computation of intermediate results for 2nd to
nth columns of matrix L, because the calculation of the first
column of matrix L just needs the first input column of matrix
A. Each element-level pipeline has one multiplier, one adder
and an additional register chain. These components work in
pipeline to calculate partial values based on the the previous
column results, corresponding to the operations in (5). In
addition, there is one FPU for RSQRT for the calculation of
the diagonal elements of L. To match the pipeline throughput
rate applied in FPUs, the element-level pipelines for each result
column have the same throughput rate of 1 number/cycle.

Figure 2 shows the timing diagram of calculating the first
two columns of L. The latency of RSQRT, MUL, ADD are
defined as trsqrt, tmul, tadd respectively. We assume n > tadd
and define m = n − tadd. The minimum output interval
between two columns is given by trsqrt+2tmul+2tadd, which
can be used to evaluate the latency of the parent systolic-array
pipeline building block.



D. Data flow control
Since the data flow of our target algorithm is very complex,

it is not convenient and scalable to control this data flow
by a central finite state machine. Because the spontaneous
data transfer interfaces are applied, the control of data flow
is distributed into the configuration of these interfaces, switch
modules and memory modules.

1) Multi-target handshake: To realize the data flow from
one computation or memory module’s output port to multiple
input ports, the output port is enhanced with the support of
multi-target handshaking signal pairs. For instance, in Fig. 1,
the output data of Matrix Substitution is fed into Matrix-
Matrix Multiplication and one memory module. The number
of handshaking ports of one output interface is programmable
to support more than two input interfaces. Only when the
handshaking of all these signal pairs has happened, the module
recognizes that the output data has been transferred, which
enable the module to receive new input data. Therefore, the
data consistency is guaranteed by this extended handshaking
scheme.

2) Switch modules: The switch modules include the mod-
ules named Mux and DeMux as shown in Fig. 1. They are
actually the multiplexer and demultiplexer to control the data
flow direction, which are 2-to-1 and 1-to-2 respectively. In
some stages, the input port of some module needs to switch
the data and handshake signals coming from one output port
to the another. For example, (4a) does not need the subtraction
operation for the calculation of Ld1, but (4b) needs it for
the calculation of Ldi when 2 ≤ i ≤ N . Similarly, some
output port needs to switch its data and handshake signals
from one input port to the other. The switching stage number
is implemented as a programmable parameter of the switch
modules to support static data flow configuration.

3) Memory modules: The memory modules use the on-chip
block RAM of the FPGA as the main storage components in
the hardware implementation. The objectives of using memory
modules in our system are summarized as follows.

• Reuse the data among the algorithm iterations as for the
main variables y, v, λ, s.

• Buffer the data feedback between two neighboring sub-
problems as for Lsdi−1Lsd

T
i−1 in (4b).

• Share data access for different computation modules.
• Buffer the data stream between two matrix computation

modules to bridge the gap of different throughput rates
or data sequences.

The memory modules are all implemented in the same
structure with various programmable parameters that deter-
mine the memory size, read-out sequence and read times.
They are configured according to the data access behaviour of
their corresponding variables in the target algorithm to realize
distributed data management.

V. EXPERIMENTAL RESULTS

A. Benchmark example
As in [5] and [7], a mass-spring problem is used as

benchmark example to evaluate the performance of our im-

Fig. 3. Mass-spring system.

plementation. The system consists of p masses connected by
springs as illustrated in Fig. 3. The control inputs are the
forces u1, . . . , up which are located at each mass. The control
objective is to overcome the horizontal displacement of all
masses. There are two states per mass, position and velocity.
Both states and control inputs are subject to box constraints.
In this MPC problem, the dimensions of the problem are given
by:

nx := 2p, nu := p, ny := nx + nu, nineq := 2ny.

B. Experimental details

The hardware design is described in VHDL and parameteri-
zable for different MPC problem sizes. It was synthesized, and
implemented using Xilinx Vivado 2013.4 design tool targeting
a Virtex-7 XC7VX485T. The experiment is built up on a
Xilinx VC707 Evalutation Kit, as well as on a desktop PC
that has an Intel i7-3770 CPU with a clock frequency of
3.4-3.9 GHz, 16 GB RAM, and is running Windows 7. To
communicate with the host PC through the Ethernet interface,
our custom design is integrated into a MicroBlaze System-on-
Chip test framework as an accelerator. With this interface, we
can exchange data between MATLAB running on the PC and
the MPC solver implemented on the FPGA board. A closed-
loop simulation framework was developed that simulates the
mass-spring system in MATLAB and solves the MPC problem
using either the FPGA or the C code implementation.

The software implementations of the solver were obtained
with the FORCES code generator [20] using single precision
floating point numbers, and compiled by Microsoft Visual
C++ 2010 with compiler optimization set to maximize speed
(O2). Both hardware and software implementations are further
optimized for the box constraints applied in the benchmark
MPC problem. The FPUs in the FPGA implementations are
configured to use the maximum number of DSP blocks and
the minimum number of clock cycles which support the target
clock frequency of the full system.

The correctness of the FPGA implementation was verified
by comparing the returned results with the ones obtained from
the C code. The differences were in the order of the machine
precision which we estimate are a consequence of different
data paths in the implementations.

C. Implementation analysis

In all experiments both software and hardware solvers
are set to run 10 interior point iterations in each of 500
control cycles. We implemented hardware solvers in the target
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Fig. 4. Average computation times of CPU and FPGA implementations for
solving problems with different number of masses and constant prediction
horizon (N = 10).

FPGA for problems with 2, 4, 6, 8, and 10 masses. The
implementations comprising up to 6 masses are clocked at
250 MHz, the instances with 8 and 10 masses are clocked
at 200 MHz. The achievable clock frequency of the FPGA
implementation for the larger problem instances decreases with
the significantly increased place-and-route complexity, which
is caused by the large utilization of DSP and RAM blocks
allocated discretely inside FPGA. The power consumption of
the implementations including the on-chip testing framework
estimated by the Xilinx design tool is in the range from 4 to 6
Watts. This is significantly lower than the power consumption
of a high-end desktop CPU and makes the deployment on an
embedded control platform feasible.

Fig. 4 shows how the average computation time needed
by the FPGA and software implementation is affected when
the number of masses, i.e., stage variables, is increased.
The horizon N in all instances is equal to 10. The FPGA
performance estimation is based on the computational delay
and the throughput rate of the systolic-array based pipelines.
The delay of the hand-shake protocol and the line search in
lines 5 and 9 of Algorithm 1 are not taken into account, which
leads to the difference between the implemented and estimated
performance of the FPGA implementation. For small problem
sizes, the FPGA solver exhibits similar performance as the
high-end CPU. With an increasing number of stage variables,
however, the hardware implementation is able to outperform its
software counterpart. This is due to the increased parallelism
in the linear algebra kernels for bigger problem instances.

Fig. 5 shows that the usage of all resources increases
linearly with the number of masses. This is a consequence
of the column-wise parallelization used in the linear algebra
operations and the size of the block matrices which is given
by the number of states and inputs. Due to this aggressive
parallelism, the LUT resource usage is the bottleneck of the
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Fig. 5. Resource usage of FPGA implementation for problem instances with
varying number of masses and constant horizon (N = 10).
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Fig. 6. Performance comparison of CPU and FPGA solving same mass-spring
problems with various horizon length and constant 6 masses.

current implementation, which is mostly used for data path
control and FPUs.

To assess the impact of the horizon length on execution time
and resource usage, we implemented another four hardware
solvers clocked at 250MHz for the problem instance with 6
masses and horizon lengths 20, 30, 40, and 50. The compu-
tational effort of sparse MPC solvers depends linearly on the
prediction horizon. This relationship is confirmed for both the
hardware and the software implementation by our experiments
whose results are shown in Fig. 6. Since resource usage and
memory bandwidth of the FPGA implementation only depend
on the size of a single stage (determined by nx, nu, ny and
nineq), the total resource usage is hardly affected by the hori-
zon N . As shown in Fig. 7, only the memory demand increases
slightly for horizons larger than 20 while the usage of the
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Fig. 7. Resource usage of FPGA implementation for the mass-spring problems
with various horizon length and constant 6 masses.

other resources remains constant. Longer horizons just leads
to larger memory depths in the hardware implementation, so
that more block RAM is used whenever the required memory
depth exceeds the depth of the block RAMs. The resource
independence from the prediction horizon distinguishes our
implementation from the ones described in the literature so
far, making it attractive for problems with large horizons.

VI. CONCLUSION

Computational complexity is one of the main obstacles
in the deployment of MPC for applications that require fast
sampling times. The paper at hand describes an FPGA imple-
mentation of a primal-dual IPM for solving linear quadratic
MPC problems fast and efficiently. In contrast to existing
hardware solutions, the linear equation system underlying the
optimization algorithm is solved using a structure exploiting
Cholesky decomposition which allows an efficient implemen-
tation of a predictor-corrector scheme, ultimately resulting in
a lower number of required IPM iterations. Moreover, the
resource usage of our FPGA solver is independent of the
prediction horizon MPC making it especially appealing for
problems with large horizons. Experiments show a faster exe-
cution speed of the FPGA implementation in comparison with
an optimized software version running on a high-end desktop
CPU with significantly higher power consumption. Its modular
design based on the systolic array architecture allows a simple
integration of customized computation modules to support
special problem classes with minimum resource utilization.
We believe that our FPGA-based IPM solver can enable fast
MPC applications on future industrial embedded computing
platforms with limited CPU performance and/or low power
constraints.
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