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Abstract — In this paper, noncoherent receivers for differ-
ential space–time modulation (DSTM) are investigated. It
is shown that the performance of the previously proposed
conventional differential detection (DD) receiver is satis-
factory only for very slow flat fading channels. However,
conventional DD suffers from a considerable loss in per-
formance even for moderately fast fading. In order to
overcome this problem, multiple–symbol detection (MSD)
and low–complexity decision–feedback differential detec-
tion (DF–DD) receivers are derived.

1. Introduction

Recently, differential space–time modulation (DSTM) has re-
ceived high attention [1, 2, 3]. DSTM provides transmit di-
versity while the coefficients of the flat fading channel have
not to be known for the detection process. This may be cru-
cial if fading conditions change too rapidly for a reliable chan-
nel estimation necessary for coherent detection, e.g. [4, 5].
For DSTM it is distinguished between constellations based
on group designs and non–group designs [6]. Constellations
whose elements form a group have the advantage that the ma-
trix multiplication necessary for differential encoding has not
to be performed explicitly [3]. Also the search for good codes
is facilitated by the group property [6]. Among the group de-
signsdiagonal signals play a prominent role [3, 2]. Diagonal
signals achieve full transmit diversity and are especially at-
tractive for low data ratesR � 2 bits=(channel use). In ad-
dition, for diagonal signals and conventional differential de-
tection (DD) a low–complex fast decoding algorithm exists
[7], which makes them very attractive for implementation.
Although a lot of work has been done to design efficient
DSTM schemes, the receiver side has received little attention
so far. In the above cited references on DSTM only conven-
tional DD is considered. In addition, it is assumed that the
fading rate is very low, i.e., the channel coefficients are as-
sumed to be constant over2NT modulation intervals where
NT is the number of transmit antennas. We will show that
DSTM with conventional DD suffers from a severe perfor-
mance degradation if the slow fading condition is not ful-
filled.
Motivated by the fact that multiple–symbol detection (MSD)
[8, 9] and decision–feedback differential detection (DF–DD)
[10, 11] are very effective for single–antenna transmission
schemes we derive corresponding decision rules for the multi-
ple–antenna case. Thereby, we concentrate on diagonal sig-
nals because in this case relatively simple decision rules re-
sult. Analytical and simulation results show in good agree-

ment the significantly enhanced performance of the proposed
receivers for DSTM compared to conventional DD.

2. System Model

2.1. Flat Rayleigh Fading Channel Model

We consider a transmission scheme usingNT transmit anten-
nas andNR receive antennas. The transmitted symbols are
grouped in blocks of sizeNT and at timeNT k + �, k 2 Z,
0 � � � NT � 1, the symbols�[NT k + �] is transmitted by
the�th, 0 � � � NT � 1, antenna.
We model the equivalent complex–baseband representation
of the received signalr� [NT k + �] at the�th, 0 � � �
NR � 1, receive antenna as

r� [NT k+�] =

NT�1X
�=0

h�� [NT k+�]s�[NT k+�]+n� [NT k+�];

(1)
whereT–spaced sampling (T is the modulation interval) and
perfect symbol synchronization are assumed.h�� [NT k +
�] denotes the zero–mean complex fading gain between the
�th transmit and the�th receive antenna at timeNT k + �,
whereasn� [NT k + �] refers to the complex additive white
Gaussian noise at receive antenna�. As usual, it is assumed
that all fading processes have identical statistical properties
and are uncorrelated in space, i.e.,Efh�� [�]h��0�0 [�]g = 0

for � 6= �0 or/and� 6= � 0 (Ef�g and (�)� denote expecta-
tion and complex conjugation, respectively), but correlated
in time. Here, we use Clarkes model [12] for the fading auto-
correlation function'hh[�] = Efh��� [NT k + �]h�� [NT k +

� + �]g = �2h � J0(2�BfT�), 0 � � � NT � 1, 0 �
� � NR � 1, where�2h, J0(�), andBf refer to the variance
of the fading processes, the zeroth order Bessel function of
the first kind, and the one–sided bandwidth of the underlying
continuous–time fading processes, respectively. It is worth
mentioning that the received signal can only be modeled as
in (1) as long as the continuous–time fading process is ap-
proximately constant during the symbol durationT . Here,
we assume that this condition is fulfilled forBfT � 0:03.
The white Gaussian noise processesn� [�] at different receive
antennas are mutually uncorrelated and have equal variance
�2n = Efjn� [NT k+�]j2g, 0 � � � NR�1. The transmitted
symbols are normalized toEfPNT�1

�=0 js�[NT k + �]j2g = 1,
i.e., the (mean) signal–to–noise ratio (SNR) per receive an-
tenna isSNR = �2h=�

2
n.



2.2. Differential Space–Time Modulation

At the transmitter, the signals are organized inNT �NT ma-
tricesS[k] with elementss�[NT k + �] in row � and col-
umn�. MatrixS[k] is obtained by differential encoding from
S[k � 1] andV [k]

S[k] = V [k]S[k � 1]: (2)
Here, we restrict our attention to constellations whose ele-
ments form a group under matrix multiplication, i.e., the pos-
sible values forV [k] andS[k] belong to a finite set with
L = 2NTR elements [6], whereR denotes the data rate. In
particular, we are interested in diagonal constellations where
the unitary matricesV [k] = V l[k] are taken from the set
A = fV l = diagfexp(j2�u0l=L); exp(j2�u1l=L); : : : ;
exp(j2�uNT�1l=L)gjl 2 f0; 1 : : : ; L� 1gg (

p�1 4
= j and

diagf�g denote the imaginary unit and a diagonal matrix, re-
spectively). For givenNT and data rateR the coefficientsu�,
0 � � � NT � 1, are optimized to achieve maximum diver-
sity product [3]. For all examples considered in this paper, we
adopt the values given in [3, Table I]. For almost all constel-
lations given in [3, Table I] aGray labeling for the bits may
be constructed (cf. [13]). The constellation withNT = 4,
R = 1bit=(channel use) is an exception since each symbol
has8 nearest neighbor symbols. In this case, a natural label-
ing for l = 0; 1 : : : ; 15 may be used.

3. Noncoherent Receivers

3.1. Multiple–Symbol Detection

Using (1), the signals received at antennas0 to NR � 1 can
be collected in a vector

r[NT k+�] = s[NT k+�]H[NT k+�]+n[NT k+�]; (3)

with the definitionsr[NT k+�]
4
= [r0[NT k+�] : : : rNR�1

[NT k+�]], s[NT k+�]
4
= [s0[NT k+�] : : : sNT�1[NT k+

�]], n[NT k + �]
4
= [n0[NT k + �] : : : nNR�1[NT k + �]],

and the element of matrixH [NT k+ �] in column� and row
� is h�� [NT k + �], 0 � � � NT � 1, 0 � � � NR � 1.
Now, the vectorsr[�] received in the observation interval
[NT k+NT �1; NT (k� (N �1))] of N matrix symbols are

collected in a matrix�R[k]
4
= [rT [NT k + NT � 1] : : : rT

[NT (k� (N � 1))]]T ([�]T denotes transposition). Using (3),
�R[k] can be expressed as

�R[k] = �S[k] �H [k] + �N [k]; (4)

where the definitions�H [k]
4
= [HT [NT k+NT �1] : : : HT

[NT (k� (N �1))]]T , �N [k]
4
= [nT [NT k+NT �1] : : : nT

[NT (k � (N � 1))]]T and

�S[k]
4
=2

6664
s[NT k +NT � 1] 0NT : : : 0NT

0NT

...
... 0NT

...
. . .

. . .
...

0NT : : : 0NT s[NT (k � (N � 1))]

3
7775

(0NT denotes theNT dimensional all–zero row vector) are
used.
Sinceh�� [�] andn� [�], 0 � � � NT�1, 0 � � � NR�1, are
zero–mean complex Gaussian random processes, the proba-
bility density function (pdf) of �R[k] conditioned on�S[k] is
given by

p( �R[k]j �S[k]) =
1

(�NNT detfCR[k]g)NR
� exp

�
�tr

�
�R
H
[k]C�1

R [k] �R[k]
��

(5)

(detf�g andtr(�) denote the determinant and the trace of a
matrix, respectively), whereCR[k] denotes the conditional
covariance matrix

CR[k]
4
= Ef �R[k] �R

H
[k]j �S[k]g: (6)

The MSD decision rule for general DSTM can be obtained
by maximizing (5) with respect to the vector of transmitted

symbolsl[k]
4
= [l[k] l[k� 1] : : : l[k� (N � 2)]]. In general,

this decision rule will be rather complicated and computa-
tionally complex. However, fordiagonal signals [3] signifi-
cant simplifications are possible. It can be shown that for this
important special case the MSD decision rule forl[k] is given
by

l̂[k]= argmax
l[k]

(
<
(

N�1X
�1=0

N�1X
�2=�1+1

t�1�2

NT�1X
�=0

�2�1Y
m=�1

exp

�
j
2�u�l[k �m]

L

�

NR�1X
�=0

r�� [NT (k � �1) + �]r� [NT (k � �2) + �]

))
(7)

where the decisionŝl[k �m], 0 � m � N � 2, are collected
in vector l̂[k] and<f�g denotes the real part of a complex
number. The coefficientst�1�2 , 0 � �1; �2 � N � 1, are the
elements of matrix

T
4
= �(CNT

h + �2nIN )
�1 (8)

whereCNT
h is the (temporal) autocorrelation matrix of pro-

cessh�� [NT k], which is independent from� and�. (7) may
be viewed as a generalization of the MSD decision rule for
M–ary differential phase–shift keying (MDPSK) transmis-
sion over a flat Rayleigh fading channel (cf. [8]) to diagonal
DSTM and multiple receive antennas.
Unfortunately, the above MSD decision rule requires the cal-
culation of2NTR(N�1)=(NTR(N � 1)) metrics per bit de-
cision, i.e., complexity is exponential in number of transmit
antennasNT , data rateR, and observation window sizeN .
However, it is well known from the single antenna case that
the power efficiency of MSD increases with increasingN .
Thus, a low–complexity scheme with a similar performance
as MSD but whose complexity is almost independent ofN
will be derived in the next section.



3.2. Decision–Feedback Differential Detection

A. Decision Rule: A very simple way to reduce complexity
is to introduce decision feedback, i.e., in (7) thel[k �m] are
replaced by previously decided symbolsl̂[k �m], 1 � m �
N � 2, and a decision is made only onl[k]. If all irrelevant
terms are neglected, the resulting DF–DD decision rule is

l̂[k] = argmax
l

(
<
(

NT�1X
�=0

NR�1X
�=0

exp

�
j
2�u�l

L

�

r�� [NT k + �]r̂ref;� [NT (k � 1) + �]

))
(9)

with the reference signal

r̂ref;� [NT (k � 1) + �] =

N�1X
�=1

t0�

��1Y
m=1

exp

 
j
2�u� l̂[k �m]

L

!
r� [NT (k � �) + �]: (10)

(9) and (10) may be viewed as a generalization of the DF–DD
decision rule for the single–antenna case proposed in [14].
Now, only2NTR=(NTR) metrics per bit decision have to be
calculated, i.e., complexity is only exponential inNT andR.
For the special caseN = 2 both the MSD (7) and the DF–
DD (9) decision rules are identical to the decision rule for
conventional DD given e.g. in [3].

B. Relation to Linear Prediction: First, observe thatCNT
h +

�2nIN (8) may be interpreted as autocorrelation matrix of the
process

c�� [NT k]
4
= h�� [NT k] + n� [NT k]; (11)

0 � � � NT�1, 0 � � � NR�1. Therefore, using the same
approach as in [14, Section V], it is straightforward to show
that the coefficientst0� , 1 � � � N � 1, can be expressed as

t0� =
p�
�2e

; 1 � � � N � 1; (12)

wherep� are the coefficients of the(N � 1)st order predictor
for processc�� [NT k] and�2e is the resulting prediction error
variance. Since a multiplicative real constant does not in-
fluence the decision rule, in (10) the coefficientst0� may be
replaced by the predictor coefficientsp�, 1 � � � N � 1.
This new formulation of the decision rule emphasizes the
estimator–correlator structure [15] of the DF–DD receiver
and facilitates its implementation. In particular, the predictor
coefficients can be adaptively calculated employing the re-
cursive least squares (RLS) algorithm (cf. [13]).

C. Fast Decoding Algorithm: Although the complexity of the
DF–DD decision rule (9) is almost independent of the obser-
vation window sizeN , it is still exponential in data rateR and
number of transmit antennasNT . In [7] a (suboptimum) fast

decoding algorithm is given for conventional DD of DSTM
with diagonal signals whose complexity is only polynomial
in R andNT . Fortunately, as will be shown in the following
this decoding algorithm can also be applied to DF–DD.
For application of the fast decoding algorithm of [7] a deci-
sion rule of the form

l̂[k] = argmax
l

(
NT�1X
�=0

NR�1X
�=0

A2
�� [k] cos((u�l � '�� [k])

2�

L
)

)

(13)
is necessary, where amplitudeA�� [k] and phase difference
'�� [k] (in units of2�=L) have to be independent of the cur-
rent trial symboll. A comparison with (9) shows that a rep-
resentation according to (13) is obtained by setting

A�� [k]
4
=

r���r� [NT k + �]r̂�ref;� [NT (k � 1) + �]
��� (14)

'�� [k]
4
= arg

�
r� [NT k + �]r̂�ref;� [NT (k � 1) + �]

	 L

2�
;

(15)

whereargf�g refers to the phase of a complex number. Thus,
the fast decoding algorithm of [7] can be applied directly to
DF–DD to further reduce computational complexity. How-
ever, since in this paper we are primarily interested in the
achievable power efficiency of DF–DD, in all results pre-
sented in Section 5 the exact and more complex decision rule
according to (9) is used.

4. Performance Analysis for DF–DD

In this section, the achievable performance of DF–DD for di-
agonal DSTM is analyzed. Since it is difficult to take the ef-
fect of decision errors in the feedback symbols into account,
we first analyze genie–aided DF–DD, i.e., it is assumed that
all feedback symbols are correct. This is a standard approach
for the analysis of DF–DD (cf. e.g. [16, 14]).

4.1. Pairwise Error Probability

First, we analyze the pairwise error probabilityPe(l1; l2), i.e.,
the probability of detectinĝl[k] = l2, whenl[k] = l1 (l1; l2 2
f0; 1; : : : ; L � 1g, l1 6= l2) is transmitted. Using a similar
approach as the authors in [5] for conventional DD and slow
fading, we obtain [13]

Pe(l1; l2) =
1

�

�=2Z
0

NT�1Y
�=0

 
1

1 +
��(l1;l2)
4 cos2 �

!NR

d�; (16)

where

��(l1; l2) = 4
�2h + �2n � �2e

�2e
(1� d2�(l1; l2)) (17)

is valid. �2e = 'hh[0] + �2n �
PN�1

�=1 p��'hh[NT �] and
d�(l1; l2) = j cos(�u�(l1 � l2)=L)j denote the prediction er-
ror variance for processc�� [NT k] and the�th singular value
of the matrix1

2 (INT + V
H
l1V l2) [3], respectively.



In order to get a more intuitive insight, the Chernoff upper
bound [17] onPe(l1; l2) may be considered. Using the same
technique as proposed in [5, Appendix B] for conventional
DD, we obtain

Pe(l1; l2) � 1

2

NT�1Y
�=0

 
1

1 +
��(l1;l2)

4

!NR
: (18)

Observe that (16) and (18) are generalizations of the corre-
sponding equations given in [5] which are only valid for the
special caseN = 2 andBfT = 0.
(17) and (18) show thatPe(l1; l2) decreases if the prediction
error variance�2

e decreases. On the other hand,�2
e increases

for a given observation window sizeN if NT is increased as
long as the fading bandwidthBf is larger than zero since the
processc�� [NT k] becomes less correlated. This means, there
may be situations when the error rate increases if the number
of transmit antennas is increased.
The limiting performance of DF–DD is obtained forN !
1. Borrowing again from [14, Section VI], it is straightfor-
ward to show that for Clarkes fading model [12] andN !1

�2e = �2n

�
e�2h

2�NTBfT�2n

�2NTBfT

exp(2NTBfTI) (19)

is obtained for the prediction error variance, wheree is the
Euler number andI is defined as

I
4
=

�=2Z
0

ln(1 + �NTBfT�
2
n=�

2
h sin�) sin�d�: (20)

Note that we presumeNTBfT < 1=2, i.e., processh�� [NT k]
is bandlimited. Therefore, there is no error floor for� 2

n = 0
since in this case�2e = 0 and consequentlyPe(l1; l2) = 0
result [13]. ForBfT ! 0, �2e = �2n holds and the pairwise
error probability for DF–DD is identical to that of coherent
detection. ForBfT > 0 and�2n > 0, �2e > �2n holds which
implies an inevitable loss of DF–DD compared to coherent
detection with perfect channel state information (CSI).

4.2. Approximation for BER

If we use the union bound to approximate the symbol error
rate for genie–aided DF–DD and assume thatRNT bits are
Gray mapped to one symbol, we obtain for the bit error rate
(BER) the approximation

P genie
b � 1

RNT

L�1X
l=1

Pe(l; 0): (21)

For realizable DF–DD, the influence of decision errors has to
be taken into account forN > 2. Our investigations have
shown that for realizable DF–DD BER has to be approx-
imately doubled since each decision error is very likely to
cause a second decision error. This is in accordance with the

literature for single–antenna DF–DD (e.g. [16, 14]). Hence,
the BER of realizable DF–DD can be approximated as

Pb �
�

P genie
b ; N = 2

2 � P genie
b ; N > 2

: (22)

5. Results and Discussion

Since DF–DD and MSD yield almost the same error per-
formance [13], in this paper we only show simulation and
numerical results for DF–DD. We have simulated a system
as described in Section 2, i.e., independent Rayleigh fading
channels are assumed between any pair of transmit and re-
ceive antennas and the diagonal signals for DSTM are taken
from [3, Table I]. For the numerical results, the BER approxi-
mation given by (22), (21), (16) is employed. For the limiting
caseN !1, the prediction error variance necessary for cal-
culation of BER is obtained from (19). An approximation for
BER of DSTM with coherent detection is given by the lower
part of (22) (N > 2) by setting�2

e � �2n.
In the further discussion, we focus on the case where only
one receive antenna is present (NR = 1), since the influence
of multiple receive antennas should be clear from (16), (18).
For our first example,R = 1bit=(channel use) andBfT =
0:03 are valid. Figs. 1a), b), and c) show BER vs.SNR for
NT = 1, 2, and3 transmit antennas, respectively. All figures
show that DF–DD withN > 2 can yield significant gains
over conventional DD (N = 2). Fortunately, the major part of
the achievable gain can be realized with moderate observation
window sizeN , i.e., the gap between the curves forN = 5
andN ! 1 is relatively small. Observe that for conven-
tional DD BER increases with increasing number of transmit
antennas. In this case, the influence of the higher prediction
error variance on BER is stronger than the improvement due
to enhanced diversity. However, forN = 5 power efficiency
improves with increasing number of transmit antennas, i.e.,
the receiver can take advantage of the higher diversity. The
gap between coherent detection with perfect CSI and opti-
mum DF–DD (N ! 1) increases with increasingNT since
the minimum achievable prediction error variance (cf. (19))
increases. Nevertheless, for large values ofN no error floor
can be observed since the underlying fading processes are
bandlimited. Remarkably, there is a very good agreement
between the numerical approximation and the simulation re-
sults.
Fig. 2 shows BER vs.BfT for R = 2bits=(channel use)
andSNR ! 1, i.e., the error floor is investigated. Only
numerical results are shown. We restrict ourselves to the in-
terval0:01 � BfT � 0:03 since BER becomes very small
for smaller normalized fading bandwidths. It can be observed
that the error floor for conventional DD (N = 2) can be re-
duced by orders of magnitude if the observation window size
is increased toN = 3 or N = 4. This statement holds for
NT = 1 � 4. From the considerations in Section 4.1 it can
be concluded that the error floor is removed completely for
N ! 1 since the underlying fading processes are strictly
bandlimited. Again, depending onN andBfT , there is a
trade–off between enhanced diversity and increased predic-
tion error variance when varyingNT from 1 to 4. Remark-



ably, in case of conventional DD performance deteriorates
with increased number of transmit antennas for almost all
BfT considered in Fig. 2.

Figure 1: BER vs.10 log10(SNR) for DF–DD with a)NT =

1, b)NT = 2, and c)NT = 3 transmit antennas.5, 2, 4,
and3 denote simulation points.R = 1bit=(channel use),
BfT = 0:03, andNR = 1 are valid.

6. Conclusions

In this paper, it has been shown that conventional DD is suit-
able for DSTM only for very slow fading channels. In partic-
ular, increasing the number of transmit antennas is not ben-
eficial for moderately fast or fast fading if conventional DD
is used. Thus, we have derived MSD and DF–DD receivers
for DSTM with diagonal signals. Both yield almost the same
performance, however, the latter requires a lower computa-
tional complexity [13]. Simulation and analytical results con-
firm that large performance gains can be realized by DF–DD
while complexity is increased only moderately.
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