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Abstract — In this paper, noncoherent receivers for differ-  ment the significantly enhanced performance of the proposed
ential space—time modulation (DSTM) are investigated. It receivers for DSTM compared to conventional DD.

is shown that the performance of the previously proposed

conventional differential detection (DD) receiver is satis- 2. System Model

factory (_)nly for very slow flat fading c_hannels. However, 2.1, Flat Rayleigh Fading Channel Model

conventional DD suffers from a considerable loss in per- j s i )

formance even for moderately fast fading. In order to We consider a transmission scheme usigtransmit anten-
overcome this problem, multiple—symbol detection (MSD) Nas andZ\_fR receive antennas. The_transmltted symbols are
and low—complexity decision—feedback differential detec- grouped in blocks of siz&/r and at timeNrk + x, k € Z,

tion (DF-DD) receivers are derived. 0 <k < Ny — 1, the symbok, [N7k + x] is transmitted by
theuth,0 < u < Np — 1, antenna.
1. Introduction We model the equivalent complex—baseband representation

. . . . of the received signat,[Nrk + k] at thevth, 0 < v <
Recently, differential space—time modulation (DSTM) hasrenr. _ 1 receive antenna as

ceived high attention [1, 2, 3]. DSTM provides transmit di-

versity while the coefficients of the flat fading channel have Nr—1

not to be known for the detection process. This may be cry-, [Nrk+ K] :Zhw[NTkJrn]su[NTk+n]+ny[NTk+/€],

cial if fading conditions change too rapidly for a reliable chan- 4—0

nel estimation necessary for coherent detection, e.g. [4, 5]. (1)

For DSTM it .is distinguished between constellations base@hereT—spaced sampling/{is the modulation interval) and
on group designs and non-group designs [6]. Constellationgerfect symbol synchronization are assumed,, [Ntk +
whose elements form a group have the advantage that the ma-denotes the zero—-mean complex fading gain between the
trix multiplication necessary for differential encoding has not,th transmit and the/th receive antenna at tim¥ & + ,

to be performed explicitly [3]. Also the search for good codesyhereasn, [N7k + «] refers to the complex additive white

is facilitated by the group property [6]. Among the group de-Gaussian noise at receive antemna\s usual, it is assumed
signsdiagonal signalsplay a prominentrole [3, 2]. Diagonal that all fading processes have identical statistical properties
signals achieve full transmit diversity and are especially atand are uncorrelated in space, i85 [he [} = 0
tractive for low data rate® < 2bits/(channeluse). Inad- ¢, i # i orlandy # v' (€{-} and()* deﬁote expecta-
dition, for diagonal signals and conventional differential desjq gng complex conjugation, respectively), but correlated

tection (DD) a low—complex fast decoding algorithm existS§p, {ime. Here, we use Clarkes model [12] for the fading auto-
[7], which makes them very attractive for implementation. . ralation functiong [\ = E{h%, [N7k + &]huw [Nk +
Although a lot of work has been done to design efficient 9 ’

DSTM schemes, the receiver side has received little attentidh ™ A} = oy J°(272TBfT>‘)’ 0<p<Np—10<

so far. In the above cited references on DSTM only conver,, < Nr — 1, whereay,, Jo(-), and By refer to the variance
tional DD is considered. In addition, it is assumed that th@' the fading processes, the zeroth order Bessel function of
fading rate is very low, i.e., the channel coefficients are adhe firstkind, and the one-sided bandwidth of the underlying
sumed to be constant oveN; modulation intervals where continuous-time fading processes, respectively. It is worth
N is the number of transmit antennas. We will show thaf€ntioning that the received signal can only be modeled as
DSTM with conventional DD suffers from a severe perfor-" (1) as long as the continuous-time fading process is ap-
mance degradation if the slow fading condition is not fulProximately constant during the symbol duratifn Here,
filled. we assume that this condition is fulfilled fd#,7" < 0.03.
Motivated by the fact that multiple—symbol detection (MSD) The white Gaussian noise procesae$] at different receive

[8, 9] and decision—feedback differential detection (DF_DD)aQtennas are mutuaII%/ uncorrelated and have equal variance
[10, 11] are very effective for single—antenna transmissiofin = & {[nw [Nk +£][},0 < VNS Np—1. The transmitted
schemes we derive corresponding decision rules for the mulgymbols are normalized R‘){EFTO_I |su[N7Tk + K]|?} =1,
ple—antenna case. Thereby, we concentrate on diagonal sig-, the (mean) signal-to—noise ratio (SNR) per receive an-
nals because in this case relatively simple decision rules reennaisSNR = o7 /o2.

sult. Analytical and simulation results show in good agree-



2.2. Differential Space-Time Modulation (0N, denotes theVy dimensional all-zero row vector) are

At the transmitter, the signals are organizedvip x Ny ma-  Used.

trices S[k] with elementss, [N7k + ] in row x and col-  Sinceh,[]andn,[],0 < p < Np—1,0 <v < Np—1, are
umny. Matrix S[k] is obtained by differential encoding from Z€ro—mean complex Gaussian random processes, the proba-

S[k — 1] and V[#] bility density function (pdf) of R[k] conditioned onS|k] is
given by
_ S[k] = V[k] S[k —1]. _ )
Here, we restrict our attention to constellations whose ele- p(R[k]|§[ ) =

ments form a group under matrix multiplication, i.e., the pos- ~ (wNNrdet{CRg[k]})Nr

sible values forV[k] and S[k] belong to a finite set with g s

L = 2N7F elements [6], wherdk denotes the data rate. In $eXp (_tr (R [K1Cr [k]R[k])) ®)
particular, we are interested in diagonal constellations whe
the unitary matriced/[k] = V) are taken from the set

A = {V,; = diag{exp(j2nruol/L), exp(j2nusl/L), ...,

A
exp(j2run,—1l/L)Hl € {0,1...,L—1}}(v/-1=jand A _
diag{-} denote the imaginary unit and a diagonal matrix, re- Crlk] = E{RIKIR" [k)|S[K]}. (6)
spectively). For giveiNy and data ratd the coefficients:,, o \sp decision rule for general DSTM can be obtained

0 < p < Nr — 1, are optimized to achieve maximum diver- "o imizing (5) with respect to the vector of transmitted
sity product [3]. For all examples considered in this paper, we

adopt the values given in [3, Table I]. For almost all constelsymbolsi[k] 2 [I[] [k — 1] ... [k — (N — 2)]]. In general,
lations given in [3, Table I] &ray labeling for the bits may this decision rule will be rather complicated and computa-
be constructed (cf. [13]). The constellation with; = 4, tionally complex. However, fodiagonal signals [3] signifi-

R = 1bit/(channel use) is an exception since each symbolcant simplifications are possible. It can be shown that for this
has8 nearest neighbor symbols. In this case, a natural labémportant special case the MSD decision rulelfét is given

r(ﬁet{} andtr(-) denote the determinant and the trace of a
matrix, respectively), wher€ g[k] denotes the conditional
covariance matrix

ingforl =0, 1 ..., 15 may be used. by

. N—-1 N-1

3. Noncoherent Receivers Z[k] — argmax{ R Z tee
3.1. Multiple-Symbol Detection LK) €120 £o—g1+1 e
Using (1), the signals received at antenfide Ny — 1 can Nr—1 é2-1 o ik
be collected in a vector > I e OM)
L
r[Nrk+ k] = s[Nrk + k]H[N7k + ]+ n[Nrk + £], (3) u=0 m=¢
NRfl
. . A
with the definitions [N7k + k] = [ro[N7k+ K] ... "Ng—1 Z rE[Np(k — &) + plry [No(k — &) + ] }}(7)
[Npk +&]], 8{N7k + k] 2 [so[Nrk+K] ... $np_1[Nrk+ v=0
&]], n[Nrk + &] S [no[NTk + K] ... nnp—1[N7k + &]],  where the decision§k — m], 0 < m < N — 2, are collected
and the element of matrild [Nk + x] in columnu and row iy vectori[k] and ®{-} denotes the real part of a complex
vishu, [Nrk+&],0 <p < Np—1,0<pu < Ng—1. number. The coefficients, ¢,, 0 < &,& < N — 1, are the
Now, the vectorsr[-] received in the observation interval glements of matrix
[Nrk+ Nt —1, Np(k— (N —1))] of N matrix symbols are A
— N- —
collected in a matrix®[k] 2 [rT[Nzk + Np — 1] ... 7T T=-(Cp" +onIn)"! (8)
%Vi(k _ (é\f -7 ([a]T denotes transposition). Using (3), whereC" is the (temporal) autocorrelation matrix of pro-
[k] can be expressed as cesshu,,[,}VTk], which is independent from andv. (7) may

R[k] = S[k|H[k] + NTk], (4) be viewed as a generalization of the MSD decision rule for
M-ary differential phase—shift keying (MDPSK) transmis-
where the definitiongT [k] & [HT[NTk+NT —1] ... HT sion overgl ﬂatI Rzlayleigh fading channel (cf. [8]) to diagonal
o1 A DSTM and multiple receive antennas.
[Nz (k— (N~ 1))]]T7: N[k = [T [Nrk+Np—1] ... nT Unfortunately, the above MSD decision rule requires the cal-
[Nr(k - (N = 1))]]" and culation of 2NTE(N=1) /(N2 R(N — 1)) metrics per bit de-
5[] A cision, i.e., complexity is exponential in number of transmit
- antennasVr, data rateR, and observation window siz¥.
s[Ntk+ N7 —1] On; ... Ony However, it is well known from the single antenna case that
0 : : 0 the power efficiency of MSD increases with increasiig
Nr Nz Thus, a low—complexity scheme with a similar performance
: : as MSD but whose complexity is almost independeniVof
On, On, s[Nr(k— (N -1))] will be derived in the next section.



3.2. Decision—eedback Differential Detection decoding algorithm is given for conventional DD of DSTM

A. Decision Rule: A very simple way to reduce complexity With diagonal signals whose complexity is only polynomial
is to introduce decision feedback, i.e., in (7) the— m] are ltE_Rdanng_T. Ftl)rturlﬁtely, as \?nll l;e shO\I/yndlrg trE)eFfo[I;c[))wmg
. ) - is decoding algorithm can also be applied to DF-DD.
replaced by previously decided symbdls — m|, 1 < m < L . . .
Np— 5. anggdecisior)mlis made oﬁly «bﬁiﬂh]. Ifﬂ;}l irrEIeT\r/Laﬁt For application of the fast decoding algorithm of [7] a deci-

terms are neglected, the resulting DF-DD decision rule is sion rule of the form

Nr 1Nt 27,1
A . . w
I[[k] = argmax {%{ E E exp <] T >

l pn=0 v=0

X Nr—1Ngp—1 o
I[k] = argmax{ Z ZAiy[k] cos((uyl — gou,,[k])f)}
! p=0 v=0

(13)
is necessary, where amplituds,, [k] and phase difference
5 [Nrk + p)frer o [N (k — 1) + p] }} (9)  @uv[k] (in units of 27/ L) have to be independent of the cur-
rent trial symbol. A comparison with (9) shows that a rep-
resentation according to (13) is obtained by setting

N gt AMHé¢

with the reference signal

ro[NTh i [NT(k = 1)+ | (14)

ref,v

rAref,V[NT(k - 1) + :u] = Z t05 H A L
=1 m=1 puv k] = arg {r,[Nrk + plire , [Nr(k — 1) + ] } o
27wy l[k —m) (15)

exp <]T> ry[N7(k — &) + p]- (10)

wherearg{-} refers to the phase of a complex number. Thus,
e fast decoding algorithm of [7] can be applied directly to
F-DD to further reduce computational complexity. How-

(9) and (10) may be viewed as a generalization of the DF—Dg
ver, since in this paper we are primarily interested in the

decision rulls flgr the single-antenna case proposed in [1
Now, only 2"/ (Nr.]t) metrics per bit decision have to be achievable power efficiency of DF-DD, in all results pre-

calculated, i.e., complexity is only exponentialify and R. sented in Section 5 the exact and more com P
. - plex decision rule
For the special cas® = 2 both the MSD (7) and the DF— according to (9) is used.

DD (9) decision rules are identical to the decision rule for

conventional DD given e.g. in [3]. 4. Performance Analysis for DF-DD

B. Relation to Linear Prediction: First, observe tha ;' +  |n this section, the achievable performance of DF-DD for di-

021y (8) may be interpreted as autocorrelation matrix of thegonal DSTM is analyzed. Since it is difficult to take the ef-

process fect of decision errors in the feedback symbols into account,
we first analyze genie—aided DF-DD, i.e., it is assumed that

v [NTK] = B [N7k] + 1, [Nrk], (11) allfeedback symbols are correct. This is a standard approach

for the analysis of DF-DD (cf. e.g. [16, 14]).

0<u<Nr—-1,0 <v < Ngp-—1. Therefore, using the same o o

approach as in [14, Section V], it is straightforward to show-1. Pairwise Error Probability

that the coefficientty:, 1 < ¢ < N — 1, can be expressed as First, we analyze the pairwise error probabilty(l;, ), i.e.,

the probability of detectingk] = I, wheni[k] = 11 (i1, l> €

toe = p—g, 1<E<N -1, (12) {o,1,..., L —1},1; # 1y)is transmitted. Using a similar
e approach as the authors in [5] for conventional DD and slow

wherep, are the coefficients of thgV — 1)st order predictor fading, we obtain [13]
for process:,, [Nrk] ando? is the resulting prediction error /2y Nr
variance. Since a multiplicative real constant does not in- (I, 1) = 1 H 1 40, (16)
fluence the decision rule, in (10) the coefficietds may be e\",%2) = 14 aulll) ’
replaced by the predictor coefficients, 1 < ¢ < N — 1. 0o #=0 4cos? O
This new formulation of the decision rule emphasizes thg ,qre
estimator—correlator structure [15] of the DF-DD receiver
and facilitates its implementation. In particular, the predictor o} +02 —o? >
coefficients can be adaptively calculated employing the re- au(l,l2) = 4 o2 (1 =d, (0, 12)) (17)

€

cursive least squares (RLS) algorithm (cf. [13]).

. . N—-1
C. Fast Decoding Algorithm: Although the complexity of the 1S Valid- 02 = n[0] + o3 — 32—, pienn[N7¢] and
DF-DD decision rule (9) is almost independent of the obsefu (l1,l2) = | cos(muy (I — I2)/L)| denote the prediction er-
vation window sizeV, it is still exponentialin data ratg and ~ ror variance for process,, [Nrk| and theuth singular value
number of transmit antenna@ér. In [7] a (suboptimum) fast of the matrix%(INT + V,’fVl2) [3], respectively.



In order to get a more intuitive insight, the Chernoff uppefiterature for single—antenna DF-DD (e.g. [16, 14]). Hence,
bound [17] onP.(I,l2) may be considered. Using the samethe BER of realizable DF-DD can be approximated as
technique as proposed in [5, Appendix B] for conventional

DD, we obtain pgenie N=2
: Pl tr o 22
b { 2. P{;geme, N >2 ( )
Nr—1 1 Nr
P.(lh,l3) < 3 ul;[O <w> . (18) 5. Results and Discussion

Since DF-DD and MSD vyield almost the same error per-
formance [13], in this paper we only show simulation and

sponding equations given in [5] which are only valid for theNUmerical results for DF-DD. We have simulated a system
sgecial gasg, —9 angdBfT :[0]. y as described in Section 2, i.e., independent Rayleigh fading

(17) and (18) show thaP, (1, I) decreases if the prediction channels are assumed between any pair of transmit and re-
error variancer? decreases. On the other hand,increases C€lVé anténnas and the diagonal signals for DSTM are taken
for a given observation window siz€ if N7 is increased as oM [3, Table I]. For the numerical results, the BER approxi-
long as the fading bandwidt; is larger than zero since the Mation givenby (22), (21), (16) is employed. For the limiting
process:,,, [Nrk] becomes less correlated. This means, theféafdv _>f°°’ the prediction ferror variance necessary for ?al'
may be situations when the error rate increases if the numbglation of BER is obtained from (19). An approximation for

of transmit antennas is increased. R of DSTM with coherent detection is given by the lower

The limiting performance of DF-DD is obtained fof —  Partof (22) (V > 2) by settingo ¢ = o7
0. Borrowing again from [14, Section VI], it is straightfor- In the further discussion, we focus on the case where only

h hat f larkes fadi (112 one reqeive antenna is preseitg = 1), since the influence
ward to show thatfor Clarkes fading model [12] aNd-— oo of multiple receive antennas should be clear from (16), (18).

)2NTB,T For our first exampleR = 1bit/(channeluse) andB ;T =

Observe that (16) and (18) are generalizations of the corr

2
2 2 €0y

= __—~"h IN+B:TI) (1 0.03 are valid. Figs. 1a), b), and ¢) show BER $&R for
o; =0, (27TNTBfTU% exp(2N7B;TI) (19) g ), b) )

Nr =1, 2, and3 transmit antennas, respectively. All figures
] ) o ) ) show that DF-DD withN > 2 can yield significant gains
is obtained for the_predl_ct|on error variance, wherns the  gyer conventional DDX = 2). Fortunately, the major part of
Euler number and is defined as the achievable gain can be realized with moderate observation
window sizeN, i.e., the gap between the curves fér= 5
A and N — oo is relatively small. Observe that for conven-
I= / In(1 4+ 7N7B;To? /o sin©)sin©®dO. (20) tional DD BER increases with increasing number of transmit
0 antennas. In this case, the influence of the higher prediction
error variance on BER is stronger than the improvement due
Note that we presum& BT < 1/2,i.e., procesé,,[Nrk] to enhanced diversity. However, fof = 5 power efficiency
is bandlimited. Therefore, there is no error floor égf = 0 improves with increasing number of transmit antennas, i.e.,
since in this case? = 0 and consequently, (I;,12) = 0 the receiver can take advanta_ge of _the higher diversity. Th_e
result [13]. ForB;T — 0, 02 = o2 holds and the pairwise 9ap between coherent_detectlon w_|th _perfect_ Csl a_nd opti-
error probability for DF-DD is identical to that of coherentmum DF-DD (V — oc) increases with increasily since
detection. FoB;T > 0 ando? > 0, o2 > o2 holds which the minimum achievable prediction error variance (cf. (19))
implies an inevitable loss of DF-DD compared to cohererificreases. Nevertheless, for large valuesvafio error floor

w/2

detection with perfect channel state information (CSI). can be observed since the underlying fading processes are
bandlimited. Remarkably, there is a very good agreement
4.2.  Approximation for BER between the numerical approximation and the simulation re-

If we use the union bound to approximate the symbol erropults. )
rate for genie—aided DF-DD and assume tRaf+ bits are Fig. 2 shows BER vsB;T for R = 2bits/(channel use)
Gray mapped to one symbol, we obtain for the bit error rat8NdSNR — oo, i.e., the error floor is investigated. Only

(BER) the approximation numerical results are shown. We restrict ourselves to the in-
terval0.01 < BT < 0.03 since BER becomes very small
_ = for smaller normalized fading bandwidths. It can be observed
P Z P,(1,0). (21) that the error floor for conventional DDV = 2) can be re-
RNt — duced by orders of magnitude if the observation window size

is increased taV = 3 or N = 4. This statement holds for
For realizable DF-DD, the influence of decision errors has t&/7 = 1 — 4. From the considerations in Section 4.1 it can
be taken into account faN > 2. Our investigations have be concluded that the error floor is removed completely for
shown that for realizable DF—-DD BER has to be approx®N — oo since the underlying fading processes are strictly
imately doubled since each decision error is very likely tdandlimited. Again, depending oN and BT, there is a
cause a second decision error. This is in accordance with thi@de—off between enhanced diversity and increased predic-
tion error variance when varyinyr from 1 to 4. Remark-



ably, in case of conventional DD performance deteriorates
with increased number of transmit antennas for almost all

BT considered in Fig. 2.
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Figure 1: BER vs10log,,(SNR) for DF-DD with a)Np =
1, b) Ny = 2, and ¢c)Nr = 3 transmit antennasy, O, A,
and< denote simulation pointskR = 1 bit/(channel use),
BT = 0.03, andNg = 1 are valid.

6. Conclusions
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Figure 2: BER vs.B;T for DF-DD. R = 2bits/

(channel use), SNR — 0o, andNg = 1 are valid.

(7]

(8]

In this paper, it has been shown that conventional DD is suit{9]

able for DSTM only for very slow fading channels. In partic-

ular, increasing the number of transmit antennas is not ben-

eficial for moderately fast or fast fading if conventional DD
is used. Thus, we have derived MSD and DF-DD receiver3o]

for DSTM with diagonal signals. Both yield almost the same
performance, however, the latter requires a lower computa-

tional complexity [13]. Simulation and analytical results con{11

firm that large performance gains can be realized by DF-DD

while complexity is increased only moderately.
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