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ABSTRACT
Motivation: Integration of heterogeneous data in life sciences
is a growing and recognized challenge. The problem is not only
to enable the study of such data within the context of a biolo-
gical question but also more fundamentally, how to represent
the available knowledge and make it accessible for mining.
Results: Our integration approach is based on the premise
that relationships between biological entities can be repres-
ented as a complex network. The context dependency is
achieved by a judicious use of distance measures on these
networks. The biological entities and the distances between
them are mapped for the purpose of visualization into the lower
dimensional space using the Sammon’s mapping. The system
implementation is based on a multi-tier architecture using a
native XML database and a software tool for querying and visu-
alizing complex biological networks. The functionality of our
system is demonstrated with two examples: (1) A multiple path-
way retrieval, in which, given a pathway name, the system finds
all the relationships related to the query by checking available
metabolic pathway, transcriptional, signaling, protein–protein
interaction and ontology annotation resources and (2) A pro-
tein neighborhood search, in which given a protein name,
the system finds all its connected entities within a specified
depth. These two examples show that our system is able to
conceptually traverse different databases to produce testable
hypotheses and lead towards answers to complex biological
questions.
Contact: matej.oresic@vtt.fi

1 INTRODUCTION
Historically, the decomposition of biology into different dis-
ciplines was necessary to tackle the complexity of life science
systems by ‘reducing’ the degree of complexity down to the
most basic level. With the advent of ‘omics’ revolution and
systems biology, such separation of biology is becoming arti-
ficial (Blagosklonny and Pardee, 2002). In order to utilize the
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diverse life science knowledge, one first needs to address sev-
eral practical and fundamental challenges of data integration.
For example, different domain-specific naming conventions
and vocabularies have been utilized both at the low level, such
as genes and proteins, and the more complex entities, such as
biological concepts. In order to be able to integrate data, one
should therefore enable traversing across such diverse sources
of information in an automated way.

From the early days of bioinformatics, several approaches
for biological data integration have been developed. Well-
known approaches include rule-based links, such as SRS
(Etzold and Argos, 1993; Etzoldet al., 1996), federated mid-
dleware frameworks, such as Kleisli system (Davidsonet al.,
1997; Chung and Wong, 1999), as well as wrapper-based
solution using query optimization, such as IBM Discovery
Link (Hass et al., 2001). In parallel, progress has been
made to organize biological knowledge in a conceptual way
by developing ontologies and domain-specific vocabularies
(Ashburneret al., 2000; Bard and Rhee, 2004; Bodenreider,
2004). With the emergence of XML and Semantic Web
technologies, the ontology-based approach to life science
data integration has become more ostensible. In this con-
text, data integration comprises problems like homogenizing
the data model with schema integration, combining multiple
database queries and answers, transforming and integrat-
ing the latter to construct knowledge based on underlying
knowledge representation.

However, the ontology-based approach alone cannot resolve
the practical problem of evolving concepts in biology, and
its best promise lies in specialized domains and environ-
ments where concepts and vocabularies can be well con-
trolled (Searls, 2005; Oresicet al., 2005). Neither can
the ontologies alone resolve the problem of context, i.e.
what may appear closely related in one context, may be
further apart or unrelated in another (Gärdenfors, 2000).
In this paper, we present our approach to data integra-
tion and context-based mining of biological data, which is
based on the premise that relationships between biological

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org i177

I/1

mailto:matej.oresic@vtt.fi
mailto:journals.permissions@oupjournals.org


“bti1015” — 2005/6/10 — page 178 — #2

P.V.Gopalacharyulu et al.

entities can be represented as a complex network, with
nodes being either low level (e.g. genes, compounds) or
more complex entities, such as concepts (cell localization,
biological processes), and with edges being relationships
between them, either physical interactions or more complex
relationships.

The paper is organized as follows: in Section 2, we describe
the practical implementation of our three-tier data integration
system and the design of the Java-based tool we developed
for querying the data and visualizing complex relationships.
In Section 3, we demonstrate the utility of the system with
two query examples: (1) an integrated pathway retrieval and
(2) a protein neighborhood search. In Section 4, we discuss
the design and performance of the system as well as its future
developments.

2 SYSTEMS AND METHODS

2.1 System design
Our data integration and visualization system is composed
of three layers in which the data constitutes the back-end
layer (Fig. 1). Schema mappings, ontology definitions and
conceptual learning implementations occupy the middle tier
and the user interface constitutes the front-end layer. The
middle tier also comprises sets of algorithms and modules
that process and display results of the query. Most of our
local data are represented in XML format. The data are
stored using XML data management system Tamino XML
server (Software AG) in a Redhat Linux Advanced Server
v2.1 environment. The databases are queried using Tamino
XQuery (Fiebig and Schöning, 2004) which is an imple-
mentation of XQuery language. The queries are enabled
through the Tamino Java API. For storing more voluminous
data, such as gene-expression data and in house produced
mass spectrometry data, we use Oracle 10gdatabase server
(Oracle, Inc.).

2.2 Design of the network visualization tool
The megNet software is a Java-based tool which affords paral-
lel retrieval across multiple databases, with results displayed
as a network. Edge attributes contain information about types
of relationships, possibly quantitative or semantic informa-
tion (e.g. ‘is located in’ in case of linking a protein with a
complex entity, such as cell organelle). The tool retrieves bio-
logical data from the Tamino databases using Tamino Java
API and data from Oracle databases using JDBC. The user
interface is implemented using Java Swing libraries, with the
graphs created using Tom Sawyer Visualization Toolkit 6.0
(Tom Sawyer, Inc.). The basic layout of the user interface is
divided into four parts (Fig. 2):

• query section,

• network display section,

Fig. 1. Architecture of our bioinformatics data integration and
visualization system.

• text area displaying information on currently selecting
entity and

• distance mapping section, displaying the mapping of the
distance matrix into 2D space.

A mouse left click on a node or on an edge displays the
biological information in the text area located on the right
hand side. The information displayed in this text area contains
the data retrieved from locally installed databases and links
to external databases. The nodes can be selected to change
options, such as set a new search depth for the neighbors. In
the resultant graph, shape conventions are used to distinguish
the type of entity underlying a node. Similarly, color codes
are used to distinguish the type of relationship underlying an
edge. Each node and edge shown can be checked for original
source information. The resulting graph can be extracted and
saved in the XML format.

2.3 Databases and data curation
Data from various public data sources were collected into our
local database. Table 1 lists the data sources utilized in the
examples of this paper.

In order to add a specific bioinformatics database into our
system, it has to be passed first through a curation stage. A
typical data curation flow is explained below in the form of a
pseudoalgorithm:

(1) Decide on a data source to be set up and download
the data typically using ftp. If the downloaded data are
already in XML format go to step (3) otherwise go
to (2).
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Fig. 2. Screenshot of the megNet network visualization tool. Node shapes represent their types (e.g. protein, gene), and edge colors represent
types of relationships. The Sammon’s mapping window displays the mapping based on specified distance metrics.

(2) Study the structure of the non-XML data and define
XML schemas to capture the logical structure of the
data. Go to step (4).

(3) If the document structures have been defined using
DTD then convert the DTD to W3C Schema. If the
XML schema is available from the source itself, if
necessary, make changes to it to fit the requirements of
the implementation (e.g. change the target namespace
to Tamino namespace and define a prefix for the
original target namespace).

(4) Define physical properties, such as indices and doc-
type for the logical schema to construct a Tamino
Schema Definition document, i.e. TSD schema.
If the previous step was (2) go to (5) or else
go to (6).

(5) Develop parsers to convert the non-XML data
into an XML format. A typical development
phase is always followed by several test and
feedback loops that involve an extensive use of
XML data validation as well as human reading.
Go to (7).

(6) Develop parsers to convert the distributed XML format
to the required XML format.

(7) Load the resulting XML documents using mass-
loading tool of the Tamino Server.

It must be noted that not every field in the source data-
base is integrated. It is the task of the curator to cap-
ture its relevant subparts as well as to define appropriate
semantics for the integrated database. Table 1 shows the
XML Document Classes captured from databases used in
this paper. In the course of implementing the above steps
we make use of XMLSPY software (Altova, Inc.) and
Tamino Schema Editor software (Software AG) for the con-
struction and validation of logical and physical schemas,
respectively. The development of parsers is usually imple-
mented in Perl programming language and in some cases
using Java.

2.4 Database traversals with schema maps
Resolving even simple biological relationships containing
only a few biomolecular components often requires traversing
multiple databases (Fig. 3). In order to enable such traver-
sals within our system, we developed a database of schema
maps (henceforth called maps database), which maps across
different names used for the same entities across multiple data-
bases. At the current state of development, the maps database
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Table 1. Databases used in the present study

Database Version or release date XML document class No. of entries

Uniprot/Swiss-Prot (Bairochet al., 2005) 44.0 Uniprot 153 871
NCBI PubChema (NCBI, 2004) January 4, 2005 PC-substances 788 730
KEGG (Kanehisaet al., 2004) August 2004 Pathways 11 380
LIGAND (Goto et al., 2002) Gene 705 802

Enzyme 4327
Compound 11 116
Glycan 10 302

TRANSFAC (Matyset al., 2003) 8.4 Gene 7796
Factor 5919
Site 14 782

TRANSPATH (Krull et al., 2003) 5.3 Network 72 769
Logical classes of data

and entries:
Pathway—333
Gene—4989
Molecule—20 164
Reaction—23 065
Annotation—24 218

BIND (Baderet al., 2003) August 27, 2004 BIND-submit 90 580
MINT (Zanzoniet al., 2002) 2.1 Entryset 18 951
IntAct (Hermjakobet al., 2004) September 7, 2004 Entryset 37
Gene Ontology (Ashburneret al., 2000) January 4, 2004 GO 18 078

assocdb XML version

aNCBI PubChem (Accessed on January 10, 2005) http://pubchem.ncbi.nlm.nih.gov/

contains protein entities, indexed by UniProt identifiers. An
example of such a map is shown in the XML code in Table 2.
For creating such a map, we developed a Perl program to
extract data from the Uniprot XML documents. We further
extended this data with the GenInfo identifiers used in the
BIND database (Baderet al., 2003) for each interacting
protein. This data is obtained by applying the ‘SeqHound-
GetDefline’ function of the SeqHound API (Michalickova
et al., 2002). The HTTP method call for this ‘SeqHound’
function has been implemented using LWP module of the Perl
programming language.

The database traversals can be achieved by applying simple
join operations involving the maps database. Since the maps
database records contain identifiers and names of an entity
from all databases, it is ensured that the join operation
between appropriate databases and rightly chosen entities
would always return a non-empty result. The querying of
a database independent of the names used in it can be
achieved by writing queries to first search the maps data-
base to find out the name/Id number of the entity in the
original database and then search the original database with
the correct name/Id number. Considerable challenge for any
biological data integration is the often-changing structures
of the data in the public databanks (Critchlowet al., 2000).
We address this problem at the ‘Logical schema construc-
tion level’ of our data curation cycle by keeping our logical
schemas to be as minimal as possible, yet useful enough

to be able to observe the associations between all the data
sources.

2.5 Similarity measures and graph projection
Property of similarity plays an essential role in human per-
ception and formation of new concepts. The problem of eval-
uating similarity (or inversely, distance) between two entities
or concepts appears more difficult when considering several
‘quality dimensions’ (Gärdenfors, 2000). In the domain of
biology, the ‘quality dimensions’ could mean relationships of
different types, i.e. chemical reactions, protein–protein inter-
actions, gene sequence comparison or more complex relation-
ships like protein localization, gene–phenotype association or
compound properties.

Although distances within the molecular networks can be
intuitively set to the length of the shortest path between
the molecules, distance measure is less obvious for rela-
tionships, such as in ontologies. It was shown that Gene
Ontology (GO) could be represented as a graph, and the
distance measures in such a case were already studied (Lee
et al., 2004). For the ontology trees, we assign a distance
based on the closest common ancestor in the graph. When
combining multiple relationships and corresponding distance
measures, reasonable normalization of distance values has
to be set in order to be able to compare across hetero-
geneous data sources. The distances between entities that
do not have a direct relationship are then calculated as the
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Fig. 3. (A) Schematic representation of relationships between
two compounds and two proteins. (B) Same representa-
tion as hypothetically resolved via traversals across multiple
databases.

lengths of the shortest paths with the distance-weighted edges
(Fig. 4). The normalization of distances for each new data
source is, in practice, handled by the bioinformaticians per-
forming data curation. This assures that the system users
do not need to know the specifics of the underlying data
representation.

After distance normalization, it is ultimately up to the user
to assign importance and therefore distance bias to any par-
ticular relationship type, by which context sensitivity can be
achieved (Gärdenfors, 2000), as illustrated in Figure 4. When
visualizing such complex data, we often need to project them
into a lower dimensional space. In doing so it is important
to preserve distances, i.e. two samples that are close to each
other in the original space have to stay close when projected,
or vice versa, two entities that are close to each other in the
projected space must have come from the samples that were
close to each other in the original space. It is the idea behind
Sammon’s mapping (Sammon Jr, 1969), which is implemen-
ted in our visualization tool. Visual configuration of entities
is estimated with a gradient descent type of algorithm on a
cost function based on the interpoint distances between the
entities in the original space and the introduced discrepan-
cies when applying the dimensionality-reducing mapping. In
this way, the visual configuration approximates the original
relationships in the complex networks. This kind of distance
preservation is also used in the Kohonen’s self-organizing

Table 2. XML document from maps database for Uniprot protein entry
AG35_VACCV, with links to indices from databases, such as EMBL, PIR,
INTERPRO and Pfam

<?xml version="1.0" encoding="utf-8"?>
<protein created="1988-04-01" dataset="Swiss-Prot" ino:id="3426"
updated="2004-07-05">
<primaryid>P07242</primaryid>
<entry>AG35_VACCV</entry>
<name>Envelope protein</name>
<synonym>Protein H5</synonym>
<synonym>Protein H6</synonym>
<organism>

<name>Vaccinia virus (strain WR)</name>
<dbref id="10254" type="NCBI Taxonomy"/>

</organism>
<gene>

<name>AG35</name>
<synonym>H5R</synonym>

<dbref id="M13209" type="EMBL">
<property type="protein sequence ID"
value="AAB59841.1"/>

</dbref>
<dbref id="M23648" type="EMBL">
<property type="protein sequence ID"

value="AAA47962.1"/>
</dbref>

</gene>
<dblinks>
<dbref id="F24481" type="PIR">
<property type="entry name" value="QQVZH6"/>

</dbref>
<dbref id="IPR004966" type="InterPro">
<property type="entry name" value="Pox_Ag35"/>

</dbref>
<dbref id="PF03286" type="Pfam">
<property type="entry name" value="Pox_Ag35"/>

</dbref>
<dbref id="138380" type="GenInfo"/>

</dblinks>
</protein>

maps (Kohonen, 2001) and multi-dimensional scaling
(Torgerson, 1952).

3 EXAMPLES

3.1 Integrated pathway retrieval
Metabolic pathways and protein interaction networks have
been studied extensively in the context of topology and
modularity (Jeonget al., 2000, 2001). When attempting
to model real biological phenomena, it is becoming clear
that one needs to understand the cross-talk across differ-
ent levels of biological organization, for example, between
metabolic pathways and cell signaling (Papin and Palsson,
2004).

One of the primary motivations for the development of our
bioinformatics system was the need to facilitate the study of
available information in the context of biological questions.
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Fig. 4. Illustrative example of using graph projection in exploratory
analysis of biological networks. In CONTEXT1 we are weighting
all types of relationships similarly, so the nodes are clustered based
on shortest path length between the edges. In CONTEXT2, we are
interested only in concept cpt2, and assign lower distance value
to nearest neighbors in metabolic pathways compared with other
interactions.

One such application is the study of metabolic pathways,
enriched with information about known molecular interac-
tions at the level of protein–protein interactions, regulatory
and signaling networks. As an example, we created the fol-
lowing query: ‘Glycolysis/Gluconeogenesis AND Pentose
phosphate pathway AND TCA cycle INS.cerevisiae’. The
query was set up to first search the KEGG and retrieve the
primary components of the pathways, i.e. enzymes and com-
pounds. The database traversals were then used to search
protein–protein interaction databases BIND and MINT for
interactions of the enzymes with the nearest neighbor pro-
teins (i.e. interaction search depth was set to 1). The resulting
networks show surprisingly high level of connectivity across
different stages of linear metabolic pathways via protein–
protein interactions (Fig. 5). Specifically, in the zoomed-in
region of Figure 5, we focus on two enzymes from the gly-
colysis pathway: phosphoglycerate kinase (PGK; EC 2.7.2.3)
and acetate-CoA ligase (ACS; EC 6.2.1.1). ACS catalyzes
formation of acetyl-CoA from acetate, which is a starting
point in the TCA cycle, while PGK catalyzes acetylation
of 3-phospho-d-glycerate, which is a part of the second
phase of glycolysis. Both enzymes appear to aggregate with
SRB2, based on the evidence from the yeast two-hybrid pool-
ing approach (Itoet al., 2001). Notably, SRB2 is involved
in transcriptional initiation (Thompsonet al., 1993). This
could mean that PGK and ACS, enzymes at two different
stages of glycolysis, are coregulated. While the evidence

from high-throughput yeast two-hybrid assays needs to be
taken with caution due to possibly high number of false
positive aggregation hits (Mrowkaet al., 2001), our res-
ults do point toward a testable hypothesis for the future
research.

3.2 Protein neighborhood search
Assignment of protein function is a non-trivial task owing
to the fact that the same proteins may be involved in
different biological processes, depending on the state of
the biological system and protein localization (Camon
et al., 2004). Therefore, protein function is context
dependent.

The ‘protein neighborhood’, i.e. the entities of the network
close to the protein, mode provide an insight about the pro-
tein function and its mode of action. The entities in our case
can be molecules, genes or more complex concepts, and the
proximity is measured by applying the distance measure. As
an example, we searched the neighborhood of mannose-6-
phosphate isomerase forSaccharomyces cerevisiae (PMI40;
UniProt Id: P29952), which catalyzes the conversion between
fructose 6-phosphate and mannose 6-phosphate and thus con-
nects glycolysis with the cell wall synthesis inS.cerevisiae
(Smithet al., 1992). The search involved concurrent retrieval
of relationships for the following databases: UniProt, KEGG,
BIND, MINT and GO Biological Process. For any nearest
neighbor protein–protein association, such as protein–protein
interaction or sharing the same GO class at the lowest level,
the distance was set to 1. In the case of metabolic path-
ways, weight of each edge was set to 0.5 in the direction
of possible reaction. The search depth was set to two nearest
proteins if the first of the edges was a protein–protein inter-
action, and to the nearest protein otherwise. This included
cases where the nearest protein was connected to the search
protein via the compound in metabolic pathways or the low-
est level GO term. Figure 6 shows the resulting graphs
and Sammon’s mapping of the nearest protein neighbors of
PMI40.

The zoomed-in window shows one region of potential
interest, which includes protein–protein interactions between
the PMI40 and NUP100 (UniProt Id: Q02629), a subunit
of the nuclear pore complex, as well as between alpha-
1,6-mannosyltransferase (MNN10; UniProt Id: P50108) and
NUP100. According to GO (GO:0000032), both PMI40 and
MNN10 are also involved in cell wall mannoprotein syn-
thesis. While PMI40 is a ‘gate’ between cell wall synthesis
and glycolysis, i.e. cell decision point between growth or
energy production, MNN10 is a part of the protein complex
in mannoprotein synthesis toward the end of the cell wall bio-
synthesis pathways. Examination of interaction entries (BIND
Ids 137 955 and 137 823) suggests that NUP100 protein,
which is a part of nuclear pore complex, binds to the PMI40
and MNN10 open reading frames (Casolariet al., 2004). This
and other evidence by Casolariet al. provide support for the
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Fig. 5. Integrated pathway retrieval using megNet network visualization tool, with the query for ‘Glycolysis/Gluconeogenesis AND Pentose
phosphate pathway AND TCA cycle INS.cerevisiae’. Metabolic pathways are shown with blue edges, protein–protein interactions with pink.
Proteins are represented with squares, compounds with circles. Surprisingly, high level of connectivity via protein–protein interactions is
found across different modules of the metabolism. The zoomed-in region shows a specific connection between Acetate-CoA ligase (ACS)
and Phosphoglycerate kinase (PGK) via interactions with SRB2, which is known to be involved in transcriptional initiation. The interactions
discussed are highlighted for clarity.

Fig. 6. Network neighborhood of mannose-6-phosphate isomerase
(PMI40) inS.cerevisiae. Metabolic pathway relationships are shown
in blue, protein–protein interactions in red, and GO associations in
green. Both PMI40 and MNN10 are involved in cell wall manno-
protein synthesis (GO:0000032). NUP100 protein, which is part of
the nuclear pore complex, appears to interact with the PMI40 and
MNN10 genes.

‘gene-gating’ hypothesis, which suggests that the interaction
of the nuclear pore complex with different genes might serve
as a level of gene regulation (Blobel, 1985). It remains to be
tested whether PMI40 and MNN10 are indeed coregulated in
relation to cell decision-making between energy production
versus growth.

4 DISCUSSION
Our integration approach is based on the premise that rela-
tionships between biological entities can be represented as a
complex network. The information in such networks forms
a basis for exploratory mining. Distances between different
nodes in an integrated network play a central role in our frame-
work. In order to calculate distances, one first needs to define
distance measures across heterogeneous types of information.
We are taking a pragmatic approach by letting the user define
the distances as a part of the query. This is reasonable since the
distance basically defines the context of the questions posed
by the user and allows biasing the similarity toward particu-
lar types of relationships, or toward relationships in a specific
context. Once the distance measure is specified, we can map
the nodes of the graph into a lower dimensional space. As the
mapping is approximate, there will be some distortion while
doing the mapping. Therefore, in our opinion the exact form of
distance measure is not a critical issue, so long as it underlines
the relationships in the concept graph. In fact, selection of dis-
tance measure may reflect a subjective choice and as such will
be subject to debate. It is ultimately the end result of mining
that determines the utility of specific distance measure.
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Presently, we are using Sammon’s mapping for that purpose,
which maps the graph non-linearly into lower dimensional
space while preserving the internode distances across the
network. One disadvantage of Sammon’s mapping is that
addition of the nodes requires new computation of the map-
ping on the complete network, and is therefore not well suited
for interactive addition of new nodes. Other mappings, such as
other types of multidimensional scaling methods (Torgerson,
1952) or self organizing maps (Kohonen, 2001), are also
considered for future implementations. In particular, we will
investigate the non-metric multidimensional scaling method
(Cox and Cox, 2001), which is focused on preserving the order
of similarities.

The two illustrative examples shown in the paper provide
evidence for the usefulness of our approach. In the case
of integrated pathway retrieval, we found large level of
interconnectivity across different stages and modules of the
metabolic pathways via protein–protein interactions, which
raises questions about merit of studying the topology of meta-
bolic networks outside the scope of other biological networks.
Specifically, we found evidence of possible coregulation of
enzymes at early and late stages of glycolysis pathway, which
needs to be further investigated experimentally. In the case
of protein neighborhood search, we were able to retrieve
relationships and potential mechanisms that would not have
been easily found through browsing databases separately.
We believe our protein neighborhood search is a powerful tool
for visual protein annotation in a context dependent manner.

Our approach is not limited to pathway databases and
ontologies alone. We are currently extending the system in
two directions. First, we aim at complementing the know-
ledge extracted from structured and semistructured data with
the knowledge extracted from literature. Currently, we are
implementing a text mining tool to retrieve from literat-
ure relationships between entities of interest, with primary
focus on biomedical domain (Oresicet al., 2005). The dis-
covered relationships will be, similarly as described in this
paper, represented as a network. Second, genome information
and experimental data such as metabolic profiles or gene-
expression data can also be included. The distance measures in
such cases are related to the level of association (e.g. correla-
tion coefficient) or in the case of gene sequence comparison, to
the alignment score. Combining molecular profile data with
ontology information using database traversals has already
been attempted (Oresicet al., 2004), but without the distance
calculations.

We have presented an integrated database and software
system that enables retrieval and visualization of biological
relationships across heterogeneous data sources. We have
demonstrated its merit on two practical examples: protein
neighborhood search and integrated pathway retrieval. Owing
to light-weight design of the system, it is relatively easy
to incorporate new types of information and relationships.
We believe our approach facilitates discovery of novel or

unexpected relationships, formulation of new hypotheses,
design of experiments, data annotation, interpretation of new
experimental data, and construction and validation of new
network-based models of biological systems.
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