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Abstract 
Pattern-information analysis has become an important new paradigm in functional 
imaging. Here I review and compare existing approaches with a focus on the question of 
what we can learn from them in terms of brain theory. The most popular and widespread 
method is stimulus decoding by response-pattern classification. This approach addresses 
the question whether activity patterns in a given region carry information about the 
stimulus category. Pattern classification uses generic models of the stimulus-response 
relationship that do not mimic brain information processing and treats the stimulus space 
as categorical – a simplification that is often helpful, but also limiting in terms of the 
questions that can be addressed. We can address the question whether representations 
are consistent across different stimulus sets or tasks by cross-decoding, where the 
classifier is trained with one set of stimuli (or task) and tested with another. Beyond pattern 
classification, a major new direction is the integration of computational models of brain 
information processing into pattern-information analysis. This approach enables us to 
address the question to what extent competing computational models are consistent with 
the stimulus representations in a brain region. Two methods that test computational 
models are voxel receptive-field modeling and representational similarity analysis. These 
methods sample the stimulus (or mental-state) space more richly, estimate a separate 
response pattern for each stimulus, and can generalize from the stimulus sample to a 
stimulus population. Computational models that mimic brain information processing predict 
responses from stimuli. The reverse transform can be modeled to reconstruct stimuli from 
responses. Stimulus reconstruction is a challenging feat of engineering, but the 
implications of the results for brain theory are not always clear. Exploratory pattern 
analyses complement the confirmatory approaches mentioned so far and can reveal 
strong, unexpected effects that might be missed when testing only a restricted set of 
predefined hypotheses. 
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Introduction 
Perceptual, cognitive, and motor representations are thought to reside in neuronal 
population codes (e.g. Averbeck et al., 2006). This provides a straightforward motivation 
for pattern-information analysis in functional imaging (e.g. Haxby et al., 2001; Cox & Savoy 
2003; Carlson et al., 2003; Mitchell et al., 2004; Kriegeskorte, 2004; Kamitani & Tong, 
2005; Haynes & Rees, 2006; Norman et al., 2006; Kriegeskorte et al., 2006; Mur et al., 
2009) and in cell recording (Hung et al., 2005; Kiani et al., 2007): to elucidate (more fully 
than single-unit or single-voxel analyses can) what information is present in a given brain 
region. In this commentary, I review our current toolbox of pattern-information approaches 
with a focus on what we can learn from them about brain function. The paper is divided 
into four sections, each of which discusses a different approach to pattern-information 
analysis. 
 
The first section discusses methods that test for information about a particular stimulus 
dimension in brain response patterns (hypothesis-driven goal 1). This approach includes 
pattern-classifier decoding, the most popular and widespread type of pattern-information 
analysis. Classifier decoding treats the stimulus space as categorical and "predicts" the 
stimulus category from the response pattern. More generally, the stimulus space could be 
treated as continuous, and I argue that the direction, in which the dependency between 
stimulus and response is modeled (decoding or encoding) is largely inessential to the 
neuroscientific interpretation (Fig. 1). Most applications have used generic linear models. I 
argue in favor of linear models on the basis of their stability and interpretability. 
 
The second section discusses methods that test whether a computational model of brain 
information processing can account for a region’s response patterns (hypothesis-driven 
goal 2). Traditionally, statistical analysis of brain activity uses generic, often linear, models 
that do not simulate brain information processing (as in goal 1). Brain-experimental results 
are then related to computational models only at the level of verbal theory. To directly test 
computational models with brain-activity data, we need to integrate these (typically 
nonlinear) models into data analysis. Two methods that achieve this are voxel-receptive-
field modeling (Dumoulin & Wandell, 2008; Kay et al., 2008; Mitchell et al., 2008) and 
representational similarity analysis (Kriegeskorte et al., 2008a, 2008b). These methods 
sample the stimulus (or mental-state) space more richly, estimating a separate response 
pattern for each stimulus and forgoing any predefined stimulus grouping (Fig. 2). As these 
approaches are just beginning to gain momentum, there are few examples in the literature. 
I therefore take a different approach in this section and review three studies in detail 
(Mitchell et al., 2008; Kay et al., 2008; Kriegeskorte et al., 2008a). Voxel-receptive-field 
modeling predicts response patterns; representational similarity analysis predicts 
response-pattern dissimilarities, providing alternative statistical tests of the same 
conceptual claim, namely that a computational model can account for the representational 
space of a brain region (Figs. 3, 4). 
 
The shorter third and fourth sections discuss exploratory analysis of population activity 
patterns and stimulus reconstruction, respectively. These two approaches do not test 
explicit hypotheses about brain function. Exploratory analysis requires fewer assumptions 
and can yield unexpected discoveries. It can reveal stimulus-response relationships that 
explain a lot of variance, but might have been missed in an overly restricted hypothesis-
driven approach. Stimulus reconstruction models perceptual processing in reverse, 
predicting the stimulus from the response pattern (a form of decoding that generalizes to 
novel stimuli). Reconstruction is a tough engineering challenge and provides an intuitive 
illustration (the reconstructed stimulus) of the information represented in a region. 
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However, it is not clear how exactly stimulus reconstruction results constrain 
neuroscientific theory. Fig. 5 compares the entire range of pattern-information approaches 
discussed in this paper. 
 
For simplicity, this commentary focuses on the relationship between “stimulus” and 
“response” in considering pattern-information analysis. However, the arguments apply to 
other scenarios as well, where the mental states investigated are not directly elicited by 
stimuli (e.g. mental imagery), or where a brain-behavior relationship is analyzed. The 
application of pattern-information methods to the relationships between brain and behavior 
and between different brain regions, individuals, and species have recently been 
discussed elsewhere (Raizada & Kriegeskorte, in press; Kriegeskorte 2009). 
 

(1) Goal 1: Testing for specific stimulus information in 
response patterns 
A popular pattern-information analysis is pattern classification (e.g. Haxby et al., 2001; 
Kamitani & Tong, 2005; for a textbook see Duda et al., 2001). In this approach, the stimuli 
are “predicted” from the activity patterns they elicit. I put “prediction” in quotes here, 
because it does not usually refer to foretelling a future event or the trajectory of brain 
dynamics (but see Haynes et al., 2007; Soon et al., 2008). We can interpret the term in the 
context of an imaginary game of “Give me the response patterns, and I will tell you the 
stimuli.” This paradigm is also referred to as “decoding” (e.g. Mitchell et al., 2004; Kamitani 
& Tong, 2005; Haynes & Rees, 2006; Friston et al., 2008). The rationale for this approach 
is that if decoding works better than chance, then there must be information about the 
stimuli in the response patterns. 

 

Pattern-classifier decoding differs in three respects from classical activation analyses, 
which use a univariate general linear model of the response: 

(1) The response is treated multivariately: as a pattern (and the stimulus space as 
categorical). 

(2) The model operates in reverse direction: from responses to stimuli. 

(3) The data are divided into independent training and test sets, where the training set is 
used to fit the model parameters, and the test set to estimate decoding accuracy and test 
for stimulus information in the response pattern. 

 

When the goal is to test for stimulus information, the most important of these three 
features is (1), the analysis of response-pattern information. The other two features are of 
a more technical nature: a test for stimulus information in the response pattern could use a 
model operating in either direction and, regardless of the model direction, inference could 
be performed using either independent training and test sets or a single data set (and 
stronger assumptions). 

 

A key statistical advantage of using an independent test set is that the assumptions of the 
model are implicitly tested when we assess prediction performance. To the extent that the 
assumptions are violated, prediction will suffer. The test of the presence of pattern 
information provided by this approach depends on the assumptions of the model for its 
sensitivity, but not for its specificity: If the assumptions are violated, the test is still valid. 
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Demonstrating a statistical dependency between stimulus and response pattern 
Words like “prediction”, “decoding”, and “brain reading” should not be taken to imply that 
what is demonstrated goes beyond a statistical dependency between stimulus and 
response. Whether we are “predicting” the stimulus from the response or the response 
from the stimulus, all that is demonstrated is a statistical dependency (or, equivalently, 
mutual information) between the two (Kriegeskorte & Bandettini, 2007).  
 
In a univariate scenario (Fig. 1a), it is easy to see that a correlation between two variables 
implies predictability in either direction. Note that for a function f: x->y, we can 
deterministically predict y from x but not necessarily vice versa (as f may not be invertible). 
In a stochastic setting, by contrast, a statistical dependency implies above-chance 
predictability in either direction (knowing either variable constrains the possible states of 
the other variable, even if deterministic prediction fails because multiple states of the other 
variable remain possible). The ability to “predict” and “decode” could thus equally be 
claimed on the basis of any classical activation result, such as Kanwisher et al. (1997): If 
the fusiform face area is specifically activated by face stimuli, then activation there 
"predicts" that the stimulus was a face. 
 
In a multivariate scenario, as well, demonstrating above-chance predictability in either 
direction implies a statistical dependency and thus above-chance predictability in the other 
direction (Fig. 1b; Fig. 4, top box). The direction in which a generic model operates 
therefore often does not matter to the qualitative neuroscientific interpretation. The terms 
"prediction" and "decoding" denote that the direction of the model is inverted (as compared 
to the direction of causality: from stimulus to response). However, the key novel feature of 
pattern-information analysis is the joint analysis of multiple responses as a population 
code, whether we use decoding or encoding models. 
 
Encoding versus decoding models 
Although encoding and decoding models both demonstrate a stimulus-response dependency, 

they elucidate complementary aspects of the stimulus-response relationship (Fig. 1c). An encoder 
can reveal how much of a region's total response-pattern entropy the stimulus can explain. 
Moreover, an encoder might simulate the actual causal process from stimulus to response 
(Naselaris et al., this issue; Gallant et al., in press; see Goal 2 below). Conversely, a decoder can 
reveal how much of the total stimulus information is present in a brain region. Moreover, a decoder 
might simulate representational readout and can help us relate the region's pattern information to 
trial-by-trial behavior (e.g. predicting behavioral errors). 
 
Consider the frequent case of a binary stimulus distinction: two categories. If the two categories 
occur with equal frequency, the stimulus entropy is 1 bit. The response-pattern entropy will 
generally be much greater, because the response-pattern space is multidimensional and 
continuous. Assume we can decode the stimulus category from a given brain region with perfect 
accuracy for single trials (this is rarely the case in reality, but instructive to imagine). This would 
mean that the single-trial pairwise stimulus information (i.e. the mutual information between the 
stimulus dichotomy and the single-trial response-pattern measurement; Kriegeskorte et al., 2007) 
is 1 bit, i.e. we can explain the entire stimulus-category entropy. Note that the proportion of 
response-pattern entropy explainable by the stimulus category is nevertheless going to be very 
small: 1 bit of mutual information is a small proportion of the total response-pattern entropy. This 
indicates that the region's response patterns are dominated by a combination of (a) other 
information than our stimulus category and (b) noise. This is trivial for the two-category case, but 
useful in the context of more complex representational models (including those discussed below, 
under Goal 2). It is useful, because it enables us to assess how far away we are from a complete 
functional account of a brain region's responses (Gallant et al., in press). 
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Modeling continuous stimulus-response relationships   
Pattern classification treats the stimulus space as categorical – a simplification that is often 
helpful, but also limiting in terms of the questions that can be addressed. The grouping of 
the stimuli into categories for classification is often artificial and we may have continuous 
parameters describing the stimuli. For example, instead of grouping object images into 
conventional categories, we might describe them by multiple properties (e.g. describing 
color, shape, contrast, size). 
 
This motivates the modeling of continuous stimulus-response relationships. A continuous 
approach to pattern-information analysis is provided by classical multivariate statistics (for 
a textbook, see Krzanowski, 1988). For example, multivariate analysis of covariance 
(MANCOVA) could be used to model multivariate response patterns as a linear 
combination of stimulus parameters. The classical multivariate methods extend the 
framework of the general linear model into the multivariate domain and allow efficient tests 
of complex hypotheses. They are arguably more elegant and versatile, and definitely less 
cumbersome (requiring no data splitting) and less computationally expensive than typical 
classifier analyses. Both stimulus description and response pattern can be modeled as 
multivariate and continuous. Complex hypotheses can easily be tested in this framework. 
For example, we can test whether adding a set of predictors to the model explains 
additional multivariate variance in the response patterns (extra-sums-of-squares-and-
products test).1 However, the classical multivariate methods rely on the assumption of 
multivariate normality, which may not always hold for functional imaging data and fMRI in 
particular. In order to avoid relying on multivariate normality, we can use a randomization 
test to perform inference on classical multivariate models (Kriegeskorte et al., 2006). Such 
tests require no distributional assumptions, but are computationally expensive (Nichols & 
Holmes, 2002). 
 
Advantages of linear models: stability, interpretability 
The pattern-classification and continuous multivariate approaches discussed so far utilize 
generic models from statistics and machine learning, which do not attempt to mimic brain 
information processing. The models serve merely to test for a statistical dependency 
between stimulus and response pattern. Most applications so far use linear models. Misaki 
et al. (2010) suggest that different linear models (e.g. Fisher linear discriminants and linear 
support vector machines for pattern classification) often give similar results for fMRI data. 
More complex nonlinear models don’t tend to perform better at prediction and often 
perform worse than linear models for fMRI data (Cox & Savoy, 2003; LaConte, 2005; 
Misaki et al., 2010, but see Hanson et al., 2004). Given limited data, a simpler model can 
outperform a complex model, even if the complex model is correct – because of overfitting. 
This problem is severe in fMRI, because the number of repeated pattern measurements is 
not typically much larger than the number of voxels. Even linear models can substantially 
overfit the data in this scenario. They can therefore benefit from regularization (Misaki et 
al., 2010) and need to be tested with independent data. Overall, the benefits of assuming 
linearity to the stability of the estimates (and thus prediction performance) appear to 
outweigh the cost of not being able to capture nonlinear relationships in fMRI pattern 
analysis. 
 
The argument against linear models is that they can miss pattern information encoded in a 
more complex way. However, a restriction to linearly decodable information also facilitates 

                                            
1
 The test would involve reducing the model space by removing the predictor set to be tested, fitting the full 

and the reduced model and determining the extra-sums-of-squares-and-products matrix associated with the 
set of predictors. This matrix is related to the error sums-of-squares-and-products matrix and inference can 

be performed via Wilk’s , Bartlett’s statistic, and the 
2
 distribution. 
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interpretation: What is linearly decodable is “explicit” in the representational pattern (if not 
in any single neuron or voxel), in the sense that it can be read out in a single biologically 
plausible step by a neuron at the next stage of processing. The readout filter can easily be 
visualized as a weight map. Given that different linear classifiers (e.g. Fisher linear 
discriminant, linear support vector machine) all fit a hyperplane for discrimination (albeit by 
somewhat different optimization criteria), the particular model used is typically of marginal 
relevance to the neuroscientific interpretation of the result. 
 
Linear models, thus, are attractive when the goal is to test for pattern information that is 
available for immediate readout (goal 1). They are appropriate for this function precisely 
because they do not perform any complex transformation that would require multiple 
stages of processing in the brain. When the goal is to test a computational theory (goal 2), 
however, we will need to integrate a computational model that implements the theory into 
the analysis. Such models are typically nonlinear and their greater complexity poses a 
challenge if they are to be fitted to the data. However, we can rely on prior empirical 
findings and neuroscientific theory to constrain their parameters. 
 
Inferring a causal role of pattern information 
The presence of stimulus information in a brain region does not imply that this information 
serves the function of representing the stimulus in the context of the brain’s overall 
operation. The latter interpretation implies that the information has a causal role. As in the 
univariate scenario, we can argue for a causal influence based on experimental 
manipulation of the activity, causal modeling techniques, or prior assumptions about the 
role of the region in question. The same general techniques used to infer causal influences 
in the univariate scenario can be applied in the multivariate scenario. However, 
multivariate causal approaches are not yet well developed in systems neuroscience. 
 
At the experimental level, we face a difficult challenge. Inferring a causal role of brain 
activity patterns (e.g. “the population code in region X forms the basis of perceptual 
decision Y”) would require experimental control of the brain activity. Transcranial magnetic 
stimulation (TMS) enables us to experimentally influence brain activity in humans. 
However, TMS has low spatial precision and doesn't enable us to impose patterns of 
activity. Electrical microstimulation (e.g. Afraz et al., 2006) has high precision and its 
extension to multiple sites is a promising avenue. Optogenetic techniques for controlling 
activity (Deisseroth et al., 2006) are under development. However, the latter two 
techniques are highly invasive and not in general suitable for use in humans. We do not 
presently have methods to impose arbitrary precise patterns of activity in humans. 

In the absence of direct experimental evidence for a causal influence, we could rely on 
reasonable assumptions to constrain the causal relationships to be considered and extend 
advanced techniques of modeling directed interactions between brain regions (also known 
as “effective connectivity”) to the multivariate domain. As a simple example, we could test 
whether the non-stimulus-driven component of the pattern response is related to 
behavioral responses on a trial-by-trial basis. This idea is generalized in the framework of 
structural equation modeling. Alternatively, Granger causality (Roebroeck et al., 2005; 
Ramsey et al., 2009) exploits the temporal lag between cause and effect to infer causality 
(relying on the assumption that the model does not omit relevant alternative causal 
pathways). As another example, dynamic causal modeling (Friston et al., 2003) allows us 
to test and compare prespecified causal models of interactions between brain regions. In 
neuroimaging, however, these models of directed interactions are typically based on 
univariate activation time courses (fluctuations of spatially-averaged activation of the 
analyzed brain regions). The development of pattern-information approaches to modeling 
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directed interactions is an important future direction. A pattern-information equivalent to 
undirected interactions (i.e. “functional connectivity”: correlated fluctuations of overall 
activation between two brain regions) is provided by “representational connectivity” 
(Kriegeskorte et al., 2008a). Because a causal role of activity-pattern information is difficult 
to infer with present experimental and analysis techniques, our representational 
interpretations often rest on prior empirical findings and general brain theory. 
 
Cross-decoding: testing whether representations are consistent across different 
tasks 
An important step beyond demonstrating a statistical dependency between the stimulus 
and the response patterns can be taken by cross-decoding. In cross-decoding, a decoder 
is trained with one set of stimuli and then tested with another, or the task eliciting the 
response patterns is changed. In a conventional decoding analysis, the test data set 
serves only to prevent overfitting from inflating the estimate of decoding performance (for a 
detailed discussion of this, see Kriegeskorte et al., 2009a), so what is tested is 
generalization to new measurements using the same stimuli. Cross-decoding, by contrast, 
tests generalization to novel stimuli or tasks. This allows us to assess whether 
representations are consistent between the two stimulus sets or tasks, for example 
between perception and memory retrieval (Polyn et al., 2005; Norman et al., 2006) or 
between perception and imagery (Stokes et al., 2009) of the same visual content. 
Successful cross-decoding with a linear pattern classifier suggests that the dimension of 
response-pattern space, along which the representational categories can be discriminated, 
is at least somewhat consistent between training and test scenario.2 
 
Generalization from a sample to a population of stimuli  
Conventional inferential analyses of activation and pattern-information do not generalize 
from the sample of stimuli used in an experiment to a population of stimuli that could have 
been used (Bedny et al., 2007; Kriegeskorte et al., 2008b; see also Clark, 1973). While 
cross-decoding tests generalization from one scenario to another (e.g. perception to 
imagery), we can also use separate samples of stimuli drawn from the same population of 
stimuli as training and test sets. This enables us to avoid overfitting to the stimulus set.   
 
Let’s say we wanted to assess whether a brain region distinguishes animate and 
inanimate object images. We present 50 images of each category and train a classifier to 
distinguish them. Consider the null hypothesis that the region distinguishes individual 
images, but does not allow linear readout of animacy (as might be expected for the retina 
or for early visual cortex).3 This means that there is no linear combination of the voxels 
that would yield a positive correlation with animacy if the correlation were computed over 
the entire population of object images. Even if this null hypothesis were true, we would be 
able to decode animacy on an independent test set of responses to the same stimuli. This 
is because of overfitting to the stimulus set (although overfitting to the noise is avoided by 
using independent data). However, linear decoding of animacy would perform at chance 

                                            
2
 This does not mean that the representations are invariant to the difference between training and test 

scenario and that the categories are associated with the same activity patterns in both scenarios. It only 
shows that a linear readout mechanism can provide the cross-decoded information with invariance to the 
scenario. Training and test patterns could vary along an orthogonal (or approximately orthogonal) dimension. 
This latter possibility can be investigated by attempting to decode the scenario or by inspecting and 
visualizing the response-pattern dissimilarities for all pairs of stimuli in either scenario in the framework of 
representational similarity analysis (Kriegeskorte et al., 2008b). 
3
 Linear readout is a key concept here. Because the region distinguishes all stimuli, there necessarily is a 

complex nonlinear classifier that discriminates animates and inanimates, or any arbitrary division of the 
stimulus space into two subsets. 
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level for an independent random sample of stimuli – leading us to correctly accept the null 
hypothesis.4 
 
Beyond pattern classification with separate training and test sets, we can perform 
generalization to a population of stimuli by using a sufficiently large random sample of 
stimuli and modeling the variability of responses across individual stimuli. This is 
analogous to analyses that treat subject as a random factor so as to generalize to the 
human population. Generalization to novel stimuli is a central theme also in the next 
section, where generic models of the stimulus-response relationship are replaced by 
neuroscientifically motivated computational models. 
 
 

(2) Goal 2: Testing computational models of brain information 
processing 
Several recent pattern-information studies have gone beyond testing for the presence of 
information (goal 1) and tested computational models that mimic brain information 
processing (goal 2). The methods described in this section essentially test whether a 
computational model correctly predicts what information is present and what information is 
absent, or, in other words, what dimensions of the stimulus space the representation is 
sensitive to and what dimensions it is invariant (or less sensitive) to. 
 
I focus on three fMRI studies by Mitchell et al. (2008), Kay et al. (2008), and Kriegeskorte 
et al. (2008a, 2008b). In addition to incorporating neuroscientifically motivated 
computational models, these studies are similar in that they treat every stimulus as a 
separate condition (Fig. 2), sample the stimulus-space more richly than previous fMRI 
studies, and attempt to generalize to the stimulus population that the experimental stimuli 
can be considered a random sample of. 
 
Mitchell et al.: Predicting brain response patterns for novel stimuli 
Mitchell et al. model the brain representation of noun concepts by means of 25 semantic 
features. Subjects were presented with word-picture pairs to evoke the representations of 
the noun concepts. Each of the 25 semantic features of the representational model 
measures the co-occurrence frequency of the input noun with one of 25 manually selected 
verbs. (Co-occurrences between the nouns and the 25 verbs were counted in a trillion-
word text corpus.) The model is based on current theory about semantic brain 
representations. Each voxel’s response is modeled as a linear combination of the 25 
features. The model is fitted using a training set of 58 nouns. The fitted model predicts 
brain response patterns for arbitrary nouns, for which responses have not yet been 
measured. Prediction, thus, is a meaningful claim here and requires no quotes. 
 
In order to demonstrate that response-pattern prediction works better than chance, the 
authors use the predicted patterns to identify a novel noun among two novel alternative 
nouns. To this end, the novel noun’s measured pattern (not used for fitting the model) is 
matched up to the more similar one of the two nouns’ predicted patterns. This identification 

                                            
4
 In fact, early visual cortex does appear to allow above-chance-level linear readout of animacy even for an 

independent test set of different stimuli (Misaki et al., 2010). This suggests either category differences in low-
level image statistics or feedback from higher regions that distinguish the categories. However, 
representational similarity analysis shows that response-pattern dissimilarities are only slightly larger 
between than within the two categories in early visual cortex. In the ventral stream, by contrast, animacy is a 
major variance-explaining factor, and animates and inanimates fall into separate response-pattern clusters 
(Kriegeskorte et al., 2008a). 
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among two novel nouns is shown to work better than chance (77% correct on average 
across subjects). Better-than-chance stimulus identification implies better-than-chance 
response-pattern prediction. In other words, the response pattern predicted for a novel 
noun tends to be more similar to the measured pattern for that noun than to measured 
patterns for other novel nouns – justifying the authors’ title claim. 
 
What do we learn about brain function from this study? The study provides some support 
for the neuroscientific model of semantic representation it is based upon. The model posits 
that noun-concept representations are similar to the extent that the nouns tend to co-occur 
with the same verbs. The study’s title focuses on prediction of brain activity patterns, and 
this claim is entirely justified. However, better-than-chance prediction is a low bar and 
might be obtained with many competing models, each of which may explain a portion of 
the response-pattern variance. 
 
For example, the competing category-representation model mentioned in the introduction 
of the paper (but not tested with these stimuli to my knowledge) is also expected to predict 
activity patterns for novel nouns better than chance based on previous studies: Haxby et 
al. (2001) showed that ventral-temporal patterns reflect visual object category. Spiridon & 
Kanwisher (2002) showed that category-average patterns are consistent even when 
computed for different sets of particular object images. Kriegeskorte et al. (2008a) showed 
that the representation is inherently categorical with patterns forming natural clusters in 
response-pattern space that correspond to conventional categories. These findings also 
suggest generalization to novel stimuli. 
 
It would be useful to directly compare the semantic and category models in the framework 
of Mitchell et al. (2008). To this end, we could simply predict the category-average pattern 
of the training examples of the same category (based on living versus nonliving, or on a 
more fine-grained categorical structure) for each novel noun. Whether this naive model 
would predict the response patterns for novel nouns better or worse than the semantic 
model is an open empirical question. Results of Kriegeskorte et al. (2008a) suggest that 
the ventral-temporal representation of object images combines a categorical and a 
continuous component. Perhaps the category and semantic models account for the 
categorical and a continuous component, respectively, and could be combined to form a 
more complete theoretical account. From a neuroscientific perspective, the key advance of 
Mitchell et al. (2008) lies in the computational implementation of the semantic 
representational model and in providing a method that will allow us to adjudicate among 
alternative computational models in the future. 
 
Kay et al.: Identifying novel stimuli from brain response patterns  
Kay et al. presented subjects with a large number of natural images (real-world photos) 
while measuring early visual cortex with fMRI. They model the brain representation of 
natural images in V1 as a set of units that combine the outputs of multiple Gabor-filters 
applied to the image. The Gabor filters span the space of visual-field locations, 
orientations, and spatial frequencies. The model is based on current theory about the 
visual representation in V1. Each unit corresponds to an fMRI voxel and its parameters are 
fitted to predict the voxel response across 1,750 training images. The fitting of the model is 
constrained by prior neuroscientific knowledge about the nature of the V1 representation. 
For the general methodological framework underlying this study, see also Naselaris et al. 
(this issue) and Gallant et al. (in press). 
 
Like Mitchell et al.’s model, the model of Kay et al. predicts brain response patterns for 
arbitrary stimuli, for which responses have not yet been measured. Like Mitchell et al., Kay 
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et al. use the predicted brain activity patterns to identify stimuli. However, they study how 
identification accuracy drops off as a function of the size of the set of novel images among 
which a given novel image is identified. For one of the subjects, for example, identification 
among 200 images based on just a single perceptual trial is correct in about 50% of the 
cases (chance level: 1/200). 
 
Note that although the title claim of Mitchell et al. is prediction of responses and the title 
claim of Kay et al. is identification of stimuli, both studies perform both of these feats for 
novel stimuli – and by essentially the same method (though using different 
representational models, appropriate to the respective domains). In analogy to cell-
recording studies, Kay et al. refer to their methodology as voxel receptive-field modeling 
(see also Dumoulin & Wandell, 2008). This reflects the fact that a separate model is fitted 
to predict the responses of each voxel. This aspect, too, is shared between the studies by 
Kay et al. and Mitchell et al., and I will therefore refer to both studies’ methodology as 
voxel receptive-field modeling. 
 
What do we learn about brain function from the Kay et al. study? The results are 
consistent with what is known about V1, namely that the representation is composed of 
detectors of Gabor-like small visual features varying in location, orientation, and spatial 
frequency. It further confirms our expectation based on previous studies that these 
features are reflected in fMRI patterns (e.g. Sereno et al., 1995; Singh et al., 2000; 
Kamitani & Tong, 2005). These studies clearly imply that it must be possible to use the 
fMRI information to identify a novel stimulus among alternatives with above-chance 
performance. Another previous study even reconstructed contrast-defined images based 
on fMRI patterns using a simpler modeling approach (Thirion et al., 2006, for a more 
advanced reconstruction techniques, see Miyawaki et al., 2008; Naselaris et al., 2009). 
However, Kay et al.'s ingenious combination of prior neuroscientific theory and generic 
statistical techniques constitutes an impressive engineering achievement relevant to the 
development of brain-computer interfaces. 
 
From a neuroscientific perspective, Kay et al. find evidence for a model consistent with 
widely accepted theory and show that reduced versions of this model perform worse. The 
key neuroscientific contribution of this study lies in the methodology of voxel receptive-field 
modeling (similar to the approaches of Dumoulin & Wandell, 2008; and Mitchell et al., 
2008), which promises tests of alternative computational models in the future. 
 
Kriegeskorte et al.: Representational similarity structure matches between a brain 
region and model 
Kriegeskorte et al. (2008a, 2008b) model the human inferior-temporal representation of 
visual object images by means of a range of conceptual and computational models. The 
models include category models that posit categorical distinctions without explaining how 
the representation is computed, naive computational transformations of the bitmap stimuli, 
and neuroscientifically motivated computational models for the primary visual 
representation (Gabor-based filters modeling simple and complex cells) and an inferior-
temporal-level representation (intermediate-complexity natural image features) 
(Riesenhuber & Poggio, 2002; Serre et al., 2007). In addition, they include an animal 
model: the monkey inferior-temporal representation of object images as reflected in single-
cell recordings (reanalyzing data from Kiani et al., 2007). The stimuli presented to human 
subjects and models are 92 photos of real-world objects. 
 
In contrast to the voxel receptive-field modeling approaches of Kay et al. (2008) and 
Mitchell et al. (2008), Kriegeskorte et al. (2008) do not use the models to predict brain 
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response patterns from stimuli or to identify stimuli from brain response patterns. Instead 
the models are used to predict the similarity structure of the stimuli in the brain 
representation. To this end, each of the 92 response patterns in a brain or model 
representation is compared to each other response pattern, so as to obtain a 
representational dissimilarity matrix (RDM). The RDM reflects to what extent the brain or 
model representation distinguishes each pair of stimuli. How well a model predicts a brain 
region’s representational similarity structure is assessed by simply correlating the RDMs of 
the representations of the brain region and the model. This approach, called 
representational similarity analysis, is briefly described in Kriegeskorte (2009), and more in 
detail in Kriegeskorte et al. (2008a, b). The model-based analyses are complemented by 
data-driven techniques that visualize the representational similarity structure and reveal 
natural clusters of similar response patterns. 
 
What do we learn about brain function from this study? The human and monkey inferior 
temporal object representations match closely in terms of their representational similarity 
structure. Data-driven analysis suggests that a hierarchical categorical structure is inherent 
to the representation. The top-level categorical distinction (explaining most variance) is 
animate versus inanimate. Within the animates, faces and bodies form subclusters. 
Previous studies (e.g. Haxby et al., 2001; Spiridon & Kanwisher, 2002) had built the 
assumption of a categorical structure into the experimental design and analysis and 
therefore could not assess inherent categoricality. The inherent categorical structure 
matches between man and monkey. Within each category cluster, exemplars are 
distinguished and the within-category pairwise representational dissimilarities are also 
correlated between man and monkey. 
 
These findings provide substantial constraints for computational theory. A simple 
categorical model ignoring the finer distinctions and positing only that animate objects are 
distinguished from inanimate objects explains more dissimilarity variance than any other 
single model tested, including the inferior-temporal model based on intermediate-
complexity natural image features. This reminds us of the limits of our current 
computational understanding of high-level object representations in inferior temporal 
cortex and suggests that the representation may utilize features optimized for 
distinguishing categories that are behaviorally important to primates. 
 
Comparing voxel receptive-field modeling and representational similarity analysis 
How does representational similarity analysis as used by Kriegeskorte et al. (2008a, 
2008b) relate to voxel receptive-field modeling as used by Kay et al. (2008) and Mitchell et 
al. (2008)? Both methods test computational models of brain information processing on the 
basis of brain response patterns estimated for single stimuli.  
 
The key difference is that voxel receptive-field modeling uses computational-model 
representations to predict the measured response patterns, whereas representational 
similarity analysis uses the model representations to predict response-pattern 
dissimilarities. From a technical perspective, this is a substantial difference. 
Representational similarity analysis avoids the challenge of predicting either the measured 
response patterns.5 From a neuroscientific perspective, both approaches serve the same 
purpose: the testing and comparing of computational models. 
 

                                            
5
 The computational models simulating brain information processing do have internal response patterns in 

representational similarity analysis. However the number of units of the model representation may differ from 
the number of measured responses (voxels in fMRI), and the model response patterns are not used to 
predict the measured response patterns. 
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Evaluating computational models by predicting activity patterns is complicated by the need 
to define the correspondency mapping between the features of the model and the 
measured responses (voxels or neurons). Voxel-receptive field mapping therefore requires 
a linear model (predicting the measured responses from the model representation) to be 
fitted with one data set and tested with a separate data set (different stimuli). 
 
Testing a computational model by predicting pattern dissimilarities instead of the patterns 
themselves greatly simplifies the analysis. Representational similarity analysis can test a 
computational model directly with data from a single stimulus set (no separate training and 
test sets required), because the pattern dissimilarity matrices of model and brain region 
are indexed (horizontally and vertically) by the stimuli and can be compared without fitting 
a linear model. If the stimulus set is a random sample from a population of stimuli, then 
appropriate statistical inference on the correlation between model pattern dissimilarities 
and brain pattern dissimilarities can generalize to the stimulus population. 
Representational similarity analysis requires separate training and test data sets (based on 
different stimulus samples) only if the computational model has parameters to be fitted to 
the brain-activity data. 
 
Kay et al. (2008) estimate the maximum possible proportion of pattern variance that any 
model can explain given the noise in the data. This provides a helpful reference frame for 
evaluating the quality of a model. In representational similarity analysis, we can similarly 
estimate the maximum possible proportion of pattern-dissimilarity variance that any model 
can explain (or equivalently the noise floor; Fig. 8 in Kriegeskorte et al., 2008b). 
 
The fact that the two methods use different criteria to test a computational model 
(predicting patterns versus predicting pattern dissimilarities) suggests that results might 
diverge and that the neuroscientific interpretation should perhaps be different. In fact, the 
two criteria are very closely related. It is easy to see that a match of response patterns 
between model and brain region implies a match of response-pattern dissimilarities. 
Conversely, if a computational model accounts for the response-pattern dissimilarities of a 
brain representation, then we can also use this model to predict the response patterns 
themselves for novel stimuli (Fig. 3). We can achieve this, for example, by interpolating 
among the response patterns of the training stimuli that are closest to the novel stimulus in 
the model representation. In practice, this approach may require many training stimuli, and 
more sophisticated techniques may achieve better response-pattern prediction. The close 
relationship between patterns and pattern dissimilarities suggests that, although the two 
techniques are not mathematically equivalent, the qualitative empirical claims they test, 
and thus the implications for brain theory, are essentially the same (Fig. 4, bottom box). 
 

(3) Exploratory analysis of population activity patterns 
Goals 1 and 2 cover the hypothesis-driven side of pattern-information analysis. Testing for 
information about a particular stimulus dimension in regional response patterns (goal 1) is 
driven by a hypothesis about the stimulus dimension represented in a brain region. Testing 
a computational model (goal 2) is driven by the hypothesis that the model explains the 
data for a brain region. For both goals, the hypothesis may also specify the brain region to 
be analyzed. 
 
In cognitive neuroscience, a popular approach is to contrast two competing theories and 
use the data to decide between them. This is an excellent approach when all other 
theories can really be excluded a priori. More often, the two theories are merely two points 
in a much larger space of similarly plausible possibilities that have yet to be tested 
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empirically. In that case, the focus on two theories creates a veneer of conceptual rigour 
and clarity, but the decisiveness of the experiment is just a fantasy. 
 
Hypothesis-driven analysis is like looking at a scene through a drinking straw:6 It narrows 
our perspective on the data. This is useful when we already know what might be going on 
and when the straw is pointed at the crucial part of the scene. However, we certainly don’t 
get to see the big picture. Exploratory analysis can widen our perspective and keep us 
more broadly in touch with the data. 
 
As a complement to the hypothesis-driven analyses serving goals 1 and 2, we therefore 
need more exploratory analyses. Such techniques are data-driven in that their results are 
determined to a greater degree by the data and to a lesser degree by prior assumptions. 
We can think of exploration as searching of a space of hypotheses. This perspective 
shows that there is a continuum between confirmatory and exploratory analysis: We can 
make our analyses more exploratory by simply applying our hypothesis-driven methods to 
a greater number of hypotheses. When we fit the parameters of a complex model to the 
data, we explore a continuous space of candidate models. 
 
While the hypothesis-driven approach of pattern classification (serving goal 1) can very 
sensitively detect small amounts of information about predefined stimulus categories, it 
can miss major variance-explaining alternative dimensions of the stimulus space. This 
motivates us to minimize the assumptions built into the design of the experiment. While 
block-designs and conventional event-related designs typically assume a stimulus 
grouping, ungrouped-events designs (Kriegeskorte et al., 2008b; see also Aguirre 2007) 
avoid this assumption. An ungrouped-events design enables us to discover stimulus 
dimensions represented in a given region, for example using data-driven multivariate 
techniques like multidimensional scaling (for applications to fMRI data see Edelman et al., 
1998; Tagaris et al., 1998; O'Toole et al., 2005; Kriegeskorte et al., 2008a, 2008b). 
 
Conversely, we can look for regions representing a given stimulus dimension (or 
conforming to a given computational model), for example with a searchlight approach 
(Kriegeskorte et al., 2006). This prevents us from overinterpreting a weak effect in a 
predefined region when stronger effects are present elsewhere. It can also lead us to 
discover regions in unexpected locations in the brain (Kriegeskorte et al., 2007; Haynes et 
al., 2007). More generally, complementing a hypothesis-driven approach by exploratory 
analysis helps keep our theory consistent with the major variance-explaining factors in the 
data. 
 

(4) Stimulus reconstruction 
Pattern-classifier decoding, distinguishing small number of categories (typically two), 
captures only a tiny subset of the information we expect to be present in a brain 
representation. Reconstruction is decoding without such limitation (although current 
reconstruction methods still somewhat restrict the space). Being able to decode arbitrary 
mental content from a brain representation is arguably the ultimate test of our 
understanding of the code. Several studies have attempted to reconstruct stimuli from 
fMRI response patterns (Thirion et al., 2006; Miyawaki et al., 2008; Naselaris et al., 2009). 
 
How does stimulus reconstruction go beyond stimulus identification? The difference is (a) 
the set of stimuli to choose among is much larger and (b) to justify the term reconstruction, 

                                            
6
 Regional-average activation analysis additionally mounts a blurring lens to the end of the straw. 
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we require much more than merely better-than-chance performance. Let’s consider this in 
a little more detail. If we can predict response patterns from stimuli, then we can in 
principle enumerate the stimulus set (or sample a continuous space at a finite number of 
locations), predict the response pattern for each stimulus, and choose the best match to 
the measured response pattern, thus "reconstructing" by applying identification (as in Kay 
et al., 2008) to a very large set of candidate stimuli. Better-than-chance response pattern 
prediction therefore logically implies that better-than-chance stimulus reconstruction is 
possible. 
 
However, this is like saying that if we can recognize a good poem, then we can write one: 
by enumerating all possible letter sequences and selecting the first good poem. While true 
in principle, the method does not work in practice. For one thing, it takes too long (for both 
poems and general stimulus reconstruction). Moreover, while in neuroscience we are often 
satisfied with better-than-chance performance (i.e. a significant result: the model explains 
at least some of the variance), literature and engineering have higher standards: a merely 
better-than-chance poem is not likely to be a good one and a merely better-than-chance 
stimulus reconstruction is not likely to deserve being called a reconstruction at all. 
 
The cited studies have shown that reconstructions that deserve to be called such are 
possible from fMRI data. Thirion et al. (2006) and Miyawaki et al. (2008) restrict the 
stimulus space to contrast-defined images of low spatial complexity, but allow arbitrary 
images within this space. Thirion et al. (2006) perform reconstruction by means of a point-
by-point inversion of the retinotopic mapping. Miyawaki et al. (2008) use a multiple-module 
decoder, in which each module decodes one of multiple overlapping image features from 
the joint response of multiple voxels. The reconstruction, thus, exploits multivariate 
relationships within both the stimulus and the response domain. Naselaris et al. (2009) 
reconstruct natural images using complex natural-image priors to constrain the problem. 
 
Brain theory informs engineering in stimulus reconstruction. Generic statistical methods by 
themselves would not do nearly as well. Reconstruction requires the amalgamation of 
simplified brain theory and generic statistical methods into a model of just the right level of 
complexity to be stably fitted with the amount of data available to us. This engineering feat 
may be a good test of the sum of our current understanding of a given brain 
representation. Moreover, the technology may elevate brain-computer interfaces to a new 
level – with promising medical applications. What is less clear is how we can draw specific 
insights about brain information processing from stimulus reconstruction. 

Conclusion 
For goal 1 of testing a region for pattern information about a predefined stimulus 
dimension, we can use generic statistical models. Linear models are attractive because of 
their stability and interpretability. Pattern classification treats the stimulus space as 
categorical. This simplification is often helpful, but also limiting in terms of the questions 
that can be addressed. Classical multivariate techniques are attractive for modeling 
continuous relationships between stimulus and response patterns. For the more ambitious 
goal 2 of testing computational models of brain representations, we can use voxel 
receptive-field modeling or representational similarity analysis. These methods model 
every stimulus as a separate condition, account for the variability across individual stimuli, 
and can generalize to populations of stimuli. Hypothesis-driven techniques need to be 
complemented by exploratory analyses that allow discovery, for example of an unexpected 
brain region representing a given stimulus dimension or of an unexpected stimulus 
dimension represented in a given region. 
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Figure 1: Decoding and encoding models both demonstrate a statistical dependency 
between stimulus and response pattern, but elucidate complementary aspects of the 
stimulus-response relationship. (a) In a univariate scenario, it is easy to see that a correlation 
between two variables implies predictability in both directions. More generally, we can say that 
there is mutual information (or, equivalently, a statistical dependency) between stimulus and 
response. (b) In a multivariate scenario, the same holds. In either case (a,b), demonstrating above-
chance predictability in either direction implies mutual information and, thus, above-chance 
predictability in the opposite direction. (c) The mutual information can be construed as the entropy 
overlap (red) between the stimulus entropy H(S) (green) and the response-pattern entropy H(R) 
(blue). This perspective reminds us of two important facts: (1) Stimulus and response entropies are 
not equal in general. In this illustration the stimulus entropy is somewhat smaller. In decoding 
studies, the stimulus variable often specifies, which of two equally probable categories the stimulus 
belongs to. In that case, H(S) is 1 bit. H(R) is typically much greater. (2) Encoding and decoding 
models elucidate complementary aspects of the stimulus-response relationship. An encoding 
model can demonstrate, to what extent the stimulus description suffices to explain the response 
patterns. Conversely, a decoding model can demonstrate, to what extent the response pattern 
suffices to determine the stimulus that elicited it. In either case the estimate will be a lower bound 
(since we do not know that the model is optimal). We can estimate the portion of the response 
variability explained by the stimulus (or vice versa) in terms of either explained entropy (i.e. mutual 
information), or, more simply, in terms of explained variance. 
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Figure 2: Advanced pattern-information methods reveal the forest while honoring the trees.  
The three panels show stimulus-response matrices with warm colors indicating high activity and 
cold colors indicating low activity. Different approaches to analysis (panels a-c) group and average 
the data to different degrees. (a) Activation-based neuroimaging relies on averaging of activity 
across the voxels of a given brain region and typically also across different stimuli within a given 
experimental condition. The activation-based paradigm has been successful in revealing the big 
picture of task-related regional activation; it has shown us the forest – at the expense of honoring 
the trees. (b) Pattern-information-based neuroimaging analyzes patterns of activity across voxels. 
It honors the differences between individual voxels (trees), while combining the evidence across 
voxels in order to summarize the information (forest) and in order to gain statistical power. 
However, the popular approach of pattern classification still requires stimuli to be grouped into a 
small number of predefined categories. (c) Advanced pattern-information methods, including voxel-
receptive-field modeling and representational similarity analysis, additionally honor the distinctions 
between individual stimuli (even for large numbers of stimuli). Although they honor distinctions 
between individual voxels (trees) and between individual stimuli (a different sort of trees), they 
combine the evidence across both voxels and stimuli (to summarize and to gain statistical power) 
when testing computational models (forest). 
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Figure 3: If a model accounts for the representational similarity structure of a brain 
representation, then it can in principle be used to predict brain response patterns for novel 
stimuli. The stimulus space (bottom) spans two dimensions (color and shape) and is sampled 
here by training stimuli placed at regular intervals. The brain representation (top right) emphasizes 
a diagonal dimension of the stimulus space (the axis from top left to bottom right in the stimulus 
space) and deemphasizes the orthogonal dimension. A model representation (top left) accurately 
mimics the similarity structure of the brain representation, i.e. the representational distances are 
similar between model and brain representation. We can test for matching representational 
similarity structures by simply correlating the representational distance matrices (not shown). If the 
representational similarity structure matches, then we can also predict response patterns for novel 
test stimuli. This can be achieved by interpolating among the response patterns of the training 
stimuli closest to the novel stimulus in the model representation, or by fitting a generic statistical 
model. Note that the dimensions of the model representation need not correspond to the 
dimensions of the brain representation. For example, the model could contain a much smaller 
number of abstract units, which nevertheless capture the representational similarity structure. 
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Figure 4: Neuroscientific implications of different classes of pattern-information result. This 
figure summarizes the logical implications (arrows) of different types of pattern-information result. 
The claims form two clusters of logical equivalence, each of which corresponds to a type of 
neuroscientific insight (bold red font) and to one of the two goals of hypothesis-driven pattern-
information analysis (as stated on the left). Each class of empirical finding is characterized by a 
generic claim (black font), followed by one or several example studies. The implications hold for 
the generic claims, but not for the particular studies, because the studies differ in stimuli, designs, 
and specific questions (e.g. Kanwisher et al. (1997) does not imply Haxby et al. (2001) or vice 
versa). Each empirical claim is assumed to be justified if it holds to a greater degree than expected 
by chance (i.e. if a significance test rejects an alternative null hypothesis). The implication arrows 
pointing toward the claim “Novel stimuli can be reconstructed from brain activity patterns” (bottom 
right) are dashed to indicate that although the other statements imply that stimulus reconstruction 
will work better than chance, our intuitive criterion for successful stimulus reconstruction requires 
reconstructions of much higher quality. 
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Figure 5: Comparison of a range of pattern-information methods. This figure compares a 
range of basic and advanced methods of pattern-information analysis. 

 


