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Abstract— Noise generated due to the motion of a robot is
not desired, because it deteriorates the quality and intelligibility
of the sounds recorded by robot-embedded microphones. It
must be reduced or cancelled to achieve automatic speech
recognition with a high performance. In this work, we divide
ego-motion noise problem into three subdomains of arm, leg
and head motion noise, depending on their complexity and
intensity levels. We investigate methods that make use of single-
channel and multi-channel processing in order to suppress
ego noise separately. For this purpose, a framework consisting
of a microphone-array-based geometric source separation, a
consequent post filtering process and a parallel module for
template subtraction is used. Furthermore, a control mechanism
is proposed, which is based on signal-to-noise ratio and
instantaneously detected motions, to switch to the most suitable
method to deal with the current type of noise. We evaluate
the proposed techniques on a humanoid robot using automatic
speech recognition (ASR). The preliminary results of isolated
word recognition show the effectiveness of our methods by
increasing the word correct rates up to 50% compared to the
single channel recognition in arm and leg motion noises and
up to 25% in very strong head motion noises.

I. INTRODUCTION

In daily environments, where robots are intended to be

employed in the near future, a lot of noise sources exist.

Therefore, a robot audition system must be able to cope with

all kinds of noises including the robot’s own noises, i.e. ego

noises, during an interaction with a human. One special type

of ego noise, which is observed while the robot is performing

an action using its motors, is called ego-motion noise. This

noise is rather ignored [1] or circumvented by using close-

talk microphones [2] in the robotics literature, however with

increasing popularity and growing demand on home/service

robots, it will apparently become an important problem.

Nakadai et al. [3] proposed a noise cancellation method

with two pairs of microphones. One pair in the inner part

of the shielding body records only internal motor noise

and helps the sound localizer to distinguish between the

spectral subbands that are noisy and not noisy, and to

ignore the ones where the noise is dominant. Besides,

some single-channel based approaches are introduced to
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deal with ego-motion noise like the following studies:

Nishimura et al. [4] estimated the ego-noise using robot’s

gestures and motions. With the help of the motion command,

the pre-recorded correct noise template matching to the

recent motion was selected from the template database and

subtracted. Ito et al. [5] developed a new approach of frame-

by-frame based prediction with a neural network to cope

with unstable walking noise. The trained network had to

predict the noise spectrum from angular velocities of the

joints of the robot. In another work, analysis results of ego-

motion noise [6] showed clearly that it has a highly non-

stationary nature. Therefore, Ince et al. [6] proposed to use

template subtraction which incorporates tunable parameters

to cope with noise template representations that do not

match to the instantaneous noise due to the deviations

in the noise spectra. However, all those methods suffered

from the musical noise [7], which can be described as

smaller attenuations of the frequencies compared to relatively

larger attenuations of their neighboring frequencies caused

by non-linear mapping of the negative or small-valued

spectral estimates. This distorting effect comes along with

nonlinear single-channel based noise reduction techniques

and reduces the intelligibility and quality of the audio

signal. If we consider also that in order to cope with

the dynamically-changing environmental factors such as

background noises and unknown source positions, we apply a

nonlinear stationary background noise reduction technique,

e.g. Minima Controlled Recursive Averaging (MCRA) [8]

prior to ego-motion noise reduction. Two consecutive

nonlinear noise reduction operations produce even more

musical noise, eventually causing deteriorated recognition

performances of automatic speech recognition (ASR).

In this work, we propose the use of a framework that

consists of a microphone array, sound source localization

(SSL), sound source separation (SSS), speech enhancement

(SE) and template subtraction to cancel motor noises.

Furthermore, ASR is integrated to the framework to evaluate

the results of each processing stage qualitatively. Because

ego-motion noise is created in the near field of the

microphone array, we assume that it is not only a directional,

but also a diffuse type of noise. To tackle the directional

portion of the ego noise, we utilize the SSS. We also apply

spectral enhancement techniques, because they are the most

suitable way to deal with the diffuse portion of the noise. To

our knowledge, ego-motion noises are never tackled by using

a multi-channel sound source separation and post filtering

technique before, which makes this study also a proof of

concept for multi-channel ego noise reduction. Moreover,

we disaggregated the whole body motion ego-noise problem
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mainly into three categories that can be analyzed separately

from each other and investigate the performance of multi-

channel approach for each of them. The main contribution

of our work will be incorporation of the SSS stage for a

smooth speaker/ego-noise separation and utilization of the

SE stage for ego-motion noise suppression. We also enhance

the proposed system further by incorporating template

subtraction method into the hybrid framework to compansate

the poor performance of multi-channel approach especially

with the head motion noise (See Fig. 1). We demonstrate

that the proposed methods achieve a high noise elimination

performance and thus improve speech recognition accuracy.

The rest of the paper is organized as follows: Section II

describes an overview of the system. Section III presents

the main building blocks of the proposed framework that is

composed of SSL, SSS, SE and template subtraction stages

in detail. Section IV shows the conducted experiments and

consecutive results. The last section gives a conclusion and

future work.

Fig. 1. Proposed hybrid noise cancellation system. The blue arrow implies
a switch between two separate systems that operate simultaneously.

II. SYSTEM OVERVIEW

We propose to use an array that consists of multiple

omnidirectional microphones and that is mounted on the

robot for this approach. The first building block of our

processing chain is composed of the elements performing

SSL that extracts the location information of the most

dominant sources in the environment. Basing on the selection

of the value assigned to the threshold parameter embedded

in this module (see Sec. III-A), the number of detected

sources can vary in time and space. The estimated locations

of the sources are used by a linear separation algorithm

called Geometric Source Separation (GSS) [9]. It is a hybrid

algorithm that exerts Blind Source Separation (BSS) [10] and

beamforming. This method has three important advantages

for the ego-noise cancellation problem.

1) The introduction of geometric constraints concept

that involves calculation of current transfer function

based on the known locations of the microphones and

positions of the sound sources obtained from SSL

relaxes the limitations of BSS such as permutation and

scaling problems. Therefore it can run in real-time.

2) Sound separation of moving sources is possible. This is

especially important if we consider that the part of the

robot where the microphones are mounted (e.g. head)

can move as well. Relative to a moving microphone

array, even stationary sound sources are regarded as

moving objects.

3) Generally, an embodied robot has loud ego noises

such as stationary operational noise of hardware and

fan noise, which are also located close to each other.

Assuming we know the positions of these high noise

emission sources, we can specify their direction,

because our GSS module has a function of suppressing

stationary ego noise as a fixed noise source.

The next stage after SSS is a speech enhancement step

called multichannel Post Filtering (PF). This block attenuates

stationary noises, e.g. background noise, and non-stationary

noises that arise because of the leakage energy between the

output channels of the previous separation stage for each

individual sound source. We also inspected single-channel

template subtraction module’s performace as an alternative

to the multi-channel approach. The overall architecture of

the proposed noise reduction system is shown in Fig. 1.

As a final operation, the appropriate features are extracted

from the output of either PF or template subtraction

operation, which represent the inputs of the ASR module.

III. SYSTEM ARCHITECTURE

For our multi-channel approach, we will use the following

signal model for M sources and N (≥ M) microphones

throughout the text: X(ω) = [X1(ω),X2(ω), · · · ,XN(ω)] with

Xn(ω) being the spectrum of the signal captured by the n-th

microphone. ω denotes the angular frequency.

The following subsections explain processing blocks of

SSL, SSS, PF and template subtraction in detail.

A. Sound Source Localization

In order to estimate the directions of arrival (DoA)

of the sound sources, we will use one of the most

popular adaptive beamforming algorithms called MUltiple

SIgnal Classification (MUSIC) [11]. It detects the DoA by

performing an eigenvalue decomposition on the correlation

matrix of the noisy signal such as following:

Rxx(ω ,φ) = X(ω)X∗(ω), (1)

where ()∗ represents complex conjugate transpose operator

and φ denotes the orientation of the robots head. Eigen

decomposition of Rxx(ω ,φ) leads to

Rxx(ω ,φ) = Q(ω ,φ)ΛQ−1(ω ,φ), (2)

where Λ is the matrix, whose diagonal elements are the

corresponding eigenvalues, i.e. Λii = λi and Q is the square

matrix, whose i-th column is the eigenvector qi. Moreover,
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we assume that the λi and qi belong to the sound sources of

interest for 1 ≤ i ≤ M and to the undesired noise sources for

M + 1 ≤ i ≤ N.

Prior to localization, steering vectors of the microphone

array, G(ω ,ψ), are determined, which are measured as

impulse responses for a certain orientation of ψ .

P(ω ,ψ) =
|G∗(ω ,ψ)G(ω ,ψ)|

∑N
n=M+1 |G

∗(ω ,ψ)qn|
. (3)

The peaks occurring in the spatial spectrum yield the

source locations. Moreover, a consequent source tracker

system, which actually performs a temporal integration of

the source directions in a given time window, runs to ensure

the reliability of the location estimations. The decision on

the source locations is made by comparing the power of the

peaks of P(ω ,ψ) to a threshold value T and if the power of

the source is less than the threshold, the source is eliminated.

Currently, we set the threshold manually.

B. Sound Source Separation

We present here Geometric Source Separation which

is an adaptive algorithm that can process the input data

incrementally and makes use of the locations of the sources

explicitly. It requires lower computational cost compared to

ICA-based BSS algorithms.

Suppose W(ω) is the separation matrix, separated sources

Y(ω) can be found such as below:

Y(ω) = W(ω)X(ω). (4)

To estimate W(ω) properly, GSS introduces cost functions

that must be minimized in an iterative way (Refer to

[12] for details). Moreover, we use adaptive step-size

control that provides fast convergence of the separation

matrix [13]. Besides, our GSS implementation also exploits a

method called Optima Controlled Recursive Averaging [14],

which controls window size adaptively causing a smoother

convergence and thus better separation results [15].

C. Speech Enhancement

After the separation process, a multi-channel post filtering

operation is applied so that the sounds can be enhanced

further. This module is based on the optimal estimator

proposed by Ephraim and Malah [16]. Since their method

takes temporal and spectral continuities into consideration,

it generates less distortion compared to the conventional

spectral subtraction based noise reduction methods. By

extending their idea further, a multichannel post filter is

proposed by Cohen [17], which can cope with nonstationary

interferences as well as stationary noise. This module treats

the transient components in the spectrum as if they are caused

by the leakage energies that may occasionally arise due to

poor separation performance .

The main aim of post filtering is to find the weighting

coefficients Gm(ω) and estimate the clean audio signal that

is represented by Ŝm(ω) by attenuating Ym(ω) as in Eq. (5).

Ŝm(ω) = Gm(ω)Ym(ω). (5)

For this purpose, noise variances of both stationary noise

λ stat
m (ω ,n) and source leakage λ leak

m (ω ,n) must be predicted.

Whereas the former one is computed using the MCRA [8]

method, to estimate the latter λ leak
m (ω ,n) the formulations

proposed in [12] are used. The noise suppression rule further

involves speech presence probability calculations such as

given in [17] and is based on minimum mean-square error

estimation of the spectral amplitude [16]. According to

the outcomes of our experiments, we conclude heuristically

that an eventual additive white noise step applied after

post filtering improves the speech recognition results by

generating an artificial spectral floor in the background of

a speech signal and blurring the musical noise distortions.

D. Template Subtraction [6]

This method requires sensors attached to each motor

(joint) to measure its angular positions individually. This

noise reduction method works like the following: During

the motion of the robot, actual position (θ ) information

regarding each motor is gathered regularly in the template

generation (database creation) phase. Using the difference

between consecutive sensor outputs, velocity (θ̇ ) values are

calculated, too. Considering that N joints are active, feature

vectors with the size of 2N are generated. The resulting

feature vector has the form of F = [θ1, θ̇1,θ2, θ̇2 . . . ,θN , θ̇N ].
At the same time, motor noise is recorded and spectrum of

the motor noise is calculated by the sound processing branch

running in parallel with motion element acquisition. Both

feature vectors and spectra are continuously labeled with

time tags so that templates are generated when their time tags

match. Finally, a large noise template database consisting of

short noise templates for many joint configurations is created.

In the prediction phase a nearest neighbor search in the

database is conducted for the best matching template of

motor noise for the current time instance using the feature

(joint-status) vectors. The coefficients are calculated from the

selected templatess for the weighting operation in a similar

fashion like in Eq. (5).

IV. RESULTS

In order to evaluate the performance of the proposed multi-

channel approach, we used ASIMO. As depicted in Fig. 2,

the robot is equipped with an 8-ch microphone array, 2

motors for head motion, 4 motors for the motion of each

arm, 5 motors to move each leg.

It is clear that using the above-mentioned microphone

array configuration the neck motors are the closest sound

sources, thus the most problematic ones, because the

intensity of a sound wave depends on how far it is from

a source with the basic formula:

SoundIntensity = SoundPower/(4πR2), (6)

where R denotes the distance. Therefore, we decided to

handle the noise problem in different domains, each one

covering a set of joints required for a certain type of

an interaction with the robot’s environment. We recorded

random motions performed by a given set of limbs, which
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can be classified mainly into 3 distinct categories following

the order of increasing noise intensity: arm motion, leg

motion and head motion.

Fig. 2. Experiments are conducted on ASIMO whose legs, arms and head
can move. Motion noise is recorded by an 8-ch microphone array with a
circular layout embedded on ASIMO’s head.

Because the noise recordings are comparatively longer

than the utterances used in the isolated word recognition, we

selected especially those segments, in which all contributing

joints of corresponding category were active, thus the

noisiest parts of the recordings. The noise signal consisting

of ego noise (incl. ego-motion noise) and environmental

background noise is mixed with clean speech utterances used

in a daily human-robot interaction dialog. This Japanese

word dataset includes 236 words per 4 female and 4

male speakers. Acoustic models are trained with Japanese

Newspaper Article Sentences (JNAS) corpus, 60-hour of

speech data spoken by 306 male and female speakers, hence

the speech recognition is a word-open test. Furthermore,

multicondition training of an acoustic model is performed

for each processing technique to be able to compare the

results of each processing stage in a better way. Speech

recognition accuracy on clean audio files is around 97%.

Speech recognition results are given as average word error

rates (WER) of five arbitrarily selected noise instances from

corresponding noise categories. The position of the speaker

is kept fixed at 0◦ throughout the experiments. Besides,

recording environment was a room with the dimensions

of 4.0 m×7.0 m×3.0 m with a reverberation time (RT20) of

0.2s. The implementation runs on HARK, which is an open-

sourced software for robot audition [18].

A. Speech Recognition with Arm Motion Noise

While moving arms (whole-arm motion pointing

behavior), the microphone array and the head are kept

stationary. Henceforth, we are able to fix the direction of

the ego-noise originating from the backpack of ASIMO

(−180◦). Note that giving a fixed ego-noise direction does

not pose any hard constraint on robot audition scenario

or application, because the robot is already equipped with

sensors that transmit the positions of the joints. Depending

on the posture of the body, we exactly know where the

ego-noise is emitted and change the direction automatically.

The results are presented for five different conditions:

• Single channel recognition,

• GSS (implied as SSS) performed with a high threshold

T = 25dB (See Sec. III-A for the usage of T ),

• GSS and Post Filter (implied as SE) with a low

threshold T = 23dB,

• GSS and Post Filter with a high threshold T = 25dB,

• GSS and Post Filter with known source location.

Note that the threshold values are determined heuristically

to ensure the accuracy of the detected source locations.
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Fig. 3. Recognition performance of speech with arm motion noise.

Speech recognition accuracy results are shown in Fig. 3.

Single-channel results are used as a baseline. As expected,

the GSS+PF system achieved up to 40% improvement

compared to the single-microphone based recognition and

outperformed GSS by increasing the ASR rates by an

additional 10%. This result proves that the arm-motion noise

can be treated as a directional & diffuse non-stationary

noise source that can be handled by GSS & PF stages. We

also included GSS+PF, which makes use of the locations

obtained from SSL with a low threshold, in order to show the

importance of the threshold selection. If an inappropriately

low threshold is selected, additional non-existing ghost

sources are detected, which at the end deteriorates the

performance of GSS and PF. On the other hand, GSS+PF

with high threshold causes missing sources at low signal-

to-noise ratio (SNR) cases that diminish the performance in

another way. For an additional test bench, we also introduce

”GSS+PF with known source location” results, where we

assume that the location of the sound source is estimated

precisely. Though it may seem that it achieves only a small

improvement on the ASR accuracy, the result is significant,

because it demonstrates the upper performance limit of our

proposed method just in case we solve the SSL problem.

B. Speech Recognition with Leg Motion Noise

The legs are used for performing stamping behavior and

short distance walking. Again, the same conditions as in the

previous experiment are provided. The recognition results

curves in Fig. 4 show very similar patterns as in Fig. 3.

This time, we observe severely deteriorated outcomes for the

GSS+PF method provided by an SSL that runs with a low
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threshold. Because legs’ noise level is considerably higher

and even more complex than arms’ noise, the localization

system fails with an improper setting, thus yielding incorrect

position information to the next processing stages. However,

for an optimally tuned threshold value, drastically high

suppression rates can be achieved even for high SNR’s. The

post filter contributes to a 30-50% reduction in the WERs.
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Fig. 4. Recognition performance of speech with leg motion noise.

C. Speech Recognition with Head Motion Noise

Microphones’ current placement provides the fact that

whenever the head moves, the microphone array rotates as

well. Another consequence of the head motion is of course,

the relative motion of sound sources and ego-noise with

respect to the microphones. Since in this work we only

applied isolated word recognition, the effect of the moving

sound sources on the separation and speech enhancement

performance is rather mild. Nevertheless, to inspect the

capabilities of our proposed noise reduction system based on

the SSS and keep the results coherent with future research

extensions of this work, we did not fix the ego-noise direction

of the robot. In this experiment, SSL system predicted it

automatically.

The head motor noise is extremely loud due to its

close proximity. Our partial directional & diffuse noise

assumption is violated, because a strong noise source in

the very near field of the microphone array has highly

complicated propagation pattern. As a consequence, the

separation quality gets worsened and the noise model used

in the post filtering stage also does not hold any more (e.g.

the transient components in the separated signal spectrum

are due to leakage energies, etc.). Hence, after validating

the performance of the proposed multi-channel approach,

we want to compare the results with those of single-

channel template subtraction technique. This method does

not model the noise depending on its nature, but rather

uses instantaneous prediction of the current noise template

depending on the position and velocity of the joints that

contribute to the noise generation. Whereas it is prone to

modeling errors, it suffers from musical noise components

caused by subtraction in the spectral domain. Therefore,

multicondition training of acoustic models is not always

effective with spectral subtraction based methods, because

most speech enhancement techniques distort the spectrum

and degrade features. Though the audio signals may be

perceived to be cleaner, it does not necessarily mean that the

recognition rate is improved. Moreover, template subtraction

requires a long training session to build a database of

templates to choose from (For more details address to [6]).
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Fig. 5. Recognition performance of speech with head motion noise.

Fig. 5 illustrates the ASR accuracy for head motion noise.

The results of single-channel MCRA-based background

noise reduction are poor, because the level of background

noise is considerably lower than the motor noise.

Not surprisingly, we observed that GSS+PF operations

demonstrate far worse performance compared to GSS alone.

That is because short range reverberation effects and

multipath propagation are properties of head-motion noise

that are very hard to overcome with the current post filter

algorithm assumptions and settings. However, we clearly

see that only GSS has performed promising results to deal

with highly non-stationary head motor noise. For a suitable

threshold T , it yields 15% improvement for low SNR’s,

whereas WERs suffer a considerable reduction when SNR

gets higher. We include ”best case scenario with known

source” for GSS by giving the position of the sound source

in advance, which enables us to cross-check the significance

of the source separation approach for ego-noise suppression

problem. The decrease in the WER’s even for high SNR rates

(< 20% compared to SSL-dependent GSS approach) prove

that a substantial improvement can be achieved in case we

can gather correct positions of the sources.

For the second part of the experiment, we recorded

head motion noise by rotating the head of ASIMO

(elevation=[−30◦ 30◦], azimuth=[−90◦ 90◦]) randomly.

Status information (positions and velocity) of the motors

are gathered from the joints with an average acquisition

rate of 7.3 ms, slightly faster than our frame shift rate of

10 ms. The training data was a joint database consisting

of 30 minutes of motor noise and the corresponding joint-

status vectors stored during this time span. We stored a test

database of 10 minutes long. In Fig. 5, TS indicates template

subtraction and set specifies the database the templates
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are extracted from. Training set corresponds to the real

experimental condition. Test set indicates the usage of ideal

template constructed from the test set which yields the

maximum achievable results for the single-channel approach

in that sense. Although the potential of this method is very

impressive (as pointed out by the curve labeled with ”TS

on test set”), template subtraction carried out on training set

performs only a minor improvement like 5% to 15%.

After analyzing the capabilities of both single-channel

and multi-channel approaches extensively, we suggest to

embed both methods into a single system and propose to use

them interchangeably in a motion and SNR-specific fashion.

Because we can gather information about all active joints

and estimated SNR at every time instance, we can apply

a switching mechanism between single-channel template

subtraction and multi-channel noise reduction methods (See

Fig. 1). This switch is triggered by the motion detector’s

output. Because multi-channel approach works very well

for the leg and arm noises, the switch feeds the outputs

of this branch to the ASR. On the other hand, in case of

a head motion, template subtraction provides more reliable

features for high SNR case. If the SNR is low, the switch can

either select the multi-channel output or ignore all incoming

features depending on the application specifications and

confidence requirements of the task.

V. SUMMARY AND OUTLOOK

In this paper we presented methods for eliminating ego-

motion noise from speech signals. The system we proposed

utilizes sound source localization incorporating MUSIC

algorithm, sound source separation with GSS algorithm

and consequently, speech enhancement stage that suppresses

both background noise and interference/leakage noise. We

validated the applicability of our approach by evaluating its

performance on 3 different motor noise types. Our method

demonstrated excellent performance on arm and leg-motion

noise. Furthermore, promising results have been presented

for the head-motion noise, which is the most challenging

type of ego-motion noise due to its close distance to the

microphones. To overcome the difficulty of head-motion

noise, we proposed to use a hybrid noise reduction system

that also incorporates single-channel template subtraction

technique in addition to multi-channel approach.

Our system is still open for improvements. One weakness

of the current architecture is the threshold value used in the

sound source localization procedure, which determines if a

source exists at that location. Especially, the higher the motor

noise gets, the more susceptible success rates of the system

get to the threshold value. There is no optimal threshold value

that is effective for every kind of motor noise. Therefore,

we plan to make it adaptive. Besides, methods that make

use of correlation matrices derived from noise sources in

advance, can be very helpful to suppress noise onsets, thus

allowing more precise speaker location prediction, causing

better separation and higher ASR rates. This system is

also capable of dealing with multiple speakers with its

current form. Next step is evaluation of the hybrid system in

real situation which involves speech recognition of several

speakers simultaneously while the robot is performing some

task or action.
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