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Much of the value of cloud services lies in leveraging client data, which often
conflicts with the client’s desire to keep that data private. Reconciling these
contradictory requirements is an important research and engineering
problem, whose efficient solution would have a far-reaching business impact.
Generic theoretical approaches, such as fully-homomorphic encryption, are
inefficient. Ad hoc approaches, such as order-preserving encryption (OPE),
provide solutions to a limited class of problems (e.g., evaluating encrypted
range queries). Security achieved in real systems, even if an “ideal OPE” is
employed, is hard to evaluate, and is often only illusory, since the ability to
order ciphertexts may reveal a lot about the underlying plaintexts. We
concentrate on a typical application of OPE, encrypted searchable webmail
service. We describe how the use of OPE in this setting may divulge
information and discuss approaches to minimize its impact. The main avenue
to improve privacy is to appropriately limit the type of interactions that
should be allowed with a webmail server. © 2012 Alcatel-Lucent.
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inefficient, and seems unlikely to become truly practi-

cal in the foreseeable future. Although a significant

effort is underway in the theoretical community to

improve the performance of FHE, it is unlikely that

fully-homomorphic encryption will approach the effi-

ciency of current public key encryption (PKE) schemes

any time soon. Intuitively, this is because a fully-

homomorphic cryptosystem must provide the same

strong security guarantees as PKE, while supporting

the additional algebraic structure to allow for homo-

morphic operations. The extra structure weakens 

security and leads to a need for countermeasures,

which are implemented at the cost of performance.

Further, even performance equivalent to that of a

“regular” public-key encryption scheme such as RSA is

Introduction
The value of many cloud services lies in the abil-

ity to leverage a client’s data. Typical examples include

data storage, webmail service, advertising, and geolo-

cation services. However, the need to access a client’s

data (e.g., files, email, location) is often at odds with

the need to protect the privacy of client data, which

requires encryption for data protection. Reconciling

these contradictory requirements, and achieving com-

putation on encrypted data, is an important research

and engineering problem whose efficient solution

would have a far-reaching business impact.

A breakthrough theoretical approach, fully-

homomorphic encryption (FHE), described in [6] and

a number of follow-up works, while generic, is currently
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unsatisfactory in most scenarios. This is because the

generic approach of computing under encryption

requires performing a public-key operation for each

trivial step of the client-server computation, such as

addition.

Similarly, a generic approach based on the garbled

circuit [7, 13] is also inapplicable in a number of cloud

settings, where the computed functions are large 

(measured as a number of gates in a boolean circuit

computing the function). Despite relying on symmet-

ric encryption, and hence being dramatically more effi-

cient than FHE, the garbled circuit approach also suffers

from overhead, both in computation and communica-

tion, linear to the size of the computed function.

On the other hand, ad hoc approaches such as the

order-preserving encryption (OPE) described by

Aggrawal et al. [1], provide solutions to a limited class

of computations on encrypted data, such as evaluating

encrypted range queries. (Recall, an OPE has the prop-

erty that for any two messages m1 and m2, where m1 <
m2, it holds that OPE(m1) < OPE(m2). Further, these ad

hoc approaches often lack the usual cryptographic for-

malization and analysis. One notable exception is the

OPE scheme described by Boldyreva et al. [3], which

is probably as strong as an ideal OPE object—a pseudo-

random order-preserving function. However, it is often

not clear what level of security is provided by an appli-

cation using this ideal OPE as Boldyreva et al. warn of

possible security compromises.

Indeed, in contrast with “regular” encryption

schemes, OPE ciphertexts by necessity reveal a signifi-

cant amount of information about the plaintext they

encrypt. For example, the magnitude of the OPE

ciphertext can allow an adversary to develop an esti-

mate of the range of the corresponding plaintext.

Worse, the estimate can be made more precise, given

additional ciphertexts. Worse yet, auxiliary informa-

tion available to the adversary, such as plaintext/

ciphertext pairs (especially if plaintexts are chosen by

the adversary), and knowledge of plaintext distribu-

tion can allow them to refine these estimates and

eventually (actually, quite quickly) decrypt protected

information. The type and amount of auxiliary infor-

mation available varies by application, and is very

hard to formalize and analyze in general.

In this work, we will concentrate on one of the

typical applications for OPE—encrypted webmail ser-

vice, which allows searches and sorting. We will char-

acterize the information leakage inherent to OPE in

this setting and discuss approaches to minimize its

impact. We believe the best path toward improving

privacy is by appropriately limiting the types of inter-

action the webmail server should be allowed (and

hence limiting the information available to the server,

including leaked information). 

This work is intentionally self-contained and

high-level. It was our goal to present most of the

issues, analysis, and solutions at a level appropriate

for security engineers and system architects. 

OPE Applications and Our Setting
There are a number of applications which could

benefit from order-preserving encryption. For further

evidence of the importance of this problem and the

need to examine the security provided by OPE, 

we list below several natural scenarios. It is clear that

the ability to securely compare integers under encryp-

tion is a powerful primitive, which facilitates a variety

of interesting cloud and security applications.

For instance, Lu et al. [9] propose several tech-

niques to perform privacy-preserving searches on

multimedia. In their work, they first extract visual

features from the multimedia document. These fea-

tures are hierarchically clustered and assigned to a

Panel 1. Abbreviations, Acronyms, and Terms

AES—Advanced Encryption Standard
CCA—Chosen-ciphertext attack
CPA—Chosen-plaintext attack
FHE—Fully-homomorphic encryption
KPA—Known-plaintext attack
OAEP—Optimal Asymmetric Encryption

Padding 
OPE—Order-preserving encryption
PKE—Public key encryption
PKI—Public key infrastructure
POPE—Probabilistic OPE
ROPF—Random order-preserving function 
UI—User interface
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representative feature called “visual word.” The entire

multimedia document is then represented as a set of

keywords which are indexed. For privacy protection

the word frequency values are encrypted with OPE,

enabling a ranked search on the indexes. Wang et al.

[12] propose a scheme that supports secure and effi-

cient ranked keyword searches over encrypted data

stored in the cloud by applying order-preserving

encryption on certain relevance criteria such as 

the frequency of keywords. Ding and Klein [5] pro-

pose an application-level encryption solution to 

protect the privacy and confidentiality of health data.

In particular, their solution relies on order-preserving

encryption to enable some operation on dates

expressed in milliseconds without first having to

decrypt them. These and other applications of OPE

(e.g., [8, 10, and 11]) all target an outsourced com-

putation or storage model, which are key character-

istics of cloud computing.

While our discussion largely applies to the above

applications as well, in this work we will concentrate

on the webmail setting, providing a brief overview

here and presenting the issues in more detail in a fol-

lowing section. We consider a webmail server M,

which, upon receipt of (possibly encrypted) email m

destined to client C, forwards m to C. In turn, C pro-

cesses the email simply by encrypting it with OPE (we

will discuss the encryption process in more detail

later), and uploads to M for storage. Now, given his

OPE key, C is able to access his email from any web

browser. Importantly, he has access to sorting and

searching functionality, while preserving a high

degree of protection for his data.

Outline of the Paper
We start with preliminaries, describing our set-

ting, the basics of secure computation and the related

work. We discuss our main application, webmail, and

sketch a natural architecture for its use with encryp-

tion. We then identify several critical vulnerabilities of

the system which persist even if an ideal OPE imple-

mentation is available. To remedy the situation, we

describe several simple design principles, adherence to

which will greatly improve security in OPE applica-

tions. We then provide examples of new and more

secure OPE-based webmail architectures.

Order Preserving Encryption
In this section, we informally recall the definition

of OPE introduced by Boldyreva et al., and describe

the scheme’s basic properties and limitations.

An order-preserving symmetric encryption (or

OPE) scheme is a deterministic symmetric encryption

scheme whose encryption algorithm produces cipher-

texts that preserve the numerical ordering of the

plaintexts. Order-preserving encryption was intro-

duced by Aggrawal et al. in 2004 [1], and the first

formal study of the concept and its security was per-

formed by Boldyreva et al. in 2009 [3].

Let D and R be finite ordered sets (we can con-

sider them to be subsets of natural numbers for the

sake of simplicity). We say that that OPE is an order-

preserving encryption scheme with plaintext space D,

ciphertext space R, and key space K. For any choice of

keys k ∈ K and any choice of inputs x1, x2 ∈ D, the fol-

lowing holds: 

x1 < x2 3 OPE(k,x1) < OPE(k,x2)

We may omit the key k in our notation when it is

clear, and write OPE(x1) to denote OPE(k,x1).

The security of OPE is defined by comparison to

an ideal (though not necessarily efficiently computed

or stored) object that satisfies the hiding and order-

preservation properties. Boldyreva et al. define this

object to be a function, chosen at random from the 

set of all order-preserving functions mapping D to R.

This object is called a random order-preserving func-

tion (ROPF). Unlike the well-understood notion of ran-

dom functions, ROPF is an unstudied and a less

intuitive object. In fact, it is not at all clear what infor-

mation ROPF leaks about underlying data. Boldyreva

et al. provide some characterization of the security

offered by the ideal ROPF function, which, they warn,

is a weak characterization. 

One of the most basic (and weakest) cryptographic

properties is one-wayness. One-wayness merely

requires that a function, evaluated on a random value,

cannot be inverted by the adversary. However, it

allows in particular that most of the pre-image bits

can be determined. We note that even the one-wayness

property of ROPF was left open in Boldyreva’s origi-

nal paper, and subsequently shown to hold in a 
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follow-up paper [4]. In the OPE context, Boldyreva 

et al. [4] introduce the necessary adjustments to the

typical definition of one–wayness. In contrast to the tra-

ditional definition, the adversary is not allowed to for-

ward-evaluate ROPF, since this requires knowledge

of the secret key. This is a relatively serious require-

ment, which is rarely satisfied in practice. Further,

their definition also requires uniformly random dis-

tribution of the pre-image, which they call the “uni-

formity assumption,” and the authors warn that their

analysis may not hold in cases where this assumption

does not hold. Further they note (and we fully agree)

that this assumption usually will not hold in practice. 

ROPF (and Boldyreva’s OPE) are shown to be

one-way in the restricted sense described above.

However, standard stronger security notions do not

provably hold for ROPF. In this work, we discuss these

notions and the impact on system security, using the

example of webmail.

Models of Secure Function Evaluation
In this work, we consider the security of reactive

systems (i.e., systems which engage in computation in

several rounds, adjusting their input for each round).

While we do not prove, or even formally specify, the

precise security properties of secure webmail or other

applications, we believe that it is beneficial to present

a high-level discussion of the relevant cryptographic

security models, along with their justification.

The Semi-Honest Model: Intuition and Justification 
The adversaries we consider are very close to semi-

honest (sometimes also called passive). Intuitively, a

semi-honest adversary follows the protocol specifica-

tion exactly, yet attempts to gain additional informa-

tion by analyzing “everything he sees” during protocol

execution, i.e., the input received, randomness, and

the transcripts of messages received. Although the

semi-honest adversary is far weaker than a malicious

or active one (which may arbitrarily deviate from the

protocol specification), uses of and research into 

the semi-honest model is well justified. The semi-hon-

est model assumes all players are semi-honest.

First, protection against adversaries that are only

semi-honest is often sufficient for real world applica-

tions. Indeed, it is often the case that there is a certain

sufficient mutual trust among the players executing a

protocol. At the same time, it is hard to ensure that all

traces of computation are destroyed after completion

of the protocol, even if both parties wish to do so.

This is because of the complex structure of the net-

works, virtual memory, and caching mechanisms.

Information is almost always stored in several places.

A trace of a secure execution in the semi-honest

model will be of limited help to an adversary who

might later hack into a player’s computer and obtain

the information. The hacking will, of course, com-

promise the private information of the player who

was hacked, but the private information of the other

players will remain hidden because of the security

properties of the (completed) protocols. This justifi-

cation scenario is valid for cloud services, where the

cloud provider is well trusted (but of course cannot be

considered to be invulnerable to malicious attacks).

Further, it is often the case that reputation is of

high importance to businesses and even to private

parties. In many scenarios, the payoff for actively

cheating is not very high, while the cost of being

caught is significantly higher (e.g., destroyed reputa-

tion or the prospect of legal action). Even though the

probability of being caught (e.g., by a random inspec-

tion of software or other methods) may be small, this

alone may be a sufficient deterrent to active cheat-

ing. Semi-honest cheating, however, is often impos-

sible to detect, and thus protection is needed against

semi-honest players. This justification scenario is also

valid for less-trusted service providers.

Finally, protocol behavior may effectively be hid-

den in a large software or hardware system (there

exist heuristic methods for obfuscating an execution

process), and the cost of amending the behavior of

such systems may be higher than the potential bene-

fit. This justification scenario may apply to cases

where the client himself creates a hardware or soft-

ware device and places it in the hands of the server for

operation.

While the above discussion justifies certain direct

uses of protocols that run securely in the semi-honest

model, research into this model can also serve as an

important stepping-stone to achieving fully secure

protocols in the malicious model. There are tools 
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(bit commitments, zero-knowledge proofs, and basic

protocols which allow players to securely choose ran-

dom bits) which allow automatic compilation of a pro-

tocol secure in the semi-honest model into a protocol

computing the same functionality securely in the

malicious model. Intuitively, players first commit to

their input and securely choose their random tapes.

Then, for every message sent by the semi-honest pro-

tocol, a zero-knowledge proof is added, convincing

other players that the message is formed properly (i.e.,

consistently with the protocol, player’s randomness,

and previous messages). With a negligible probabil-

ity of proving a false statement, parties are forced to

follow the protocol, and thus their cheating capabili-

ties lie in the semi-honest model. With respect to

practical applications—our main topic of interest—

this automatic compilation greatly increases overhead,

usually to the point of making the resulting protocols

completely impractical. However, we note that heuris-

tic improvements, or protection only against certain

malicious behaviors, may often be added at a reason-

able cost, constituting a good tradeoff. In fact, the

approaches we advocate for webmail follow this line

of algorithm design.

Further, different players may have different lev-

els of trust. For example, in an auction system, a bid-

der may trust an established auction house to act

semi-honestly. At the same time, neither he nor the

auction house might have such trust in other bidders,

thus requiring protection against malicious bidders. In

such cases, it is often most efficient to design semi-

honest protocols, and then selectively add efficient

protection against certain malicious behaviors of 

certain players.

The Malicious Model
The malicious model is probably the most natural

model that guarantees no cheating is possible (or,

rather, that cheaters will be caught with overwhelm-

ing probability). While attractive at first glance, the

malicious model is very restrictive, and requires very

significant overhead, as compared to a plain semi-

honest model. For example, in the malicious model,

Yao’s garbled circuit solution has overhead approach-

ing a multiplicative factor of several hundred com-

pared to semi-honest implementations.

Our Hybrid Model
Relatively recently, a model which is a compro-

mise between the semi-honest and malicious settings

has been introduced by Aumann and Lindell [2]. This

model, which is called covert, allows cheating as long

as there is a constant fixed probability of the cheater

being caught. This relatively small security reduction

allows efficient protocols, with costs within a small

multiplicative factor of that of the semi-honest model

(when certain generic secure computation techniques,

amenable to the covert modification, such as the 

garbled circuit, are used.)

In this work, we consider basic algorithms based

on OPE, and we don’t see a natural opportunity to

adjust our algorithms to fit the covert model at low cost.

Further, we don’t consider the malicious model in its

full generality (or with strict formalism). Instead, we

consider several natural, low-risk, high-payoff malicious

behaviors, and discuss techniques to mitigate them.

The Webmail Application
As noted above, OPE helps enable a variety of

applications where security concerns may prevent

sharing the data in plaintext. However, since we aim

to demonstrate and analyze in this work, even the

use of an ideal OPE implementation will not neces-

sarily imply a secure application. We chose the fol-

lowing webmail scenario to illustrate the use and

advantages of OPE, as well as its limitations.

The primary appeal of order-preserving encryp-

tion is the fact that it offers the ability to encrypt data

in a way that allows searches to be performed without

possession of the secret key. Additionally, and in con-

trast to deterministic-encryption alternatives, the

queries supported by OPE include not only equality

searches (searching for a specific keyword) but also

range queries, which are critical for a variety of appli-

cations. OPE can be viewed as a tool somewhat simi-

lar to fully-homomorphic encryption, in that it can

repeatedly operate on encrypted data. It is weaker

than FHE since the manipulation primitive is limited

to equality checking and comparisons. However, even

more importantly, in contrast with FHE, the OPE pro-

gram evaluator knows the result of the comparisons,

which leaks certain information. This information,
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when aggregated over the life of the system, and espe-

cially when combined with information that may be

available externally, may reduce or even completely

dismantle security provided by OPE. However, OPE

offers truly practical efficiency, and is in fact one of the

very few available scalable crypto-computing tools.

We consider the following scenario: a webmail

application provided as a service by a mail server M.

We will assume that the mail server may be interested

in datamining client emails, and even may be inter-

ested in attacks against an individual client. However,

M cannot afford to be caught cheating. Therefore, we

will consider M to be a semi-honest adversary, who may

be able to perform certain “safe” deviations from the

protocol, which are very unlikely to get him caught.

The first issue to note is that of the architecture:

the mail server M processes and delivers all of C’s elec-

tronic mail, and hence may have seen all the incom-

ing and outgoing mail. In that case, the protections

we are instituting may be moot. We note that this

need not be an issue: email may be sent and received

in encrypted form in the first place. In this case, email

processing would need to involve C to re-encrypt with

OPE, as described next.

The Webmail Architecture
When a sender S wishes to send an email to 

a client C through a mail server M, he encrypts the

message in an end-to-end fashion, so that M cannot

access its content. The most natural scenario here relies

on the use of public key infrastructure (PKI), as 

follows. C owns a public/private key pair pkR/skR,

which is published through the PKI. S encrypts the

mail m with C’s public key pkR (e.g., using hybrid

encryption Advanced Encryption Standard (AES) with

RSA-Optimal Asymmetric Encryption Padding

(OAEP)) resulting in EncpkR 
(m). Upon receiving Encpkg

(m), the mail server M forwards it to C (of course, M

cannot infer anything about m, or modify it). With its

private key skR, C decrypts the message locally and

retrieves m. 

The main benefit of web-based email is its uni-

versal access. To leverage the ubiquity of the cloud, C

stores m, encrypted with C’s symmetric key, at M’s

server. The encryption algorithm here can simply be

AES. However, the use of OPE is required in order

for C to take advantage of M’s essential services, such

as mail sorting and classification. To reconcile secu-

rity with functionality, C uses OPE to encrypt certain

additional fields which are appended to the message,

including the ones used to perform searches and

range queries, such as the date. Now, at least in the

toy scenario described above, we have succeeded: M

cannot access C’s messages but can reply to range

queries on the fields encrypted with OPE.

This scheme is summarized in Figure 1.

1. EncpkC (m) 2. EncpkC (m)

4. Ek (m), O(date)
3. m

In this scenario, the message m is encrypted by the sender S under the public key
of the receiver C, then it is sent through the mail server M to C. C decrypts the
message, processes it, and sends it back to the server with a different encryption
with the addition of some fields (e.g., the date) encrypted using an order
preserving encryption denoted by O.

Figure 1.
The webmail scenario.



DOI: 10.1002/bltj Bell Labs Technical Journal 141

Attacking Webmail Application via OPE Queries
We will now show that most of the security for

the natural OPE-based webmail architecture described

above falls apart in real environment. Let’s assume

that M has access to certain side-channel information

about the OPE ciphertexts stored on his servers. We

will discuss how he may obtain this information in

the next section.

Known- and Chosen-Plaintext Attacks
Known-plaintext attacks (KPA) and chosen-

plaintext attacks (CPA) help form the basis of stan-

dard notions on the security of cryptosystems. 

Informally, a KPA occurs when the adversary

obtains samples, via the so-called KPA oracle, of both

the plaintext and its encrypted version (but the adver-

sary has no control over which pairs he obtains). An

encryption scheme is said to be KPA-secure if 

the adversary cannot gain any information about the

plaintexts of the ciphertexts, which were never

returned by the KPA oracle. We note that KPA secu-

rity is a relatively weak notion, and deterministic

encryption schemes, such as AES, satisfy this notion.

Recall, the weakness of deterministic encryption is in

the fact that two encryptions of the same plaintext

are equal (if we encrypt a document word-by-word to

enable exact-keyword searching, the attacker can

identify many of the words by frequency analysis).

The chosen plaintext attack is similar to the KPA,

except that the adversary can now choose plaintexts

and obtain their encryptions by calling a CPA-encryption

oracle. An encryption scheme is said to be CPA-secure

if the adversary cannot gain any information about

the plaintexts of any ciphertexts, regardless of prior

interaction with the CPA oracle. We note that CPA

security is a standard notion in cryptography, which is

satisfied by probabilistic encryption schemes.

Unfortunately, OPE does not (and cannot, because

of the order-preserving functionality it must provide)

satisfy either of the above notions.

KPA and CPA Attacks on OPE
In this section we describe how KPA and CPA ora-

cles can help break the security of OPE, and hence we

observe that OPE is not secure against these attacks. In

the next section, we will show that these oracles are in

fact present in natural webmail implementations.

With OPE, the knowledge of a single plaintext/

ciphertext pair splits both the domain and the range of

the OPE function in two. (Once the OPE key is fixed,

we can think of OPEk as a fixed function). Suppose

the OPE domain is [1, m] and that the adversary

knows the encryption OPEk(x) of a plaintext x (where 

1 ≤ x ≤ m). Then, upon seeing a ciphertext y, the

adversary can compare y with OPEk(x), and determine

whether the plaintext corresponding to y lies in [1, x]

or in [x, m]. This split can be viewed as akin to replac-

ing the OPE on the existing domain [1, m] and imple-

menting two OPE schemes, one on domain [1, x] and

the other on domain [x, m]. As with any determinis-

tic scheme, the useable security of an OPE scheme

with a smaller domain is weaker than that of a

scheme on a larger domain (in our example, [1, m]).

Clearly, the more plaintext/ciphertext pairs the adver-

sary knows, the more it can subdivide the domain,

and the weaker the security offered by OPE becomes.

Going further, and assuming that the adversary

can perform arbitrary adaptive queries to the encryp-

tion oracle (i.e., the CPA attack), he can decrypt any

ciphertext y with only log(m) oracle queries, using a

divide-and-conquer approach. Further, the domain/

range subdivisions obtained by the adversary persist

throughout the lifetime of the encryption key, which

allows decryption with even fewer than log(m) oracle

queries. In some circumstances, such as in a small

domain (whether a priori or due to domain subdivi-

sion), and with the availability of other auxiliary

information, decryption may be possible even without

additional oracle queries.

We stress that these attacks apply to any imple-

mentation of OPE, including the “ideal OPE” described

by Boldyreva et al.

For completeness, we also must mention chosen-

ciphertext attacks (CCA). A CCA attack is similar to a

CPA attack, except that the adversary is additionally

given access to a decryption oracle. CCA-security is

the strongest notion. Informally, it guarantees that an

adversary cannot manipulate ciphertexts in a way that

it would decrypt to a value related to the original

plaintext. OPE is not secure against CCA attacks, and,

certainly, having access to the CCA decryption oracle

helps the attacker. These attacks should be kept in mind

when designing systems; however, CCA decryption
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oracles are slightly less natural in the webmail set-

ting, as we will argue in the next section.

KPA and CPA Oracles and Other Auxiliary Information 
in Webmail

The previous section clearly illustrates the security

threat brought forward by simple attacks, given access

to KPA or CPA oracles. In this section we show that it

is in fact quite hard (and, in some scenarios, impossible)

to block access to these oracles.

We first observe that it is in fact rarely the case

that the adversary has absolutely no information

about the plaintext. Indeed, the fields in webmail suit-

able for OPE encryption include the date/time 

(represented as a 32-bit integer, for example), and

sender’s name or domain. An adversarial M can cer-

tainly estimate (and in the simple architecture described

above, do so with reasonable confidence) the plaintexts

corresponding to the OPE ciphertexts received. This

knowledge effectively corresponds to the KPA attack.

Further, M can perform the following malicious

attack. He can pretend to be a legitimate sender, and

send an arbitrary message to C containing the plain-

text x that M wants encrypted with OPE. This is eas-

ily achieved simply by encrypting x with the public

key pkR of the receiver C, delivering this encryption as

part of received mail, and receiving from C OPEk(x),

according to the protocol. This attack is relatively low-

risk, since it is hard for C to distinguish (especially in

an automated manner, and especially if the email is

carefully crafted) such CPA oracle emails from, say, a

“regular” unsolicited email. At the same time, this is 

a high-payoff attack, since it may allow nearly arbi-

trary access to the CPA-encrypt oracle.

The CCA decryption oracle, or at least, some

restricted form of it, can also be accessed by M, for

example, as follows. The application run by the client

C (which is in possession of the secret key) automati-

cally responds to encrypted mail delivered to it. It

decrypts the messages and displays them for the user.

Either the application or the user may take certain

actions, visible to M based on the content of the

decrypted email fields. For example, the application

may automatically notify the server of a decryption

failure or a sorting discrepancy, and the user may

respond to an email. This information, collected by

M, may help him infer the plaintext contents of 

the OPE-encrypted data it sent, which is similar to the

CCA decryption oracle.

With respect to general auxiliary information, the

malicious mail server M may have other side-channel

information, which may help it reduce the entropy of

(its view of) the client’s data. For example, any personal,

group, or statistical information available about a par-

ticular client helps predict his communication patterns.

This includes dates and times, the vocabulary used in

emails, and names within his circle of correspondents. 

Our Approach
As discussed earlier in this paper, it is impossible,

or, at best, extremely difficult, to design a complex

usable system which relies on OPE and achieves prov-

able security. As argued and presented in detailed

examples in the previous section, the auxiliary infor-

mation obtained by the mail server M simply by serv-

ing the client C, may be easily used to break the

security of OPE employed by C. We have also shown

that this vulnerability is inherent with the use of OPE.

In cryptographic analysis, it is customary to “give”

the adversary any and all information with respect to

inputs from the honest players that the adversary

requests. A system or protocol is considered to be

secure if its execution does not reveal anything to an

adversary that he didn’t already know (or is allowed

to learn during the execution). On the other hand,

as soon as a non-negligible amount of information is

leaked, the system is considered fully insecure. This is

a very powerful approach, and its strength is in fact

required in order to build secure systems from secure

blocks. The downside of this all-or-nothing approach

to security is that in situations and systems such as

webmail, cryptography cannot be used for formal

analysis due to the auxiliary (or side-channel) infor-

mation that may be available to the malicious players.

Further, it is very difficult even to estimate the amount

of leaked information. 

Therefore, our approach and recommendation is

to aim to design systems which reduce the amount

of usable auxiliary information and achieve heuristic

security with only rough estimates of the level 

of security achieved. In the current state-of-the-art in

cryptography, this is the best we can hope for.
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Next, we will present several simple ideas that

would greatly reduce the amount of available side-

channel information, and make acquiring it less easy

and more risky with respect to exposure.

Restricting Access to OPE Encryption Oracle
One of the most powerful threats to OPE web-

mail security that we identified is the adversary’s abil-

ity to gain access to the OPE encryption oracle. This

access stems from the fact that M can generate mes-

sages of his choice and ask C to encrypt them with

OPE. We propose several ways to limit, and even

largely eliminate this access.

Signed mail. One natural and powerful approach

we advocate is for the client to only encrypt mail com-

ing from trusted sources with OPE. This is most easily

achieved by public key based signature authentica-

tion of each message, as illustrated in Figure 2. If

public key infrastructure (PKI) is available, this

approach should be easy to implement. However,

even without PKI, public keys of known senders can

be stored by C each time a contact is added or the first

message is received from a particular sender. Man-in-

the-middle attacks by M are, of course, possible in this

scenario, but they are relatively hard to perform, and

carry a high risk of detection by S or C.

A natural way for M to circumvent this protec-

tion is to become a trusted sender or to collude with

one. We note that in the settings where email privacy

is most desired, such as with corporate email, this 

may be hard to achieve. More importantly, this is a

malicious action, and one that is relatively easy to

detect, which is a strong deterrent against this attack. 

Separation of roles. Another approach to restrict-

ing access to the OPE encryption oracle is based on the

observation that the mail service plays two different

roles: 

• Acting as a relay for mail, i.e., transferring mail

that is sent or received to its legitimate recipient,

and

• Serving as a display interface and a storage

mechanism for mail.

In our scenario, the mail relay sees the encrypted

mail with plaintext headers and other available infor-

mation, such as size and timestamps. At the same

time, the mail storage mechanism sees OPE-encrypted

fields. It is the combination of these two roles that

allows M to associate plaintexts and ciphertexts, and

results in access to the OPE encryption oracle. 

Therefore, we suggest separating these two roles

and instituting a requirement that two non-colluding

entities to perform them. The first role is the core

functionality required from a mail server and it has to

be performed by M, while the second role could be

performed by any storage service with appropriate

user interface (UI) support. We argue that another

mail server, M ’, is a natural candidate for mail storage.

Indeed, the advantage of mail services over simple

storage systems is that they not only offer ubiquitous

access to stored mail, but they also have a webmail-

specific front end with a UI that supports sorting by

1. σskS, EncpkC (m) 2. σskS, EncpkC (m)

5. Ek (m), O(date) 4. m
3.Verify σskS

In addition to encrypting the message m, the sender S signs it with its private key skS.
The signature σskS is verified by the receiver C who only processes mail from trusted
sources. In particular, C will not process mail originating from M.

Figure 2.
First approach: signed mail.
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fields, searching, and importing mail archives (such as

.pst archives). Further, since OPE encryptions can be

viewed, or at least encoded, as “regular” plaintext fields

such as timestamps or sender names, any changes nec-

essary to support OPE encryption by existing web-

mail servers may be very minimal.

In summary, we envision using two different mail

accounts from different providers:

• The first mail account, which we call the reception

account, is used to relay encrypted mail. 

• The second mail account, which we call the reposi-

tory account, is used only as a mail storage and UI

interface, and will not directly receive or send any

mail. (All direct mail received for this account

should be disregarded). 

We further note that a single repository account

can be naturally used to support multiple reception

accounts, as shown in Figure 3. As shown, the client

C has several reception accounts (with the same 

or different providers). C fetches the mail from the

different accounts, processes them, and then stores

them all on the same repository account (offered by 

a separate provider). The use of the repository account

thus also may be positioned as a desirable feature, as

it enables efficient searches across separate accounts.

To mask the timestamp and mail size information

from M, C may choose to upload mail in batches, and

pad the email fields as needed.

In summary, separating roles as advocated in this

section is a powerful tool for greatly limiting the side-

channel information and OPE encryption and decryp-

tion queries available to M.

Probabilistic OPE (POPE)
Deterministic encryption is traditionally viewed

as necessarily insecure since the revolutionary work of

Goldwasser and Micali on probabilistic encryption in

1982. However, due to its functional requirements,

OPE is defined to be deterministic. We propose that in

some settings it is possible to introduce randomiza-

tion to OPE, and trade some of its functionality for

increased security. 

1. EncpkC (m1) 2. EncpkC (m1)

6. Ek (m1), O(date1)
    Ek (m2), O(date2)

5. m1, m2

3. EncpkC (m2) 4. EncpkC (m2)

Here we assume that the receiver C receives mail from two accounts, processed respectively
by mail servers M1 and M2. C processes the received messages and then stores them on a
different repository server denoted by MR.

Figure 3.
Second approach: separation of roles.
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Indeed, in a deterministic scheme, every encryp-

tion of a plaintext value x would be mapped to the

same ciphertext y. Once the adversary decrypts y, all

encryptions of x are uncovered. Not so when ran-

domness is used for encryption: each probabilistic OPE

encryption of x maps to a different yr, and decryption

of a particular yr does not allow full confidence in

decrypting all encryptions of x.

The tradeoff is that now, while 

∀x1, x2 ∈ D1, x1 < x2 ⇒ POPE(x1) < POPE(x2),

the converse preserves the order in the less strict

sense: 

∀x1, x2 ∈ D1, POPE(x1) ≤ POPE(x2) ⇒ x1 < x2.

With respect to POPE constructions, we propose

two simple variants for adding randomness to OPE.

The first idea is to artificially extend the size of

the plaintext domain by first mapping (with order

preservation) elements from the original domain to

a larger domain, and then applying OPE from the

larger domain. The domain extension can be done,

e.g., by appending n random bits to the bit represen-

tation of the elements in the original domain. It is

easy to see that this extension is order-preserving, and

that it enjoys the POPE benefit described above.

The second approach is to build on a determinis-

tic OPE, as follows. We set POPE(x) to be equal to a

randomly-chosen element from interval [OPE(x), . . . ,

OPE(x + 1)]. Decryption in this case will generally be

more costly, and require the use of several calls to

OPE in a divide-and-conquer manner.

Conclusion
Order-preserving encryption is often seen as a

powerful cryptographic tool that can be securely

plugged into existing systems. We demonstrated, with

clear and detailed examples, that this most often is

not the case. We provided a high-level architecture

of a webmail system that relies on OPE to protect

client data from the web server. We identified several

of the most serious sources of insecurity, and demon-

strated how to largely mitigate their effects.

This work can also be seen as a high-level overview

of the area of secure computation, its application to

practice, and of the privacy issues that arise when

designing real life systems.
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