
Assuring Privacy and Reliability in
Crowdsourcing with Coding

Lav R. Varshney†, Aditya Vempaty‡, and Pramod K. Varshney‡
† Coordinated Science Laboratory, University of Illinois at Urbana-Champaign

‡ Department of Electrical Engineering and Computer Science, Syracuse University

Abstract—Crowd workers are often unreliable and anonymous.
Hence there is a need to ensure reliable work delivery while
preserving some level of privacy to the requester’s data. For
this purpose, we use a combination of random perturbation to
mask the sensitive data and error-correcting codes for quality
assurance. We also consider the possibility of collusion attacks
by malicious crowd workers. We develop mathematical models
to study the precise tradeoffs between task performance quality,
level of privacy against collusion attacks, and cost of invoking
a large crowd. Such a study provides design strategies and
principles for crowd work. The use of classification codes may
improve efficiency considerably.

We also comment on the applicability of these techniques for
scalable assessment in education via peer grading, e.g. for massive
open online courses (MOOCs).

I swear, by Galois and all the gods, that I will be true to the
noble traditions of coding theory; that I will speak of it solely
in the secret language of higher algebra known only to my
fellow initiates; and above all, that I will vigilantly guard our
sacred theory from those who would profane it by practical
applications.

— James L. Massey (1971)

Today coding theory is badly profaned and most coding
theorists are contaminated by practical applications. This is
because practical application of error-correcting codes have
been rapidly spreading all over the area of digital communi-
cation and storage systems. Mainly this is due to the advance
of semiconductor technology.

— Hideki Imai (1991) [1]

I. INTRODUCTION

By the time 2011 rolled around, twenty years after Imai’s
pronouncement that the use of error-correcting codes were
proliferating in communication and storage systems, crowd-
sourcing platforms such as Amazon Mechanical Turk were
gaining maturity [2], as enabled by high-speed communication
systems. In such a platform, a requestor breaks work into
several encapsulated microtasks and posts them on a paid plat-
form. Crowd workers complete this cognitive piecework and
are rewarded with small payments for successful completion.
Prominent services delivered through this model include text
transcription, scientific experimentation, image classification,
data entry, recommendation, and proofreading.

Error-control codes have enabled the underlying information
technologies for crowdsourcing just as semiconductor tech-
nology enabled digital communications, but can they also be

used to make the human effort itself within these emerging
sociotechnical systems more efficient? After all both humans
and machines are central [3].

Using error-control methods for human knowledge work
actually has a long history. For example, one major activity of
the Works Progress Administration (WPA) in the 1930s was
the Mathematical Tables Project.1 There, human computers
created large, highly accurate tables, but no complete or
coherent theory of error correction emerged. Their computing
techniques were a form of craft mathematics [4], [5]. Lever-
aging the development of formal coding theory (by Galois
and all the gods) after the 1930s, our aim in this paper
is to develop a principled and systematic approach to error
control for crowdsourcing. As we will see, this not only
helps with obtaining reliable performance from unreliable and
unknowledgeable crowd workers, but also allows a stochastic
perturbation approach for preserving some privacy of work
tasks from workers.

Those requesting work are typically not allowed to ask
for identifying information about crowd workers and further
crowdsourcing platforms typically do not verify user profiles.
Hence crowd workers should be thought of as anonymous,
but see [6]. Given the anonymity of workers, requestors may
want to obscure work to protect intellectual capital or for other
organizational, regulatory, or ethical reasons. There may be a
desire to preserve privacy on the work being done.

Since microtasks are often tedious and payments are small,
crowdsourced work is often unreliable. Indeed, workers may
supply information totally unrelated to the posted task. To
produce reliable work, we should introduce redundancy by
giving each microtask to several workers and aggregating the
individual results by some fusion rule or decoding rule.

Workers may further not have sufficient domain expertise to
perform the full task and may only be able to perform simpler
subtasks; for example in an M -ary classification task, workers
may only be able to make simpler binary distinctions among
objects [7]. Although it is possible to teach crowdworkers
as they perform tasks [8], coding can be used to generate
simpler tasks whose results can be combined using a decoding
procedure.

This short paper describes a technique for jointly providing

1The WPA was required by law to organize tasks that used the largest
possible amount of labor. Here we want to use human labor as efficiently as
possible.



privacy and reliability in crowdsourcing using error-control
codes. A key element is perturbing microtask data before
dispatch to crowd workers so as to preserve privacy. The other
element is introducing redundancy and aggregation through
coding/decoding, not only to ensure quality in the face of
worker unreliability but also the privacy-preserving perturba-
tions.

We study tradeoffs in the space of privacy, reliability, and
cost (as measured through the number of microtasks required)
for crowdsourcing using coding. In particular we consider the
privacy-reliability problem formulation of [9], but using cod-
ing methods developed in [10], [11]. Much more mathematical
detail, as well as background material, is provided in [9],
[11]. This idea was first presented at a non-archival industry
conference [12].

Note that in Section III, we also discuss the possibility
of using these coded crowdsourcing techniques for scalable,
reliable, and private assessment in education via peer grading,
e.g. for massive open online course (MOOC) platforms.

II. BACKGROUND ON MICROTASK CROWDSOURCING

In this section we briefly discuss properties of expertise,
reliability, and privacy that arise largely due to low pay and
anonymity of crowd workers. These will drive the remainder
of the paper.

A. Expertise

Consider fine-grained image labeling work, a kind of M -ary
classification task, such as classifying images of mammals of
the order Carnivora by species. This order includes common
animals like cats and dogs, but also species such as jackals,
coatis, kinkajou, olingos, weasels, mink, polecats, ferrets,
martens, wolverines, badgers, mongooses, hyenas, bear-dogs,
civets, and otters, which are not as well-known. Since crowd
workers may not be carnivore experts, they may not be able to
directly classify and so it makes sense to ask simpler questions.
For example, although the kinkajou and the olingo look very
similar, the olingo has gray to yellow coloration whereas the
kinkajou is golden-brown. The same basic coloration question
also distinguishes between the Corsac fox and the red fox.
Thus asking a simple binary question on coloration would
provide significant knowledge for the larger task. Questions
can be designed using taxonomy and dichotomous keys [13].

Although typical crowd workers may lack expertise to per-
form the full task, malicious crowd workers may actually have
extra ability. For example they may be able to identify whether
a given image is of Silverton Blanco (the Wonder Dog), Blanco
(a pet of Lyndon Johnson), or Pal (who played Lassie), and
thereby break task privacy when given unperturbed task data.

B. Reliability

Given the anonymous worker pool, it is difficult to enforce
the quality of their low-pay work. Verifying the quality of
every submitted piece of work would be very expensive.
Indeed the time and cost required to verify correctness is
typically comparable to the time and cost for performing the

work itself [14]. Hence the estimation of worker quality and
ensuring reliability of crowdsourced work has emerged as an
active research area in recent years.

A common approach to quality control is based on redun-
dancy, e.g. having several workers perform the same task and
then using a simple voting rule to determine the final output
[15], [16]. Fusion rules better matched to the problem domain
than simple voting, e.g. for speech transcription have also been
used [17].

Beyond fusion rules, coding-theoretic ideas have been used
to inject redundancy in a more efficient way than simple
repetition [18]–[20]. Beyond machine-implemented decoding,
people can do error detection and correction through a tour-
nament selection-based quality control process for tasks with
more than one possible correct answer [21].

C. Privacy

We are concerned with the requestor preserving some level
of privacy regarding the work itself from the crowd workers.
In the domain of text transcription, this problem has previously
been noted, where it is said that “privacy, or securing the
anonymity of the individuals who filled the forms, is a key
issue, which often limits the use of outsourcing, let alone
crowdsourcing” [22]. Similar privacy concerns also arise in
data release [23], supply chain operations [24], and a variety
of other settings [25].

One particular approach espoused herein is using random-
ized data-distortion to mask data for preserving privacy; this
methodology attempts to hide sensitive data by randomly
modifying data values with random noise.

III. SCALING ASSESSMENT IN MASSIVE-SCALE
EDUCATION

Assessment is a critical part of education since feedback
allows students to learn from their mistakes, and with the in-
creasing prominence of massive open online courses (MOOCs)
there is a need for scalable assessment. Indeed many of
these courses have tens of thousands of students enrolled.
Although automatic grading has been a primary method used
for MOOCs, peer grading has a long history in traditional
classrooms [26] and is also emerging in MOOCs [27]. In
fact this may be the only viable approach for assessing
complicated, open-ended questions.

One can think of the students in a MOOC as crowd
workers, and form a correspondence to the crowdsourcing
setting described above.
• [Expertise] Students, almost by definition, do not have

strong expertise in the content they are to assess. When
given standard grading rubrics that decomposes assess-
ment into smaller queries, students do seem to be able to
provide scores effectively [26]. An alternative approach
is to elicit ordinal ratings rather than cardinal ones by
having students perform pairwise comparisons; such an
approach has been shown to be robust to the lack of
expertise of the students [28].



• [Reliability] Just as with any other crowdworkers, due
to small incentives for high-quality work, there may be
unreliability and bias. Effective peer grading must deal
with the effects of inconsistent subjective evaluation;
prior work has used matrix factorization approaches to
normalize subjective differences among different peers
[29].

• [Privacy] There may be compelling ethical, regulatory,
or legal reasons to preserve some level of privacy of
student work, even from peers. As an example, in a 2002
United States Supreme Court case, Owasso Independent
School District v. Falvo, it was held under the federal
Family Educational Rights and Privacy Act (Buckley
Amendment) that student work is personal and potentially
shielded by privacy laws [30] (but also held that peer
grading is allowed for other reasons).

With these equivalences, it is clear how results for the
microtask crowdsourcing setting would apply directly to the
setting of peer assessment, and enable scaling despite lack of
expertise, limits on reliability, and the need to preserve privacy
of submitted work.

IV. A CODING SCHEME FOR RELIABLE AND
PRIVACY-PRESERVING CROWDSOURCING

In this section, we discuss the basic concept of using error-
correcting codes to achieve reliable and privacy-preserving
classification in a crowdsourcing system. We first briefly
describe the distributed classification fusion using error-
correcting codes (DCFECC) approach proposed by Wang et
al. [31] that serves as a basic building block for us.

A. Distributed Classification Fusion using Error-Correcting
Codes

In DCFECC, a distributed classification problem is rep-
resented using a binary code matrix A. If there are M
hypotheses H0, H1, . . . ,HM−1 that need to be distinguished
by n agents, the code matrix A is of size M ×n. Each row, a
codeword of A, corresponds to one of the possible hypotheses
and the columns represent the decision rules of the agent.

Given a code matrix, agent j sends its binary decision
(uj ∈ {0, 1}). The fusion center receives the n-bit vector,
u = [u1, · · · , un] and makes the final classification de-
cision using a minimum Hamming distance decoding rule.
The error-correction property of the code matrix A provides
fault tolerance. Two heuristic methods have been proposed
for DCFECC code design: cyclic column replacement and
simulated annealing [31].

B. Ensuring Reliability using Crowds

The DCFECC approach can be used to design questions to
be posed to the crowd workers. Recall the setting of an image
to be classified into one of M fine-grained categories. Binary
questions are designed for crowd workers using code matrix
A so the task manager may reliably infer correct classification
even with unreliable workers.

MINIMUM 
HAMMING 
DISTANCE 
DECODER

i =[1 0 1 0]

j =[1 1 0 0]

SMALL OR LARGE?

SNUB NOSE OR 
LONG NOSE?

Fig. 1. A schematic diagram showing binary questions posed to workers and
the decoding rule used by the task manager.

As part of modeling, assume worker j decides the true class
with probability pj and makes an error equiprobably:

p(yj |Hm) =

{
pj if yj = m
1−pj
M−1 otherwise.

(1)

For every worker j, let aj be the corresponding column
of A and recall hypothesis Hl ∈ {H0, H1, · · · , HM−1} is
associated with row l in A. Workers send a binary answer uj
based on decision yj and column aj . The task manager makes
the final classification as the hypothesis corresponding to the
codeword (row) that is closest in Hamming distance to the
received vector of decisions. An illustrative example is shown
in Fig. 1 for a dog breed classification task.

We use this classification code and decoding algorithm as
a building block.

C. Preserving Privacy through Perturbation

Think of a microtask as a transformation of input data into
output data. For example, a labeling task might be to transform
the raw text of an email into a label drawn from a finite
set like amusing, serious, irrelevant. Also suppose that this
transformation is Lipschitz continuous so that small changes
in the input lead to small changes in the output.

As has been noted, we need to provide some level of privacy.
That is, there may be a requirement for the crowd workers not
to have direct and precise knowledge of the input data: some
form of perturbation should be used to change the data in some
way so that it is not revealed precisely.

As depicted in Figure 2 for image processing tasks, one
approach is to add random noise to the original image to
create a perturbed image. Due to Lipschitz continuity, the
performance of the crowd worker will degrade smoothly due
to the noise. Since the crowd worker only has access to the
perturbed version of the task, privacy is preserved: obfuscation
through perturbation. It is clear that in the image labeling task,
noise makes it difficult to determine the specific identity of the
animal (thereby preserving privacy) but still allows answering
simple questions.

D. Decoding with Privacy-Preserving Perturbation

Having developed building blocks, we put them together as
in Figure 3 for the image classification problem. Each crowd
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Fig. 2. Perturbation using random noise to preserve privacy.
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Fig. 3. Using decoding to mitigate the effects of worker unreliability, which
are increased due to privacy-preserving noise perturbation.

worker gets a perturbed version of the input data, conditionally
independent given the original data. This is then processed in
the usual way by the crowd worker and individual results are
combined by minimum distance decoding. Since the crowd
workers only have access to perturbed versions of input data,
privacy is preserved. Due to this perturbation however, their
performance will typically degrade.

There is a tradeoff between the levels of privacy and
unreliability, governed by the strength of the perturbation.

E. Collusion Attacks

By using independent perturbations for the several crowd
workers, we ensure random discrepancies among answers
given by different crowd workers that can be mitigated through
decoding. There is, however a problem with this approach we
need to consider: what if crowd workers share their perturbed
data? By working together, as depicted in Figure 4 for image
labeling, perhaps crowd workers can recover the original input
data (such as the identity of the animal).

V. MATHEMATICAL ANALYSIS

Now let us analyze the basic tradeoffs among privacy, reli-
ability, and cost. Let an (n,M,Q, µ, δ) crowdsourcing system
have n workers, with reliabilities which are i.i.d. random
variables with mean µ, performing an M -ary classification
task using data which has been perturbed by noise δ to protect
the true identity among Q possibilities.

COLLUSION 
ATTACK PEPPER

Fig. 4. A collusion attack for recovering the original input data from
independent privacy-preserving perturbations.

Using an (n,M,Q, µ, δ) crowdsourcing system, the ex-
pected misclassification probability using code matrix A is,
following arguments in [11]:

Pe(µ, δ) =
1

M
×

∑
i,l

n∏
j=1

µ̃alj + (1−µ̃)
(M−1)

∑
k 6=l

akj

 (2ij − 1) + (1− ij)

Cli ,
where

µ̃ =
(1− µ)δ
(M − 1)

+ µ(1− δ)

is the mean of effective reliabilities of the crowd workers.
Now suppose further that a subset of K crowdworkers

collude to try to determine the input data from their individual
privacy-perturbed data. There are various ways of conducting a
collusion attack, but suppose that the colluders use a plurality
rule with random tie-breaking to vote on what they think the
input data is. If there is just one colluder, the probability of
success is:

P (1)
c = 1− δ.

If there are two colluders, the probability of success is:

P (2)
c = (1− δ)2 + (1− δ)δ.

If there are three colluders, the probability of success is:

P (3)
c = (1− δ)3 + 3(1− δ)2δ +

(
(Q− 1)2 − 1

(Q− 1)2

)
(1− δ)δ2.

Similar expressions can be developed for larger numbers of
colluders P

(K)
c and are modifications of geometric random

variable expressions.
Armed with expressions for probability of correct classifi-

cation as well as probability of successful collusion attack, let
us investigate the basic tradeoffs between privacy, reliability,
and cost.

Figure 5 shows basic tradeoff results for the setting with
(n,M = 4, Q = 16, µ = 0.9, δ), n increasing by tens from 10
to 200, and δ taking values 0.5, 0.6, 0.7 with three colluders.
A suboptimal code matrix A formed by concatenating the
following base matrix A0 together n/10 times was used.

A0 =


1 0 1 0 0 1 1 0 1 0
0 0 1 1 0 0 0 1 0 0
1 1 0 0 1 0 0 0 0 1
0 1 0 1 1 1 1 1 1 1

 .



Fig. 5. Tradeoffs among cost, reliability, and privacy using coding.

We see a clear tradeoff among the three key quantities: privacy,
reliability, and cost. Comparing results to those from a scheme
based on majority vote [9] rather than error-control codes,
indicates the benefit of using codes.

VI. CONCLUSION

In this short paper, we studied reliable and privacy-
preserving crowdsourcing by putting together the problem
formulation of [9] with the ideas of coding from [11]. Three
novel features of crowdsourcing were considered: first that
workers are unreliable due to low pay, tedium, and anonymity;
second that workers may not have requisite expertise to
perform complete tasks; and third that data may need to be
protected from crowd workers due to privacy considerations.

We also argued that the problem formulation and proposed
methods are apropos not just for microtask crowdsourcing plat-
forms but also for peer grading in massive online education.

A system based on random privacy-preserving perturbations
of input data together with code-based local computations and
a global decoding rule to combine the computations of several
crowd workers was proposed. A mathematical model was
used to determine precise tradeoffs between task performance
quality, level of privacy protection against collusion attacks,
and cost of invoking a large crowd.

It would be useful going forward to study asymptotic
regimes and develop information-theoretic results on the fun-
damental limits of reliable and privacy-preserving crowd-

sourcing. Also, to profane algebraic coding theory further by
pushing it to practical applications in sociotechnical systems,
it would be interesting to find algebraic characterizations of
good distributed classification codes.
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