
c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 2 9 8 – 3 0 8
ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ier . com/ loca te /cose
Secure log management for privacy assurance
in electronic communications
Vassilios Stathopoulosa, Panayiotis Kotzanikolaoua,b,*, Emmanouil Magkosc

aAuthority for the Assurance of the Communications Security and Privacy (ADAE), 3 Ierou Lochou 15124 Maroussi, Greece
bUniversity of Piraeus, Department of Informatics, 80 Karaoli and Dimitriou, 18534 Piraeus, Greece
cIonian University, Department of Informatics, 7 Tsirigoti square, 49100 Corfu, Greece
a r t i c l e i n f o

Article history:

Received 15 June 2007

Accepted 9 July 2008

Keywords:

System logging

Network providers

Internal attacks

Integrity

Digital signatures
* Corresponding author. Authority for the
Maroussi, Greece.

E-mail addresses: v.stathopoulos@adae
(E. Magkos).

0167-4048/$ – see front matter ª 2008 Elsevi
doi:10.1016/j.cose.2008.07.010
a b s t r a c t

In this paper we examine logging security in the environment of electronic communication

providers. We review existing security threat models for system logging and we extend

these to a new security model especially suited for communication network providers,

which also considers internal modification attacks. We also propose a framework for

secure log management in public communication networks as well as an implementation

design, in order to provide traceability under the extended security model. A key role to the

proposed framework is given to an independent Regulatory Authority, which is responsible

to maintain log integrity proofs in a remote environment and verify the integrity of the

provider’s log files during security audits.

ª 2008 Elsevier Ltd. All rights reserved.
1. Introduction order to preserve communications’ security and privacy
Communication privacy is considered as a valuable asset

by the providers of electronic communication networks,

such as Internet providers, fixed and mobile telephony

providers. Indeed, incidents of privacy violations against

their subscribers may cause severe impact with commer-

cial and legal consequences. Moreover, security incidents

in communication networks may also lead to abuse of

services and economical loss for the providers. For these

reasons, the network providers usually perform internal

security audits with technical and procedural measures, in

order to verify and maintain an acceptable security level.

In addition to internal audits, in many countries Regula-

tory Authorities are responsible to regulate and externally

audit the security level of public network providers, in
Assurance of the Comm

.gr (V. Stathopoulos),

er Ltd. All rights reserved
for the citizens.

Electronic communication networks are usually pro-

tected with state-of-the art technology which protects

network perimeter and defines access controls, authenti-

cation and encryption mechanisms. Although security

measures are in place in communication networks and

well-defined standards exist there are still security holes.

Threats such as external intrusion, communication inter-

ception, unauthorized access to private data such as the

Call Data Records (CDRs) and abuse of privileges by insiders

must be considered. Existing vulnerabilities such as over-

estimation of security measures, non-conformance with

security measures and lack of dependable and secure

logging and auditing mechanisms increase the security

risks. Since it is not always possible to prevent security
unications Security and Privacy (ADAE), 3 Ierou Lochou 15124

p.kotzanikolaou@adae.gr (P. Kotzanikolaou), emagos@ionio.gr

.

mailto:v.stathopoulos@adae.gr
mailto:p.kotzanikolaou@adae.gr
mailto:emagos@ionio.gr
http://www.elsevier.com/locate/cose

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 2 9 8 – 3 0 8 299
breaches, it is required to have in place adequate detective

security measures.

System logging is the most important detective security

measure. Log files are maintained in almost every system

and they are usually examined during security audits, either

external or internal. Indeed, during regular security audits,

log files may be examined and correlated, in order to assure

that the intended technical measures are in place and that

the security policies and procedures are implemented.

During non-scheduled security audits, e.g. as a response to

a security incident, log files are analyzed in order to discover

the cause of the incident, such as lack of security measures,

non-conformance with security procedures or system miss-

configurations.
1.1. Our contribution

In this paper we are focusing on secure logging for electronic

communication network providers. We propose an extended

security model for logging in network providers, which also

considers internal modification attacks. We also propose

a framework for secure log management in public commu-

nication networks as well as realistic implementations,

which are more resilient to the identified security threats. A

key role to the proposed framework is given to an indepen-

dent Regulatory Authority. Each provider is responsible to

send integrity proofs of its log files to the Regulatory

Authority, which in turn is responsible to securely store the

integrity proofs and verify the integrity of the log files. Note

that although the proposed framework focuses on telecom-

munication environments, it could be appropriately modified

to apply to other environments facing similar threats and

security requirements.

Our paper is motivated from the recently announced

interception case in a mobile telecommunications provider in

Greece (see for example Schneier, 2006). As the Greek

authorities and the provider itself revealed, part of the core

network of the provider was compromised by some unknown

trojan-like program. According to published information, the

malicious software infected the core network. Then, it acti-

vated the lawful interception (LI) component in the infected

elements, which is by default installed in inactive mode, and

made possible the call interception of several subscribers.1

The malicious program turned off several logging procedures

in order not to alarm about its presence or the fact that the LI

component had been activated. The underestimation of

several security threats and vulnerabilities regarding logging

management and mechanisms did not allow the immediate

detection of the incident.

The rest of this paper is organized as follows. In Section 2

we review the related work in secure logging. In Section 3 we

describe an extended security model for system logging in

telecommunication networks. In Section 4 we set require-

ments for logging in the extended security model. In Section 5

we propose a generic framework for secure logging which

incorporates technical and procedural security controls under

the guidance of a trusted authority, while in Section 6 we
1 The announced list of the victims included among others the
Prime Minister, Ministers and Ex-Ministers.
describe an implementation design. Section 7 analyzes the

security and finally, Section 8 concludes this paper.
2. Related work

First, we will examine existing security models for logging. Then,

we will review secure logging systems proposed in the literature.

2.1. Security models for logging

In the general case, the logs are generated by one or more log

Generators (devices, systems, software, etc.) and are sent to

a Log Server through a relay mechanism. Existing threat

models include

� Trusted generators and marginally trusted log server. In this

model (e.g. Schneier and Kelsey, 1998) the logs are generated

and relayed to the Log Server within a trusted environment.

However, although the Log Server is protected, it cannot be

guaranteed that it will not be compromised. Consequently,

in this threat model the security attacks which are mainly

considered are disclosure and modification attacks against

the stored logs.

� Distributed log generators and marginally trusted log server. In

this case (e.g. Accorsi, 2006) the log generators and the Log

Servers are in a fully distributed environment. The Log

Servers are considered, as in the previous case, marginally

trusted. In addition to the previous model, attacks during the

transmission of logs are considered. Since the logs are

generated in a distributed environment, the log messages are

not assumed by default to originate from the claimed device.

Hence, attacks against the transmission of log entries are

also examined such as impersonation attacks against log

generators and/or the Log Server, and modification and

disclosure attacks against log messages during transmission.
2.2. Secure logging systems

Several secure logging systems have been proposed in the

literature. We group these into several categories.

2.2.1. Real systems
In real logging systems, the security of logging and auditing

procedures is usually relied on the assumption that the host’s

operating system is not corrupted, which is a flawed assump-

tion. Secure systems aim at improving the robustness of the

logging system itself without relying on the security features of

the underlying system. The Syslog-sign IETF draft (Kelsey and

Callas, 2002) describes a logging system with message source

authentication and message integrity, built aboveSyslog, a cross-

platform standard for remote logging on a central repository. In

the ReVirt system (Dunlap et al., 2002) the OS is moved to

a virtual machine and the integrity of the logging system is

protected against external attacks with OS-level privileges.

2.2.2. Tamper evidence
Cryptographic research in secure logging systems aims at

building logs that are irrevocably tamper-evident. In a scheme

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 2 9 8 – 3 0 8300
presented by Bellare and Yee (1997), the key that authenticates

the logs entries is sequentially computed using an one-way

cryptographic function, in order to achieve the forward integ-

rity property, i.e. if an adversary compromises the current

authentication key, she cannot modify old entries without

being detected.

Schneier and Kelsey (1998) propose a secure logging

scheme that detects attempts to delete or modify log entries

on a host that has been compromised. The log entries are

linked using a technique called hash chaining (Haber and

Stornetta, 1990), where each entry contains a digest of the

previous entry. Moreover, each entry is encrypted and

authenticated using an ‘‘epoch’’ secret that is evolved using

an one-way cryptographic function. The initial secret is

shared with an external trusted party T who is able to inde-

pendently verify the integrity of the logged data. Because the

secrets used to encrypt and authenticate the log records are

permanently deleted at the end of each epoch, an external

attacker is not able to go back in time and disclose, modify or

delete logged data, as this will be detected by T. This means

that the scheme of Schneier and Kelsey (1998) satisfies the

forward integrity property. Moreover, it allows the selective

disclosure of the encrypted log data, using permission masks

as an authorization list.

In recent works (Chong et al., 2002; Waters et al., 2004;

Accorsi, 2006; Holt, 2006), the scheme of Schneier and Kelsey

(1998) has been extended to provide for keyword searching on

the encrypted data using public-key cryptography (Waters

et al., 2004) to enable tamper-evident remote logging in

resource-poor devices (Accorsi, 2006) or to detect software

tampering in DRM systems (Chong et al., 2002). In another

work, the LogCrypt system (Holt, 2006) extends and imple-

ments the scheme of Schneier and Kelsey (1998) to support

public-key signatures for accountability and public verifi-

ability of the submitted logs, while it also discusses secure

aggregation of multiple logs in a distributed logging system.

Secure aggregation of multiple logs for forensic computing

was also addressed in a recent scheme that uses distributed

Merkle Trees (Kawaguchi et al., 2005) for the collection of the

log files.

2.2.3. Tamper-resistance
Deletion or altering of the log entries in untrusted systems

cannot be prevented simply by cryptographic means; instead,

some physical assumptions must be made, such as tamper-

resistant hardware and/or physically secure communication

channels. Tamper-resistance has also been employed in

secure storage solutions and in securing database systems

maintained in untrusted environments (Maheshwari et al.,

2000). In storage-based IDS (Pennington et al., 2003), the IDS

embedded in the storage device’s firmware continues to work

(in a tamper-resistant manner) even if an external source runs

software with OS-level privileges. Log files may also be

dispersed onto multiple hosts (e.g. Shen et al., 2004; Arona and

Rosti, 1999), expecting that a non-negligible fraction of them

will remain honest. Log files can also be replicated to increase

availability, which may be expensive in terms of storage and

network bandwidth. Other ways to protect logs from

tampering also include networked file systems or crypto-

graphic file systems for secure distributed storage (Kher and
Kim, 2005), as well as Write Once Read Many (WORM) optical

drives and continuous-feed printers. Such solutions are

vulnerable to hardware faults or system attacks.
3. An extended security model: semi-trusted
log generators and semi-trusted Log Servers

Existing threat models do not consider insider attacks and

collusion attacks between log generators and Log Servers. Our

threat model integrates and extends existing threat models in

order to protect log files from attacks which have been iden-

tified within the environment of public network providers. For

example, a possible threat may be that the log generators

deliberately send modified log messages or that the stored logs

are deliberately modified after their storage to the Log Server

with the active participation of the Log Server administrator. A

motive for such an attack would be to avoid the consequences

of security problems during external security audits.

Our threat model assumes that all entities involved in the

logging process are semi-trusted, including the generator(s) of

log entries and the Log Server(s) that store the log files. The

security of the proposed framework will be examined against

a polynomial-time adversary, which may eavesdrop or

manipulate the communication. Since the adversary is poly-

nomially bounded, the probability that the adversary can

decrypt messages or forge signatures is negligible, provided

that the adversary has no access to the secret key used. We

consider both passive and active adversaries. The passive

adversary is able to eavesdrop on any message exchanged

between log generators and the Log Server. The active

adversary is able to inject erroneous or arbitrary messages.

More specifically, we consider (i) modification attacks on the

stored logs from compromised Log Servers; (ii) modification

attacks on log events from compromised log generators; and

(iii) modification attacks from colluding log generators and

Log Servers.

Although during these attacks, collusions of compromised

systems are allowed and the adversary may control the

majority of the systems, we assume that the adversary cannot

control all the Log Servers and all the log generators simul-

taneously. We believe that this assumption is justified since, if

the attacker is allowed to actually manipulate all internal

systems with full access privileges, then security cannot be

established, unless a number of physical assumptions (such

as tamper-resistance) can be tolerated. The adversary can also

disrupt message delivery for a limited amount of time but is

not allowed to ultimately prevent the delivery of messages.
4. Requirements for secure and verifiable
log management

Logging information may provide accountability to the pro-

vider’s network since it may be used to trace a possible

misuse, mainly regarding system and network administration

functions (such as commands to control operations or

configuration). Bellow, we describe the basic functional and

security requirements regarding the operation of a secure

logging service.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 2 9 8 – 3 0 8 301
4.1. Functional requirements

The basic functional requirements for secure log management

in the examined security model are

(1) Real-time and continuous logging. The logging service should

guarantee a continuous operation without interruptions or

excessive delays. Logging interruption may cause loss of

log events that may be critical for the audits.

(2) Completeness. The log files should contain all the necessary

log events, in order to achieve a valuable audit. If logging

information is missing, then this may cause invalid audit

results.

(3) Transparency. Any operation related to logging (such as

collection of logs, processing, storing and distribution of

relevant information to third parties) should operate as

transparently as possible.

(4) Performance. High scalability and stability are also two

important requirements that should be taken into

account.

(5) Interoperability. The logging mechanisms should be able to

operate with most of the network and system commercial

technologies hence generic interfaces should be the main

concern.

(6) Uniformity. The content structure of the log files should be

organized into discrete log files avoiding syntactical

complexities and providing generic log information cate-

gories and offering a common formalization for all

providers’ networks.
4.2. Security requirements

The log management system should fulfil the following

security requirements:

(1) Confidentiality. The log files should not be disclosed to

unauthorized entities, since they contain information

related with the communication.

(2) Forward secrecy. If all secrets concerning a period are

revealed to an external attacker, the secrecy of past log

entries should not be affected.

(3) Integrity. The log file should be protected from unautho-

rized modification for internal or external entities.

(4) Forward integrity. If all secrets concerning a period are

revealed to an external or internal attacker, the integrity of

past log entries should not be affected.

(5) Access control. Access to the log files should be controlled

and only authorized entities should have access rights to

particular entries.

(6) Traceability. Any read or write access to the log file should

be traceable in order to be able to trace the source of an

illegal action.
5. A generic framework for secure and
verifiable logging

Provided that log files are important evidence, a security

framework is required that will guarantee the availability,
confidentiality and integrity of logging operations and log

files. Based on the requirements described above, we

propose a generic framework for secure log management,

under the semi-trusted environment described in Section 3.

We assume the existence of a trusted Regulatory Authority

RA which is responsible to assure that the providers

preserve communications’ security and privacy. In regular

audits or after a security incident, the RA may examine the

log files of the provider in order to determine the cause of

the incident. The framework consists of the following

phases.

5.1. Defining what should be logged

Before any security measures are taken, it is important to

explicitly define what is important to be logged. This

decision involves both the provider and the RA. From the

provider’s side, an effective logging supports system main-

tenance, troubleshooting and internal security audits. From

the RA’s side, logging information helps in investigating the

cause of a security incident and as evidence in a court of

law.

In order to determine the events that must be logged

within a provider, a Log Reference Model is defined, as shown in

Fig. 1. This model is an abstract representation linking func-

tions, i.e. general categories of network and operational events

to the corresponding log files that monitor these functions,

through the services which implement the functions. This

model analyzes the logging needs from three different views,

called planes. These planes are

(1) Functional plane. It models the network and operational

events within a network, without taking into consider-

ation implementation details, architectural or topology

constraints and design requirements. Suggestively and not

limitedly in a provider’s environment the following cate-

gories of functions should be logged.

(a) Security functions (e.g. system access control, password

management, user management, lawful interception,

data retention).

(b) Service management functions (e.g. monitoring, trouble-

shooting, management services) and

(c) Network management functions (e.g. network configura-

tion, network connectivity, routing).

(2) Service plane. It describes all specific services which are

executed within the network or IT nodes. It discrimi-

nates system from application services, while it takes

into consideration the OS platform, communication

protocols, interconnections and hardware. Examples of

services of this plane are the SNMP service, the DSL

service, the password management service or the AAA

service.

(3) Logging plane. It describes specific commands and events

of each used service, which can be grouped into sepa-

rated log files. For example, the command ‘‘show user’’

(captured for displaying user names) will be logged in

a log file named ‘‘password management’’. This log file

will correspond to the password management service,

which implements part of the security management

functions.

Service Plane
Service

Logging Plane

Log file

logged commands

Functional Plane

Function

Fig. 1 – An abstract representation of a Log Reference Model.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 2 9 8 – 3 0 8302
5.2. Defining the operational requirements
of each log file

After the list of functions to be logged has been mapped to

services and consequently to log files, the operational

requirements of each log file must be determined. In partic-

ular, requirements in this category define for each log file, the

structure of the log file (i.e. the fields contained in a log file), the

generation frequency, the storage requirements (i.e. the form,

the duration and the location of storage) or any other

requirement regarding the usage of log files for auditing

purposes.

Organizing and managing the logging requirements

depend on the agreement among the providers and the RA.

This constitutes an administrative procedure without

requiring any extra equipment at the providers’ premises.

5.3. Securing log files against external attacks

In order to secure the log files from external and common

internal attacks all the functions which have been identified

in the previous phases must be securely logged. This can be

based on standardized secure log systems such as the LogCrypt

(Holt, 2006) or the Schneier–Kesley secure logging system

(Schneier and Kelsey, 1998). We briefly describe this approach

(see Fig. 2). The Log Server is supplied with an initial

symmetric key A0. The log file consists of consequent log

entries L1,.,Ln. The key A0 is updated for each new log entry,

through a cryptographic one-way hash function hash, i.e.

Ai¼hash(Ai�1). Each log data entry Li contains the log data Di,

which is encrypted and integrity protected. In order to encrypt

the log data, a key Ki is derived from Ai, by hashing the

concatenation of the key Ai with the permission mask Wi of

the data entry Di. Thus, Ki¼hash(Wi, Ai) and the encryption is

EKi
ðDiÞ. For integrity protection of the log entries, a hash chain

is used. Each log entry Li contains the hash value (for Y0

a padding value is used) as well as the Message Authentication

Code Zi ¼MACAi
ðYiÞ. Thus, each time only one MAC and one

hash value are stored, which contain all the previously hashed

results. This preserves forward integrity against outsiders,

since if the key Ai is compromised to an adversary, the
adversary cannot modify past log entries without being

detected.

5.4. Securing log files against internal attacks

Although after each log entry Li is stored in the log file and Ai

has been updated to Aiþ1, the previous key Ai is deleted, it is

possible for a compromised Log Server to modify the log file.

Suppose that the system is compromised at the time ti. Thus

the current key, say Ai, is revealed to the adversary and also

that the adversary has access to the log files from the time ti

and after. The adversary does not change the log entries at

that time. Then, at time tj, j> i, the adversary modifies the log

entries i, iþ 1,.,j. By using the key Ai, the keys Aiþ1,.,Aj are

reconstructed and the original log entries are replaced by the

manipulated log entries. Such attacks are practically difficult

to prevent if they originate from malicious insiders (e.g. the log

file administrator) and the best we can hope for is traceability.

Note that a simple replacement of the MACs with digital

signatures does not provide traceability against a compro-

mised Log Server administrator. Indeed, although digital

signatures would provide non-repudiation for the Log Server

administrator, the storage of the signatures within the Log

Server makes the system vulnerable to insider attacks. A

compromised Log Server administrator would simply replace

the log entries with the ones of her choice and then would

compute new valid signatures for the modified log files. In

addition to the above, if the MACs for all the log entries were

replaced by digital signatures as in Accorsi (2006), the system

would become totally inefficient and impractical for a large-

scale application, such as within a network provider, where

log entries are generated with extremely high frequency.

In order to enable traceability of such attacks, we extend

the secure logging system of Schneier and Kelsey (1998) by

considering a set of technical and organizational protective

and detective measures. We make use of digital signatures

under the supervisioning of a trusted Regulatory Authority RA.

In addition with the secure Log Server described in the

previous section, each provider will be assigned with two

independent public/secret key pairs, PK1/SK1, PK2/SK2. These

keys will be used to sign log files and log events, respectively,

Fig. 2 – Securing log files from external and internal attacks.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 2 9 8 – 3 0 8 303
as explained below. The signature keys must be certified

through the corresponding digital certificates Cert1, Cert2. The

digital certificates are issued by a mutually trusted external

certification authority so that all the parties can verify the

validity of the signatures generated with the keys SK1, SK2.

The certificates are issued to the legal entity (the provider),

although it is possible to additionally link them to the physical

entities (the administrators), which will be authorized to

access the corresponding secret keys. The key management

functions such as generation, certification, revocation and

updating of the signature keys may be supported by one or

more independent certification authorities, which are trusted

by the RA and the providers. For additional security, the

distribution of the keys to the privileged users can be per-

formed with off-line procedures, under the supervision of the

trusted certification authorities.

The proposed procedure involves

(1) Asynchronous signing of the log files in predefined time

periods.

(2) Real-time signing of the critical log events.

(3) Real-time signing of random log events.

(4) Remote storage of the signatures to the RA.
5.4.1. Asynchronous signing of the log files in predefined
time periods
This procedure will ensure the integrity of the log files in

discrete time periods. In order to provide integrity and

accountability proofs for each log file to the RA, the provider

periodically signs each log file and sends the signatures to

the RA. Initially, the RA is responsible to initiate the proce-

dure and define all necessary parameters such as the

signature period T. The Log File Signatures are generated as

follows:
At the end of the ith logging period Ti, the provider instructs

the Log Server to generate the hash value of the log file

instance, say LFi and then sign it by using the signature key

SK1 to produce the signature si ¼ ðLFiÞSK1
(see Fig. 2). Following,

the signature si is send to the RA. Note that it is preferable that

the log file signing operation is performed in an environment

separated from the Log Server. In that case, a successful attack

in the Log Server will not affect the security of the key SK1. On

receiving a signature si, the RA acknowledges it and stores it in

a secure repository for future audits. The entire procedure is

periodically repeated at the end of each period Ti.

5.4.2. Real-time signing of the critical log events
The asynchronous signing of the log files will permit detection

of any log file modifications, which was realized after the

signature has been send to the RA. However, it cannot detect

modification attacks against the log file, which is realized

before the signature has been generated. Moreover, the peri-

odical signing of the log file cannot be useful if the modifica-

tion attack is launched against the log events before these are

stored into the log file. Such attacks may be executed during

the generation of log events within a log generator or during

their transmission towards the Log Server. In order to protect

from such modification attacks, it is required that the log

events are also protected within a log file signing period Ti.

Due to the fact that log event generation is a continuous

process and vast amount of such events are produced in

a provider’s network, it is not practical to assume that all the

log events can be real-time protected. For this reason, the RA

has defined a list of critical events, i.e. events concerning

actions which might be part of a malicious attack, in order to

filter the information. Examples of critical events may include,

system restart, service mode modification (i.e. starting

a service or halting a running service), modification of users

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 2 9 8 – 3 0 8304
and user privileges, modification of the log file and modifica-

tion of the criticality level of a command.

The real-time signing procedure of the critical log

events operates as follows: When a critical log event LEj is

generated by a log generator, this event is directly

captured, signed and send to the RA. The Log Server does

not intervene in the entire process. The log event LEj will

be signed with the key SK2, producing the signature

sj ¼ ðLEjÞSK2
, which is send to the RA. Note that the critical

log events are signed with SK2, which is independent of the

key SK1 used for the signatures of the log files. In this way

an adversary (internal or external) who compromised one

of the keys will not be able to modify log files without

being detected. On receiving a signature sj, the RA

acknowledges it and stores the Log Event Signature to

a repository for future audits.

5.4.3. Real-time signing of random log events
The protection of the log events cannot be based only on

deterministic, predefined critical events, since this could be

vulnerable to compromised insiders. For additional security,

real-time signing can also be requested by the RA in

random time intervals. In case where the RA issues a log

event signing request, the provider will automatically

retrieve the current log events from the log generator, sign

them with the key SK2 and send the signatures to the RA

through the same interface as in the case of the critical log

events. A random Log Event Signature request may be

performed several times within a period Ti for one or more

log generators, so that the RA has integrity evidence within

a logging period.

5.4.4. Remote storage of log signatures to the RA
Although the log files are stored in the provider’s side, the

signatures of the logs (both log file and Log Event Signatures)

are sent to the RA’s side, by using a secure and always

available channel. By committing to the log data and sending

the commitments to the RA, even if the adversary gains

access to all signing keys or any other long-term secrets, she

will not be able to modify the log history and replace the

actual signatures with the modified ones, without being

detected, for any date before the time of the last

commitment.

5.5. Verifying log files

In case of a security audit or after a security incident, the RA

will retrieve the log files stored in the provider’s side. Then, it

will use the log signatures it retained along with the certifi-

cates Cert1, Cert2 of the provider’s signature keys SK1, SK2 in

order to verify the validity of the log file and Log Event

Signatures, respectively.

During an audit, a Log File Signature si can be verified by the

RA by using the stored signature si, the certificate Cert1 and by

accessing the actual log file LFi retained in the provider’s Log

Server. A Log Event Signature sj can be verified by the RA by

using the stored signature sj, the certificate Cert2 and the

actual log event LEj stored at the provider’s Log Server. In case

where the signatures are not verified, the RA has evidence that

the logs have been altered.
6. Implementation design

The implementation of the log signing procedures requires

a distributed architecture with dedicated services. Fig. 3

proposes a generic implementation design, involving both the

provider and the RA, which incorporates the following

entities:

(1) The Mediation Device. It aims to have a central management

and mediation role among Network Nodes and external

authorities for the execution of each service. It commu-

nicates with the RA through a well-defined secure inter-

face. It hosts a service execution software platform, the

Service Execution Environment (SEE). The SEE serves the

required business logic. This logic is implemented by the

Service Logic Program (SLP). Each different service maintains

its own SLP. Many requests, that involve the same service

(i.e. the same SLP), may be served in parallel by generating

different instances of the same logic. Moreover, an Access

Manager is also hosted within the SEE that is responsible

for implementing the communication interfaces with the

required nodes. Finally, this device holds the secret key

SK2 that will be used to sign random log events and send

them to the RA.

(2) The secure Log Server. This is a cryptographically enhanced

Log Server, which also contains a Service Execution Envi-

ronment (SEE). The SEE hosts the corresponding business

logic, the Logging Logic Program (LLP), which implements

the corresponding service. Moreover, an Access Manager is

also hosted that is responsible for implementing the

communication interface with the Mediation Device. Both

the secure Log Server and the Mediation Device hold the

main logic for the service management and for the

execution of the services. The secure Log Server hosts

specialized functions for executing the orders that are

invoked by the Mediation Device. Hence, they should both

communicate through a well-defined interface.

(3) The Signature Server. This is an isolated server that hosts

the secret key SK1. It implements one interface to receive

signature requests from the Mediation Device. The secure

Log Server and the Signature Server will have separate

administrators. In this way, the Log Server administrator

will not be privileged to access the key SK1.

(4) The Network Nodes. This entity is used to model any network

or IT element (routers, mail servers, etc.) within the pro-

vider’s perimeter that generates log events, which are then

stored to a Log Server. In other words Network Nodes are the

log generators. Since our model considers the log generators

as partially trusted, each Network Node hosts a dedicated

Agent, which receives commands from the Mediation

Device. The code of the Agents is signed by the RA in order to

detect modifications of their program logic.

(5) The Terminal Equipment. This entity is hosted within the RA

side. It initiates the services by invoking requests towards

the Mediation Device and receives signatures from each

Mediation Device of each provider. It hosts a management

module, the Signature Collection Manager. It also stores these

signatures within a Signature Repository in a secure place

either within or outside this entity.

TE

NN NN

Secure IP (v.6) Interface

SNMP

Agent

SNMP

Agent

SCM

SK1

Provider RA

PHYSICAL ENTITES

MD: Mediation Device

SLS: Secure Log Server

SLS OS : SLS Operating System

SS: Signature Server

SR: Signature Repository

NN: Network Node

TE: Terminal Equipment

AM

SEE

SLP

Log entry
Log entry

LM

MD

SLS

AM

SEE
LLP

Log entry
Log entry

LM

SS

SK2

SLS OS

Secure SNMP (v.3) Interface

signature
signature

SM

SR

FUNCTIONAL ENTITES

SEE: Service Execution Environment

AM: Access Manager

SLP: Service Logic Program

LLP: Logging Logic Program

LM: Log Manager

SM: Signature Manager

SCM: Signature Collection Manager

Secure Handover Interface

INTERFACES

Fig. 3 – An generic implementation design of logging management.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 2 9 8 – 3 0 8 305
In order to protect the communication between the various

entities, three secure interfaces are implemented. A secure

Handover Interface between the RA and the provider’s Media-

tion Device allows encrypted and authenticated external

communication based on certificates. The communication

between the Network Nodes and the Mediation Device is

based on the Simple Network Management Protocol (SNMP).

In order to protect the transmission of the log events towards

the Mediation Device, a secure version of the protocol (v3) can

be applied. Finally, the communication between the Network

Nodes and the Log Server can be protected by applying

a secure version of IP (v6).

6.1. Log signing services

The proposed platform supports two log signature services: (i)

the Log File Signature (LFS) service and (ii) the Log Event Signa-

ture (LES) service, which implement the corresponding

procedures described above. Both services are composed by

a complex set of variables and state machines. Hence

modelling of this aspect requires the introduction of sessions.

During the lifetime of a logging service various sessions of this

service may be activated or deactivated.

6.1.1. Log File Signature (LFS) service
The LFS service (see Fig. 4) implements the asynchronous log

file signing procedure described in Section 5.4.1. The LFS

service operates as follows. Initially the Terminal Equipment

(RA’s side) invokes a 1:SetUp() message towards the Media-

tion Device for activating the first session of the LFS service.

This message invocation handles authentication and autho-

rization criteria, along with log file names and time related
parameters such as the time period T. More than one sessions

may be included in a 1:SetUp() message. The Mediation

Device after receiving the 1:SetUp() message creates a new

SLP instance for managing this session and then it invokes an

2:InitiateService() message towards the provider’s Log Server.

The Log Server also creates an LLP instance to handle the

session.

The Log Server’s ordinary job is to collect incoming log

events by the Network Nodes. The Log Server classifies the

collected log information into appropriate log files according

to the rules that have been set by the Log Reference Model.

Then the Log Server applies a hash function over the

requested log file LFi and returns the corresponding hashed

value hash(LFi) through a 3:Notify() message towards the

Mediation Device. Following, the Mediation Device invokes

a 4:Sign() method towards the Secure Signature Server and

passes the hashed value. This interface is asynchronous. The

Signature Server asynchronously signs the hashed values and

invokes with a 3:Notify() message towards the Mediation

Device. The Mediation Device forwards the corresponding

signatures towards the RA within a 5:Response() message,

through the secure Handover Interface.

In case that the RA wants to negotiate for additional

logging information it requests the activation of a new session

by invoking a new 1’:SetUp() message. The mediation device

keeps track of all active sessions and refreshes its holdings

with the new contents. It filters the information and invokes

a 2’:RequestReportChange() message towards the Log Server

with the new requirements. The Log Server may reply back to

confirm or deny the changes through a 3’:ReportChange()

message. Log File Signatures are sent back to RA through the

same procedure. The RA may finally release some or all of the

NN Log ServerTE Mediation device

L1

Li

Period T

hash(LF
i
)

6:Response (si)

7:AckResponse (si)

2′ :RequestReportChange()

1:SetUp ()

8:Release ()

9:ReleaseService()

2:InitiateService()

1′ : SetUp ()

3:Notify (hash(LFi))

3′ :ReportChange()

Signature
Server

LF
i

5:Notify (si)

4: Sign (hash(LFi))
si

Signature

negotiation

phase

Fig. 4 – Log File Signature (LFS) Service.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 2 9 8 – 3 0 8306
active sessions that has requested by invoking a 8:Release()

message.

6.1.2. Log Event Signature (LES) service
The LES service (Fig. 5) implements both the critical and the

random event signing procedures, described in Sections 5.4.3

and 5.4.4, respectively. The LES service is activated by the RA
Mediation device

1: SetUp()

2′ :InitiateService()

5:Response (σj)

6:AckResponse ()

2:SnmpTrap (LE
j
)

3:Snmp Get()

4:Snmp Reply()

hash(LE
j
)

LE
j

Signing critical events

7:Release ()

5′ :RequestReportChan

6′ :ReportChange()

3′ :Notify (hash(LEj))

8:ReleaseService()

4′ : SetUp ()

Signing random events

TE

Fig. 5 – Log Event Signa
through a 1:SetUp() message. Similarly to the LFS service, the

authentication, authorization and other important informa-

tion are passed through appropriate arguments of the

1:SetUp() message.

The critical event signing procedure is implemented as

follows: The Network Nodes (log generators) send ordinary log

events towards the Log Server. The Agents within the Network
Log Server

LEj

LEj-1
Period T

hash(LE
j
)

LE
j

ge()

NN

ture (LES) Service.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 2 9 8 – 3 0 8 307
Nodes are programmed to send alarms by using the format of

the SNMP traps as an 2:SnmpTrap() message, concerning only

the critical log events. The Mediation Device automatically

creates a new SLP instance for managing the session request.

The Mediation Device may also request additional logging

information from the Network Nodes through 3:SnmpGet()

and 4:SnmpReply() messages. The Mediation Device groups

these events, generates hash values and then signs the log

events. The signatures are sent to the RA within a 5:Response()

message, through the secure Handover Interface.

The random event signing procedure includes the following

steps. The Mediation Device collects the current log events

(critical or non-critical) from the Network Nodes and from the

Log Server for further processing. The log events collected

from the Network Nodes are processed as in the case of the

critical event signing, whereas the processing of the log events

collected from the Log Server involves the following steps.

A 1:SetUp() message initiates a new SLP instance which

instructs the Mediation Device to send a 2’:InitiateService()

message towards the Log Server, requesting the hash values for

the selected log events. Similarly to LFS service, the Log Server

generates hashes of the requested events and sends the hashed

values towards the Mediation Device through a "3’:Notify()

message. The Mediation Device signs these values and forwards

the signatures towards the RA. Finally, the messages

5’:RequestReportChange() and 6":ReportChange() are used for

requesting additional logging information from the Log Server.
7. Security analysis

We examine how the proposed system satisfies the security

requirements set in Section 4.

7.1. Confidentiality

Since the system applies a secure Log Server system (such as

Schneier and Kelsey, 1998; Holt, 2006) it inherits its security

services. The Log Server encrypts each log entry and only the

Log Server administrator can have access to the stored entries.

By applying the principle of dual control, the initial key A0 can

be securely maintained by a different administrator. In this

way, it will not be possible for a compromised Log Server

administrator to violate the confidentiality of the log entries.

Moreover, the confidentiality of the log events during their

transmission from the Network Nodes (the log generators)

towards the Log Server is protected since encrypted channels

are used, as described in Section 6.

7.2. Forward secrecy

This property is also provided by the secure Log Server. Since

the encryption key is updated for each log entry with an one-

way function, an intruder who manages to access the

encryption key at a given time will not be able to violate the

confidentiality of past log entries.

7.3. Integrity

The asynchronous signing of the log files provides integrity

proofs, for modifications which have taken place after the file
has been signed and the signatures have been sent to the RA. In

that case, the modified log file will not match the corresponding

signature, which is remotely stored within the RA. The use of

a signing period T sets a time limit frame to the adversary. Note

that while a very long time period T would reduce the integrity

protection of the protected log files, a selection of short time

periods would not be efficient. According to the security needs,

it is recommended that T is between 1 day to 1 week.

In addition, since the real-time integrity protection of each

log entry is not practical, the real-time signing of at least the

critical log events provides a balanced protection. Moreover,

the use of real-time signing of random log events increases

the uncertainty for an attacker, since even if the attacker is an

insider with advanced access privileges, he cannot be assured

whether an event will be signed and sent to the RA.

7.4. Forward integrity

Forward integrity against an external attacker is achieved due

to the use of the secure Log Server system with the one-way

updating of the MAC keys. Forward integrity against internal

attackers is achieved through the log file and log event signing

and the remote storage of the signatures. Since the RA stores

the log file and Log Event Signatures, even if an insider has

access to the signature keys, he will not be able to modify

signatures generated in previous periods and modify the

corresponding log files, without being detected.

7.5. Access control

Apart from the technical access control measures which apply

to the proposed system, we make use of procedural access

control measures such as the separation of duties. The keys SK1,

SK2 used for log file and log event signing, respectively, are

independent keys which are installed and administered in

separated environments. Additionally, the log files are stored in

a separate environment from the signature environment of the

log files. Thus access to the Log Server does not imply access to

the signature key used to protect the log file. Consequently, even

if the attacker has compromised security sensitive systems

such as the Log Server, he cannot be assured that his attack will

not be traced. The attacker will not able to modify the signatures

of the existing log files also containing traces of his actions.

7.6. Traceability

Duringsecurityaudits, theRAexaminesthe logsignaturesstored

in its repository against the log files stored in the provider’s side.

If the Log File Signatures and the Log Event Signatures for

the examined period are verified against the log files of the

provider, then the RA has strong indications that the logs are

valid. If the Log File Signatures for the examined period are

verified, while the Log Event Signatures are found invalid, then

the RA has evidence that the log events have been manipu-

lated within the Log Server, since the Log Event Signatures are

based on events captured at real-time during their generation.

If both log file and Log Event Signatures cannot be verified, the

RA has evidence of manipulation of the log files.

Finally, another measure to trace illegal behavior within

the log generators is the use of signed code for the software

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 2 9 8 – 3 0 8308
entities that support the logging functions, such as the SLPs

installed in the Mediation Device and the alarm Agents

installed in the Network Nodes. In this way, if there has been

an attempt to manipulate the code of these Agents, the RA will

be able to trace such an attempt, since such actions would

generate critical events towards the RA. Then the RA will

verify whether the running Agents have been modified by

checking their signed code.
8. Conclusions

Existing secure logging systems cannot protect or detect

attacks against the integrity of the log files from internal

attackers. In public communication networks, however, the

security requirements of log files must also consider internal

attacks such as compromised log generators, compromised

Log Servers or combinations of both. In this paper we consider

an extended security model for logging systems and we define

a generic framework for secure logging for public network

providers. Through the proposed framework the logging

requirements of each provider are defined, as well as the

required security measures and procedures for the protection

of the log files. A trusted Regulator Authority RA has a central

role in this framework, in the definition of the logging

requirements as well as in the storage of log integrity proofs

and in the verification of the maintained log files. In addition

with known security measures for secure logging, we propose

the use of digital signatures in two different ways, as well as

the remote storage of the signatures in the environment of the

RA. Although modification attacks against log files cannot

always be prevented, it is feasible to build tracing mechanisms

which will impose dual controls and separation of duties and

will obviate internal attacks.
r e f e r e n c e s

Accorsi R. On the relationship of privacy and secure remote logging
in dynamic systems. In: Security and privacy in dynamic
environments, vol. 201. Springer-Verlag; 2006. p. 329–38.

Arona A, Rosti DBE. Adding availability to log services of
untrusted machines. In: Fifth annual computer security
applications conference (ACSAC’99), Phoenix, AZ, USA; 1999.

Bellare M, Yee B. Forward integrity for secure audit logs. Tech.
rep.. Computer Science and Engineering Department,
University of California at San Diego; November 1997

Chong CN, Peng Z, Hartel PH. Secure audit logging with
tamperresistant hardware. Tech. rep.. Enschede, The
Netherlands: Universiteit Twente; August 2002

Dunlap GW, King ST, Cinar S, Basrai M, Chen PM. ReVirt: enabling
intrusion analysis through virtual-machine logging and
replay. In: Proc. 2002 Symp. Operating Sys. Design and
Implementation; 2002.

Holt J. LogCrypt: forward security and public verification for
secure audit logs. In: Proceedings of Australasian information
security workshop; 2006.

Haber S, Stornetta W. How to time-stamp a digital document. In:
Menezes A, Vanstone SA, editors. Proc. of CRYPTO’90. Lecture
Notes in Computer Science, vol. 537. Springer-Verlag; 1990.
p. 437–55.
Kelsey J, Callas J. Ssyslog-sign protocol. DRAFT. Network Working
Group; June 2002.

Kawaguchi N, Obata N, Ueda S, Azuma Y, Shigeno H, Okada K.
Efficient log authentication for forensic computing. In:
Proceedings of IEEE sixth information assurance workshop.
IEEE; 2005. p. 215–23.

Kher V, Kim Y. Securing distributed storage: challenges,
techniques, and systems. In: Proceedings of the first
international workshop on storage security and survivability
(StorageSS’05). ACM; 2005.

Maheshwari U, Vingralek R, Shapiro W. How to build a trusted
database system on untrusted storage. In: Proceedings of the
USENIX symposium on operating systems design and
implementation; 2000. p. 135–50.

Pennington A, Strunk J, Griffin J, Soules C, Goodson G, Ganger G.
Storage-based intrusion detection: watching storage activity
for suspicious behavior. In: Proceedings of 12th USENIX
Security Symposium, Washington, DC; 2003.

Shen Y, Lam T, Liu JC, Zhao W. On the confidential auditing of
distributed computing systems. In: Proceedings of 24th
international conferenceondistributed computingsystems;2004.

Schneier B. Schneier on security: phone tapping in Greece.
Available from: http://www.schneier.com/blog/archives/2006/
02/phone_tapping_i.html; 2006.

Schneier B, Kelsey J. Cryptographic support for secure logs on
untrusted machines. In: Proceedings of the 7th USENIX
security symposium. USENIX Press; 1998. p. 53–62.

Waters B, Balfanz D, Durfee G, Smetters D. Building an encrypted
and searchable audit log. In: The 11th annual network and
distributed system security symposium; 2004.

Vassilios Stathopoulos is a security auditor at the Hellenic

Authority for the Assurance of the Communications Security

and Privacy of Greece (ADAE). He received his BSc degree in

Physics (1996) from University of Athens, his MSc degree in

Communication, Control and Digital Signal Processing (1997)

from University of Strathclyde, Glasgow, UK and his PhD

degree (2001) from National Technical University of Athens

(NTUA). He has participated, as research associate, in several

European Projects. His research interests are in the field of

computer network security, service creation and control and

distributed processing.

Panayiotis Kotzanikolaou is a security auditor at the Hellenic

Authority for the Assurance of the Communications Security

and Privacy of Greece (ADAE) and a visiting lecturer at the

Department of Informatics, University of Piraeus, Greece. He

received his BSc in Computer Science (1998) from the

University of Piraeus, Greece and his PhD (2003) in infor-

mation systems security, from the same university. His

research interests include network and information security,

communication privacy, security protocols, and applied

cryptography.

Emmanouil Magkos is a lecturer at the Department of

Informatics, Ionian University, Corfu, Greece. He received

his Degree in Computer Science (1997) and his PhD (2003)

entitled ‘Secure electronic transactions over the Internet’ in

the Department of Informatics at the University of Piraeus,

Greece. His research interests include information security

and cryptography, wireless networks and distributed

systems.

http://www.schneier.com/blog/archives/2006/02/phone_tapping_i.html
http://www.schneier.com/blog/archives/2006/02/phone_tapping_i.html

	Secure log management for privacy assurance in electronic communications
	Introduction
	Our contribution

	Related work
	Security models for logging
	Secure logging systems
	Real systems
	Tamper evidence
	Tamper-resistance

	An extended security model: semi-trusted log generators and semi-trusted Log Servers
	Requirements for secure and verifiable log management
	Functional requirements
	Security requirements

	A generic framework for secure and verifiable logging
	Defining what should be logged
	Defining the operational requirements of each log file
	Securing log files against external attacks
	Securing log files against internal attacks
	Asynchronous signing of the log files in predefined time periods
	Real-time signing of the critical log events
	Real-time signing of random log events
	Remote storage of log signatures to the RA

	Verifying log files

	Implementation design
	Log signing services
	Log File Signature (LFS) service
	Log Event Signature (LES) service

	Security analysis
	Confidentiality
	Forward secrecy
	Integrity
	Forward integrity
	Access control
	Traceability

	Conclusions
	References

