

Abstract— A single neural network based controller called
the Finite-SNAC is developed in this study to synthesize finite-
horizon optimal controllers for nonlinear control-affine
systems. For satisfying the constraint on the input, a non-
quadratic cost function is used. Inputs to the neural network
are the current system states and the time-to-go and the
network outputs are the costates which are used to compute the
feedback control. Convergence of the reinforcement learning
based training method to the optimal solution, the training
error and the network weights are provided. The resulting
controller is shown to solve the associated time-varying
Hamilton-Jacobi-Bellman (HJB) equation and provide the
fixed-final-time optimal solution. Performance of the new
synthesis technique is demonstrated through an attitude control
problem wherein a rigid spacecraft performs a finite time
attitude maneuver subject to control bounds. The new
formulation has a great potential for implementation since it
consists of only one neural network with single set of weights
and it provides comprehensive feedback solutions online though
it is trained offline.

I. INTRODUCTION
 here is a multitude of papers in the literature that use
neural networks (NN) for the control of dynamical

systems [1]-[4]. A few amongst them develop optimal
control based on an approximate dynamic programming
(ADP) formulation [3], [5]-[11]. Two classes of ADP based
solutions, called the Heuristic Dynamic Programming (HDP)
and the Dual Heuristic Programming (DHP) have emerged
in the literature [3]. In HDP, the reinforcement learning is
used to learn the cost-to-go from the current state while in
the DHP, the derivative of the cost function with respect to
the states, i.e. the costate vector is learnt by the neural
networks [5]. The convergence proof of DHP for linear
systems is presented in [6] and that of HDP for general case
is presented in [7].

The implementation of the ADP learning is usually
achieved through a dual network architecture called the
Adaptive Critics (AC) [5], [8] . In the HDP class with ACs,
one network, called the ‘critic’ network maps the input states
to output the cost and another network called the ‘action’
network outputs the control with states of the system as its

This research was supported by a grant from the National Science

Foundation.
A. Heydari is a PhD student at Mechanical & Aerospace Engineering

Dept. of Missouri University of Science and Technology. (e-mail:
ali.heydari@mail.mst.edu).

S. N. Balakrishnan is a Professor with Mechanical & Aerospace
Engineering Dept. of Missouri University of Science and Technology. (e-
mail: bala@mst.edu).

inputs [7]. In the DHP formulation, while the action network
remains the same as with the HDP, the critic network
outputs the costates with the current states as inputs.[8]-[9].
The single network adaptive critic (SNAC) [10] is shown to
be able to eliminate the need for the second network and
perform the DHP using only one network, resulting in a
considerable decrease in the offline training effort and the
simplicity of the online implementation through less
required computational resources and storage memory. Note
that these developments in the neural network literature have
mainly addressed only the infinite horizon problems.

Finite-horizon optimal control is relatively more difficult.
The difficulty is due to the time varying HJB equation
resulting in time-to-go dependent optimal cost function and
costates. If one were to use a shooting method, a two-point
boundary value problem needs to be solved for each set of
initial condition each time and it will provide only an open
loop solution and only for one set of initial conditions. There
is hardly any work in the neural network literature to solve
this class of problems [11]-[12]. In this paper, a single neural
network (Finite-SNAC) based solution is developed which
embeds solutions to the HJB equation. Consequently, the
offline trained network can be used to generate online
feedback control. Another major advantage is that this
network provides optimal feedback solutions to any different
final time as long as it is less than the final time for which
the network is synthesized.

In practical engineering problems, the designer faces
constraints on the control effort. In order to facilitate the
control constraint, a non-quadratic cost function [13], is used
in this study.

Specifically, in this paper an ADP based NN controller for
input-constrained finite-horizon optimal control for discrete-
time input-affine nonlinear systems is developed. This is
done through a SNAC scheme that uses the current states
and the time-to-go as inputs. The scheme is DHP based. For
the proof of convergence, proof of HDP for finite-horizon
case is presented first. Then, it is shown that DHP has the
same convergence result as HDP has and therefore, DHP
also converges to the optimal solution. Finally, after
presenting the convergence proofs of the training error and
the network weights for the selected weight update law, the
performance of the controller is evaluated with a spacecraft
application in which a fixed final time attitude maneuver is
carried out optimally.

Rest of the paper is organized as follows: the Finite-
SNAC is developed in section II. Relevant convergence

Finite-Horizon Input-Constrained Nonlinear Optimal Control
Using Single Network Adaptive Critics

Ali Heydari, Student Member, IEEE, and S. N. Balakrishnan, Member, IEEE

T

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 3047

proofs are presented in section III. Numerical results and
analysis from a spacecraft problem are presented in Section
IV. Conclusions are given in Section V.

II. THEORY OF THE FINITE-SNAC
A single neural network (Finite-SNAC) that outputs the

costates as a function of the current states and the time-to-go
is used in this study. Its mapping is described in a functional
form as

 ���� � ���	�
 � � �
�
 � � � � � � � (1)
where ���� � �� and 	� � �� denote the system costates

at time � � � and the states at time/stage �, respectively, and denotes the network weights. � is the dimension of the
state space. Note that for developing discrete control sets as
a function of time-to-go, the specified final time is divided
into � stages. Note that ���� is a function of 	� and time-to-
go �� � ��.

The neural network ���� � in this study is selected to be
of a form that is linear in the weights.

 ���	
� � �
� � ���	
 � � �� (2)
where ��� � � �� is composed of � linearly independent
basis functions and � ����, where � is the number of
neurons.

Dynamics of the nonlinear control-affine system is
assumed as

 	��� � ��	�� � �	��!� (3)
A non-quadratic cost function " is assumed to incorporate
the input constraints [13]. It is given by

 " � �# 	$�%&	$ � ' �# �	(�%	(�)�!(��$*�(+, (4)
where-)�� � � � is defined as

)�.� � / 0*��1�2, � 341 (5) 0*��� � denotes the inverse of function 0(.) which is a
bounded continuous one-to-one real-analytic integrable
saturating function which passes through the origin, like for
example, a hyperbolic tangent function. Note that)�� � is a
non-negative scalar and / 0*��1�2, � 41 for 0*��1�- � ��
is defined as

 / 0*��1�2, � 41 � ' / 0(*��1�25, 41�(+� (6)
where subscript 6 in .(and 0(denotes the 6th element of the
corresponding vector.

The network training target should be calculated using
following two equations [11]:

 �$7 � %&	$ (7)

 ����7 � %	��� � 89�&�:;<=��>�:;<=�?;<=�9:;<= @� ���#

 � � � � � � � (8)
In the SNAC training process, ���# on the right hand side

of (8) will be substituted by ���	���
 � � �� � ��
� as
described in [10].

The SNAC training should be done in such a way which
along with learning the target given in (8) for every state 	�
and time �, the final condition (7) is also satisfied. In this
study, this idea is incorporated by augmenting the training

input-target pairs with the final stage costate. Define
following augmented parameters:

 �A � B����---�$C (9)
 �D � B��	�
 � � ��---��	$*�
 ��C (10)

Now, the network output and the target to be learned are
 �A � ��D (11)
 �A7 � B����7 ---�$7 C (12)

The training error is defined as
 E � �A � �A7 � ��D � �A7 (13)
In each iteration along with selecting a random state 	�, a

random time �, � � � � � � �, is also selected and ����7 is
calculated using (8) after propagating 	� to 	���. Then, to
calculate �$7 through (7), another randomly selected state
will be considered as 	$*� and propagated to 	$ and fed to
(7). Finally �A7 will be formed using (12). This process is
depicted graphically in Fig. 1. In this diagram, the left
column follows (8) and the right column follows (7) for the
target calculations.

Fig. 1. Finite-SNAC training diagram

Having the input-target pair FB�	�
 � � ��--�	$*�
 ��C
B����7 --�$7 CG calculated, the network can be trained using

some training method. In this study, the Galerkin method of
approximation [14] is used. In this method, in order to find
the unknown weight one should solve the following set of
linear equations.

 HE
 �DI � ���� (14)
where HJ
 KI � / JK�4	-L is the defined inner product on the
compact set M on �� and ���� denotes an-� � � matrix of
elements equal to zero. Denoting the 6th row of matrices E
and �D by E(and �D(, respectively, (14) leads to following
equations

 HE(
 �DI � ����--N6
 � � 6 � � (15)
 HE(
 �DOI � �--N6
 P
 � � 6 � �
 � � P � � (16)
Substituting E from (13) into (14) results in
 HE
 �DI � �H�D
 �DI � H�A7
 �DI � � (17)

or
 � H�D
 �DI*�H�D
 �A7I (18)

Eq. (18) is the desired weight update for the training process.

Costate Equation

Optimal
Control

Equation

!���

���#

	���
 � � �� � ��

����

!�

SNAC

SNAC

Optimal Control
Equation

State Equation

���#

����7

�$

!$*�

	$*�
 �-

	$

�$7

�$7 � %&	$

SNAC

Optimal Control
Equation

State Equation

	�, � � �

3048

Finally, for use in a discrete problem, the integral used in
the inner products in (18) is discretized by evaluating the
inner products on Q different points in a mesh covering the
compact set M [12]. Denoting the distance between the mesh
points by R	, one has

 H�D
 �DI � STUVW:VX, YZYZ� [(19)
 H�D
 �A7I � STUVW:VX, YZ\D]� [(20)

where
 YZ � ^�D�	��---�D�	#�--_---�D�	`�a (21)
 \D]- � ^�A7�	��---�A7�	#�--_---�A7�	`�a (22) �D�	(� and �A7�	(� denote �D and �A7 evaluated on the mesh

point 	(, respectively.
Using (19) and (20), the weight update rule (18) is now

simplified to the standard least square form as
 � �YZYZ��*�YZ\D]� (23)
Note that for the inverse of the matrix �YZYZ�� to exist, one

needs the basis functions �(to be linearly independent and
the number of mesh points Q to be greater than or equal to
half of the number of neurons �.

Though (23) looks like an one shot solution for the ideal
NN weights, the training is an iterative process which needs
selecting different random states from the problem domain
and times and updating the network weights by repeated use
of (23). The reason for the iterative nature of the training
process is the reinforcement learning basis of ADP. To make
it more clear, one should note that �A7 used in the weight
update (23) is not the true optimal costate but its
approximation with a current estimation of the ideal
unknown weight, i.e. \D]��. Denoting the weights at the 6th
epoch of the weight update by �(� results in the following
iterative procedure as

 �(��� � �YZYZ��*�YZ\D]b�(�c� (24)
The weight training is started with an initial weight �,�

and iterated through (24) until the weights converge. The
initial weight can be set to zero or can be selected based on
the linearized solutions of the given nonlinear system.

Once the network is trained, it can be used for optimal
feed-back control in the sense that in the online
implementation, the states and the time will be fed into the
network to generate the optimal costate using (1) and the
optimal control will be calculated as

 !� � �0�3*� �	�������- � (25)

III. CONVERGENCE PROOFS
Convergence proof for the proposed optimal controller is

composed of three parts: first of all, one needs to show that
the reinforcement learning, which the target calculation is
based on, will result in the optimal target, then it needs to be
shown that the weight update will force the error between
the network output and the target to converge to zero and
finally the network weights should be shown to converge.

A. Convergence of the algorithm to the optimal solution
The proposed algorithm for the Finite-SNAC training is

DHP in which starting at an initial value for the costate
vector one iterates to converge to the optimal costate.
Denoting the iteration index by a superscript and the time
index by a subscript, the learning algorithm for finite
horizon optimal control starts with an initial value
assignment to ��, for all �’s, e.g. ��, � �--N�, and repeating
below three calculations for different 6’s from zero to
infinity.

 !�(� �0b3*� �	�������(c (26)
 ��(�� � %	�- � db	�
 !�(c�����((27)
 �$(�� � %&	$- (28)

Eq. (28) is actually the final condition of the optimal control
problem. Note that,

 db	�
 !�(c � 98&�:;��>�:;�?;5 @9:; (29)

 ����(� �-(�	���� � �-(b��	�� � �	��!�(c (30)
The problem is to prove that the iterative procedure results

in the optimal value for the costate � and control !. The
convergence proof presented here is based on the
convergence of HDP, in which the parameter subject to
evolution is the cost function " whose behavior is much
simpler to discuss as compared to that of the costate vector �.

In the latter, the cost function " needs to be initialized, e.g. "-,�	�
 �� � �--N�, and iteratively updated throught the
following steps.
 "-(���	�
 �� � �# b	��%	� �)�!�(�c � "-(�	���
 � � �� (31)

 !�(� efgUTh? 8"-(���	�
 ��@

 � �0 i3*� �	��� jk;<=5j	���l (32)

For finite horizon case, the final condition given below is
satisfied at every iteration.

 "-(���	$
�� � �# 	$�%&	$ (33)
Note that "� � "�	�
 �� and

 "���(� "-(b��	�� � �	��!�(
 � � �c (34)
In [7] the authors have proved that HDP for infinite-

horizon regulation converges to the optimal solution. In this
paper, that proof is modified to cover the case of constrained
finite-horizon optimal control. For this purpose following
four Lemmas are required of which three are cited from [7]
with some modifications to handle the time dependency of
the optimal cost function.

Lemma 1 [7]: Using any arbitrary control sequence of m�- ,
and-n-(defined as

 n(���	�
 �� � �# b	�- �%	�- �)�m�- �c �
 n(���	�- � � �	�- �m�-
 � � �� (35)

If n-,�	�
 �� � "-,�	�
 �� � � then n(�	�
 �� o "(�	�
 ��--N6
where "(�	�
 �� is iterated through (31) and (32).

Proof: The proof is given in [7]

3049

Lemma 2: If the system is controllable then "(�	�
 ��,
resulted from (31) and (32), is upper bounded by an existing
bound K�	�
 ��.

Proof: The proof is inspired by the proof of similar
Lemma in [7], however, this is an important modification to
deal with finite horizon problems. Let p� be an arbitrary
control. Let q,�	�
 �� � ",�	�
 �� � �, where q(is updated
as

 q(���	�
 �� � �# b	��%	� �)�p�- �c �
 q(�	���
 � � �� (36)
 q-(���	$
�� � �# 	$�%&	$ (37)
 	��� � ��	�� � �	��p� (38)

Defining K�	�
 �� as
 K�	�
 �� � �# 	$�%&	$ �

 ' �# �	���� %	��� �)�p�����$*�*��+, (39)
Subtracting (39) from (36) results in q(���	�
 �� � K�	�
 �� � q(�	���
 � � �� � 8�# 	$�%&	$ � ' �# �	���� %	��� �)�p�����$*�*��+� @ (40)
which is the equivalent of

 q(���	�
 �� � K�	�
 �� �
 q(�	���
 � � �� � K�	���
 � � �� (41)

If 6 o � � � � �-then above equation results in
 q(���	�
 �� � K�	�
 �� �
 q(*�$*�*���	$
�� � K�	$
 �� (42)

But the right hand side of (42) is q(*�$*�*���	$
�� � K�	$
 �� �
 �# 	$�%&	$ � �# 	$�%&	$ � �--6�-6 r � � � � � (43)

 q,�	$
�� � K�	$
 �� �
 � � K�	$� � �--6�-6 � � � � � � (44)

Hence, one has
 q(���	�
 �� � K�	�
 �� � �--6�-6 o � � � � � (45)
For the case of 6 � � � � � � one has q(���	�
 �� � K�	�
 �� �

 q,�	��(��
 � � 6 � �� � K�	��(��
 � � 6 � �� (46)
But, q,�	��(��
 � � 6 � �� � �, hence,

 q(���	�
 �� � K�	�
 �� �
 � � K�	��(��
 � � 6 � �� � �--6�-6 � � � � � � (47)

In conclusion, (45) and (47) lead to
 q(�	�
 �� � K�	�
 ��--N6 (48)

From Lemma 1 with m�- � p� one has "(�	�
 �� � q(�	�
 ��,
hence,

 "(�	�
 �� � K�	�
 �� (49)
which proves Lemma 2.

Lemma 3 [7]: If the system is controllable and the optimal
control problem can be solved, then there exists a least upper
bound "s�	�
 ��, "s�	�
 �� � K�	�
 ��, which satisfies
equation (31) when "(and "(�� are replaced by "s,and � � "(�	�
 �� � "s�	�
 �� � K�	�
 �� where K�	�
 �� is
defined in Lemma 2.

Proof: The proof given is in [7].
Lemma 4 [7]: The sequence of "(defined by HDP, in case

of ",�	�� � �, is non-decreasing.

Proof: The proof given is in [7].
Theorem 1: The sequence of "(iterated through (31) to

(33), in case of ",�	�� � � converges to the fixed final time
optimal solution.

Proof: Using the results of Lemma 4 and Lemma 2 one
has

 "(X "t as 6 X u. (50)
From Lemma 3

 "t � "s (51)
Since "t satisfies the HJB equation and the finite-horizon
final condition one has

 "t � "s (52)
which completes the proof.

Now, we can proceed to the convergence proof DHP.
Theorem 2: The sequence of ��(iterated through (26) to

(28) for � � �
 �
 _
 � providing ��, � �--N�, converges to
the optimal costate vector for the fixed final time problem as 6 X u.

Proof: The idea is to use the method of induction to show
that the evolution of the sequence in DHP is identical to that
of HDP, i.e., at each learning iteration, we will have ��(� 9k5�:;-
��9:;- N�, where ��(-is resulted from DHP and "(is

resulted from HDP. Since "(, based on Theorem 1, converge
to the optimal values as 6 X u, ��(will also converge to the
optimal costate vector. The steps of the proof are skipped
because of the page constraints.

B. Convergence of the error of the weight update
This step is to prove that the weight update rule makes the

error between the network output and the target converge to
zero and that the network weights themselves converge. The
idea behind proofs of Theorem 3 and 4 are similar to [14],
but, since the error equation and the dimension of the error
are different compared to [14], the processes of the proofs
are different and given below.

Theorem 3: Training error convergence
The weight update (14) will force the error (13) to converge
to zero as the number of neurons of the neural networks, �,
tends to infinity.

Proof: Using Lemma 5.2.9 from [14], assuming �D to be
orthonormal, rather than being linearly independent, does
not change the convergence result of the weight update.
Assume �D is a matrix formed by � orthonormal basis
functions-�DO as its rows where � � P � � among the infinite
number of orthonormal basis functions v�DOw�t. The

orthonormality of v�DOw�t implied that if a function x �yQz�v�DOw�t then
 x � ' Hx
 �DOI�DOtO+� (53)

And for any { one can select � sufficiently large to have
 |' Hx
 �DOI�DOtO+��� | � { (54)

where-V� V denotes norm operation. From (14) one has
 HE
 �DOI � �--NP
 � � P � � (55)

3050

And from (13)
 HE
 �DOI � �H�D
 �DOI � H�A7
 �DOI (56)

which is equivalent to
 HE
 �DOI � ' (�H�D(
 �DOI � H�A7
 �DOI�(+� (57)

where (is the 6th row of weight matrix .
On the other hand, one can expand the error E using the
orthonormal basis functions v�DOw�t.

 E � ' HE
 �DOI�DOtO+� (58)
Inserting (57) into (58) results in

 E � ' b' (�H�D(
 �DOI�DO � H�A7
 �DOI�DO�(+� ctO+� (59)
But, from the weight update (55), the right hand side of (57)
is also equal to zero. Applying this to (59) results in

 E � ' b' (�H�D(
 �DOI�DO � H�A7
 �DOI�DO�(+� ctO+��� (60)
Due to the orthonormality of the basis functions, one has

 H�D(
 �DOI � �--N6 } P (61)
Hence, (60) simplifies to

 E � �' H�A7
 �DOI�DOtO+��� (62)
Using (54) for x � �A7, as � increases, E decreases to zero.

 STU�Xt VEV � � (63)
This completes the proof.

Theorem 4: Neural network weight convergence
Assuming an ideal set of weights, denoted by s, where

 �A7 � ' (s��D(t(+� (64)
Then, using the weight update (14), one has � �7~?��s � X � where 7~?��s is the truncated first � row of
the ideal weight s.

Proof: The training error is defined as
 E � �A � �A7 (65)

Hence
 E � b� �7~?��s �c�D � ' (s��D(t(+��� (66)

Note that �D is a matrix formed by the first � orthonormal
basis functions �D(as its rows, i.e. � � 6 � �. The inner
product of both sides of (66) by �D results in

 HE
 �DI � b� �7~?��s �cH�D
 �DI �
 ' (s�t(+��� H�D(
 �DI (67)

The last term on the right hand side of the above equation
vanishes due to the orthonormality property of the basis
functions. Considering-H�D
 �DI � �, (66) simplifies to

 HE
 �DI � � �7~?��s � (68)
Examining (68) further, the weight update implies the left
hand side to be zero, hence, using the weight update (14) one
has X7~?��s .

IV. SIMULATIONS
For demonstration of the new synthesis technique, the

problem of nonlinear satellite attitude control has been
selected. Satellite dynamics can be represented as [15]

 ���7 � �*�����7 � � � ��� (69)
where �, �, and ���7 are inertia tensor, angular velocity
vector of the body frame with respect to inertial frame and
the vector of the total torque applied on the satellite,
respectively. The selected satellite is an inertial pointing

satellite; hence, one is interested in its attitude with respect
to the inertial frame. All vectors are represented in the body
frame and the sign � denotes cross product of two vectors.

The total torque is composed of control and the
disturbance torques. The control torque is the torque created
using satellite actuators. Since control torque is limited in
practice, this problem is ‘input-constrained’.

Following [16] and its order of transformation, the
kinematic equation of the satellite is

��7 �
��x� � �� �Th-����eh-��� ���-����eh-���� ���-��� ��Th-���� �Th��� ����-��� ������ ����-���� �

�:����� (70)

where �
 �
 and x are the three Euler angles describing the
attitude of the satellite with respect to 	, �, and � axes of the
inertial coordinate system, respectively. The subscript 	
 �

and � denote the corresponding elements of the vector �.

To form the state space equation of satellite attitude
problem, one can choose the three Euler angles and the three
elements of the angular velocity as the states and form the
following state space equation as

 	� � ��	� � �	�! (71)
where

 ��	� � � �����*�b�>> � � � ��c� (72)

 � ������*� � (73)

 	 � B� � x-----�: �� ��C� (74)
 ! � ^��7~�: ��7~�� ��7~��a� (75) ���� denotes the right hand side of equation (70) and ����

denotes a three-by-three null matrix.

A. Numerical Results
The moment of inertia matrix of the satellite is chosen as

 � � ���� � � �� ��� �� � � ���� -� ��# (76)

The different moments around different axes and also the
non-zero off-diagonal elements result in some gravity
gradient disturbance torque acting on the satellite.

The initial states are selected based on initial Euler angles
of 60, -20, and -70 deg. and zero angular rates. The mission
of the controller is to perform an attitude maneuver to bring
the states to zero, in a fixed final time of 800 sec. A
saturation limit of ������-��� is selected for the actuators.

The orbit for the satellite is assumed circular with a radius
of 20,000 km, and an inclination of 90 degrees.

The state and control weight matrices are selected as
 % � 46z ��--�--�--���--���--���� (77)
 %& � ����-% (78)
 3 � 46z ��� --�� --�� � (79)

Note that the last three diagonal elements of matrix % and %& correspond to the angular rates with the unit of radians
per second and are set to higher values relative to the first
three elements. This is because the objective in this study is
to force the angles along with the rates to reach zero and

3051

higher weights on angular rates helps this process.
Moreover, higher values for %& compared to % are to stress
the importance of minimizing the terminal errors. A tangent
hyperbolic function describes the saturating function 0�� �
used in the performance index (4) and is scaled to reflect the
actuator bounds.

The network weights are initialized to zero and the basis
functions are selected as polynomials 	(, 	(#, 	(� for 6 �1 to 7
along with 	(O, 	(#	¡- , 	(¡#, 	(¡� and 	(E*:¢ for 6
 P � � to 6 6 } P, resulting in 60 neurons, where, 	(is the 6th network
input. Note that 	¡ is the fed normalized time-to-go and its
contribution in the basis functions are selected through some
trial and error such that the network error is as small as
possible. For the training process, in each Epoch, 50 initial
states among a previously selected interval of states are
randomly selected to form a mesh and the weight update
(23) is used for training the neural network. The training is
performed for 600 Epochs, until the weights converge.

The simulation results are shown in Fig. 2 and Fig. 3 by
the black plots. The Euler angles as seen in Fig. 2 have
nicely converged close to zero in the fixed final time of 800
sec. Fig. 3 shows the applied control history and as expected
it has not violated the control bounds.

To demonstrate the versatility of the proposed controller,
using the same trained network, the same attitude maneuver
is performed with a shorter time-to-go, i.e. 400 sec. and the
results are superimposed with previous results and shown in
Fig. 2 and Fig. 3 using blue plots. As can be seen, the
controller has applied another control sequence on the
satellite with more saturation at first in order to accomplish
the same mission in a shorter time-to-go of 400 sec. This
illustrates the power of the Finite-SNAC technique that the
same controller will be optimal for all of the final times less
than or equal that horizon by virtue of the Pontryagin’s
principle of optimality.

In order to analyze the effect of external disturbances on
the controller, the gravity gradient disturbance is modeled
[15] and applied on the satellite and the results are shown
using red plots in the same figures. Note that even-though
this method is not developed to measure and cancel the
effect of the disturbance, the feedback form of the controller
is robust enough to be able to get an acceptable trajectory
even in the presence of unknown disturbances.

V. CONCLUSIONS
A finite-horizon optimal neurocontroller, that embeds the

solution to finite-horizon HJB equation, has been developed
in this study. The developed neurocontroller has been shown
to solve finite-horizon input-constrained optimal control
problem for discrete-time nonlinear control-affine systems.
Convergence proofs have been given. The numeric
simulation from a satellite control problem indicate that the
developed method is very versatile and has a good potential
for use in solving for optimal closed loop control of control-
affine nonlinear systems..

REFERENCES
[1] K.S. Narendra and K. Parthasarathy, “Identification and control of

dynamical systems using neural networks,” IEEE Trans. on Neural
Networks, vol. 1 (1), pp. 4-27, 1990.

[2] P. J. Werbos, “Backpropagation through time: what it does and how to
do it”, in Proc. of the IEEE, vol. 78 (10), pp. 1550-1560, 1990.

[3] P. J. Werbos, “Approximate dynamic programming for real-time
control and Neural modeling”. In White D.A., & Sofge D.A (Eds.),
Handbook of Intelligent Control, Multiscience Press, 1992.

[4] D. P. Bertsekas, J. N. Tsitsiklis, “Neuro-dynamic programming: an
overview,” in Proc. IEEE Conference on. Decision and Control, pp.
560-564, 1995

[5] D.V. Prokhorov and D.C. II Wunsch, “Adaptive critic designs,” IEEE
Trans. on Neural Networks, vol. 8 (5), pp. 997-1007, 1997.

[6] X. Liu and S. N. Balakrishnan, “Convergence analysis of adaptive
critic based optimal control,” in Proc. American Control Conf.,
Chicago, USA, 2000, pp. 1929-1933.

[7] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf , “Discrete-time
nonlinear HJB solution using approximate dynamic programming:
convergence proof,” IEEE Trans. On Systems, Man, and
Cybernetics—Part B, vol. 38, pp. 943-949, 2008.

[8] S. N. Balakrishnan, and V. Biega, “Adaptive-critic based neural
networks for aircraft optimal control”, J. of Guidance, Control and
Dynamics, vol. 19 (4), pp. 893-898, 1996.

[9] S. Ferrari, and R. F. Stengel, “Online adaptive critic flight control, J.
of Guidance, Control and Dynamics, vol. 27 (5), pp. 777-786, 2004.

[10] R. Padhi, N. Unnikrishnan, X. Wang, and S. N. Balakrishnan, “A
single network adaptive critic (SNAC) architecture for optimal control
synthesis for a class of nonlinear systems,” Neural Networks, vol. 19,
pp.1648–1660, 2006.

[11] D. Han and S. N. Balakrishnan, “State-constrained agile missile
control with adaptive-critic-based Neural Networks,” IEEE Trans. on
Control Systems Technology, vol. 10 (4), pp. 481-489, 2002.

[12] T. Cheng, F. L. Lewis, and M. Abu-Khalaf, “Fixed-final-time-
constrained optimal control of nonlinear systems using Neural
Network HJB approach,” IEEE Trans. on Neural Networks, vol. 18
(6), pp. 1725-1737, 2007.

[13] S. E. Lyshevski, “Optimal control of nonlinear continuous-time
systems: Design of bounded controllers via generalized nonquadratic
functionals,” in Proc. American Control Conf., 1998, pp. 205–209.

[14] R. Beard, “Improving the closed-loop performance of nonlinear
systems,” Ph.D. Thesis, Rensselaer Polytechnic Institute, USA, 1995.

[15] J. R. Wertz, Spacecraft Attitude Determination and Control, Reidel,
1978.

[16] P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle
Dynamics, AIAA, 2000.

Fig. 2. Euler angles histories for different simulations. Refer to the text

for color coding.

Fig. 3. Control histories for different simulations. Refer to the text for

color coding.

0 100 200 300 400 500 600 700 800

−60

−40

−20

0

20

40

60

Time (sec)

E
ul

er
 A

ng
le

s
(d

eg
.)

φ
θ
ψ

0 100 200 300 400 500 600 700 800

−2

−1

0

1

2

x 10−3

C
on

tro
l (

N
.m

)

Time (sec)

ux uy uz

3052

