
Effectiveness of Solving Traveling Salesman
Problem Using Ant Colony Optimization on

Distributed Multi-Agent Middleware

Sorin Ilie and Costin Bădică
University of Craiova, Software Engineering Department

Bvd.Decebal 107, Craiova, 200440, Romania

Email: sorin.ilie@software.ucv.ro,costin.badica@software.ucv.ro

Abstract—Recently we have setup the goal of investigating new
truly distributed forms of Ant Colony Optimization. We proposed
a new distributed approach for Ant Colony Optimization (ACO)
algorithms called Ant Colony Optimization on a Distributed
Architecture (ACODA). ACODA was designed to allow efficient
implementation of ACO algorithms on state-of-the art distributed
multi-agent middleware. In this paper we present experimental
results that support the feasibility of ACODA by considering a
distributed version of the Ant Colony System (ACS). In particular
we show the effectiveness of this approach for solving Travel-
ing Salesperson Problem by comparing experimental results of
ACODA versions of distributed ACS with distributed random
searches on a high-speed cluster network.

I. INTRODUCTION

A
S NATURAL phenomena are inherently distributed, we

think that nature-inspired computing should allow a

straightforward mapping onto existing distributed architec-

tures. Therefore, to take advantage of the full potential of

nature inspired computational approaches, we have setup the

goal of investigating new distributed forms of Ant Colony

Optimization (ACO hereafter) using state-of-the-art multi-

agent technology.

In our recent work [1] we proposed a scalable multi-agent

system architecture called ACODA (Ant Colony Optimization

on a Distributed Architecture) that allows the implementation

of ACO in a parallel, asynchronous and decentralized environ-

ment. The novelty of our approach is: (i) the problem environ-

ment is conceptualized and implemented as a distributed multi-

agent system ([2], [3]) and (ii) ant management is reduced

to messages exchanged asynchronously between the agents of

the problem environment.

Existing computational approaches of ACO [4] are based

on sequential algorithms, are highly synchronous and re-

quire use of global knowledge. While few parallel and dis-

tributed versions of ACO exist [5], they are mainly based

on their sequential counterparts, thus hindering the potential

gain through parallelization. For example, in [5] the authors

propose a parallel, distributed, asynchronous and decentralized

implementation of ACO. However, their approach requires

maintenance of the globally best solution currently known

using global update each time a better solution is found.

Moreover, the authors’ claim that “their implementation does

not effect the accuracy, speed and reliability of the algorithm”

is not supported by any experimental evidence.

The focus of this paper is to experimentally evaluate the

feasibility of ACODA by considering a distributed version

of ACO inspired by the Ant Colony System (ACS) [4]. In

particular, we show the effectiveness of this approach at

solving Traveling Salesperson Problem (TSP hereafter) by

comparing experimental results of ACODA versions of dis-

tributed ACS with distributed random searches on a high-speed

cluster network. The results clearly show that our distributed

version of ACS based on ACODA preserves the nice heuristic

properties of standard ACS, while also providing scalability by

exploiting distributed computing architectures – multi-agent

middleware in this case.

The paper is organized as follows. In Section II we present

some background on ACO and distributed approach and

we briefly review the ACS model that inspired our initial

experiments. There are however notable differences between

classic ACS and our distributed version based on ACODA (see

Section V). In Section III we introduce ACODA architecture

and underlying search algorithm. Section IV presents experi-

mental results that support the effectiveness of our approach

by comparing results obtained with running on ACODA our

distributed version of ACS with other three distributed search

methods. Section V presents related works, while Section VI

presents our conclusions and points to future works.

II. BACKGROUND

ACO is inspired by behavior of real ants. When ants are

searching for food, they secrete pheromone on their way back

to the anthill. Other colony members sense the pheromone

and become attracted by marked paths; the more pheromone is

deposited on a path, the more attractive that path becomes. The

pheromone is volatile so it disappears over time. Evaporation

erases pheromone on longer paths as well as on paths that

are not of interest anymore. However, shorter paths are more

quickly refreshed, thus having the chance of being more

frequently explored. Intuitively, ants will converge towards the

most efficient path, as that path gets the strongest concentration

of pheromone. Artificial ants are programmed to mimic the

behavior of real ants while searching for food. More details

on the ACO metaphor can be found in [4].

Proceedings of the International Multiconference on

Computer Science and Information Technology pp. 197–203

ISBN 978-83-60810-27-9

ISSN 1896-7094

978-83-60810-27-9/09/$25.00 c© 2010 IEEE 197

In this paper we propose ACODA distributed approach

for the implementation of ACO algorithms and show its

effectiveness for solving TSP. The goal of TSP is to compute

the shortest tour that visits each node of a complete weighted

graph exactly once. The decision version of TSP is known

to be NP-complete so it is very unlikely that a polynomial

solution for solving TSP exists. So TSP is a good candidate

for the application of heuristic approaches, including ACO.
The main and also new idea behind ACODA is to pro-

vide a multi-agent distributed architecture for modeling the

problem environment. One or more anthills are located in

this environment. Artificial ants originating from anthills will

travel in the environment to find optimal solutions, following

ACO rules. In order to approach TSP using ACO, the problem

environment is modeled as a distributed set of interconnected

graph nodes that are also anthills. Each graph node is modeled

as a software agent that can host a population of ants. The

ants travel between nodes until they complete a tour. Once

they return to their originating anthill, they mark the solution

with pheromone by retracing their path. The ants traveling is

modeled as messages exchanged by the agents that represent

the graph nodes.
Many ACO algorithms have been proposed in the literature.

A good survey is [4]. While with ACODA we aim at proposing

a general distributed framework based on agent middleware

for different ACO algorithms, the ACO model considered in

this paper is based on a particular version of ACO – the

ACS system [4]. ACS is a sequential implementation of ACO

that chooses to move ants in parallel instead of moving each

ant until it finishes its tour. Our approach presents a few

differences due to the ACODA requirements: (i) distributed

architecture based on asynchronous message passing and (ii)

avoid to use global knowledge.
ACO rules determine the amount of pheromone deposited

on edges, the edge chosen by each ant on its way, and how

fast the pheromone deposited on each edge evaporates. For

this purpose we use the mathematical model of ACO that is

used in ACS.
In ACS, ant k located at node i decides to move to node

j using “pseudo random proportional rule” (1). Equation (1)

chooses to directs the ant either to a completely random node

or to a node of high desirability, and this decision is taken

probabilistically.

j =

{

argmaxl∈Ni
((τi,l)

α(ηi,l)
β), if q ≤ q0

J, otherwise
(1)

where:

• α is a parameter to control the influence of τi,j
• τi,j is the amount of pheromone deposited on edge (i, j)
• ηi,j is the desirability of edge (i, j) computed as the

inverse of the edge weight, i.e. 1/wi,j

• β is a parameter to control the influence of ηi,j
• q is a random variable uniformly distributed in [0, 1]
• q0 such that 0 ≤ q0 ≤ 1 is a parameter that controls the

selection between a random neighbor and most promising

neighbor based on pheromone deposit and edge desirabil-

ity

• J is a random node selected according to the probability

distribution given by equation (2)

• Ni represents the set of neighbors of node i

An ant located in node i will randomly choose to move to

node j with the probability pi,j computed as follows:

pi,j =
(τi,j)

α(ηi,j)
β

Σj(τi,j)α(ηi,j)β
(2)

where:

• α is a parameter to control the influence of τi,j
• β is a parameter to control the influence of ηi,j
• j is a node reachable from node i that was not visited

yet

Following equation (1), the ant makes the best possible

move (as indicated by the learned pheromone trails and the

heuristic information, i.e. the ant is exploiting the learned

knowledge) with probability q0, while it performs a biased

exploration of the arcs with probability (1− q0).

Better solutions need to be marked with more pheromone.

So whenever an ant k determines a new tour Vk of cost Lk

the ant will increase pheromone strength on each edge of the

tour with a value that is inversely proportional to the cost of

the tour.

∆τki,j =

{

1/Lk if edge (i, j) belongs to found tour Vk

0 otherwise

(3)

When an ant travels along a given path, this traveling takes

an amount of time that is proportional with the travel distance

(assuming the ants move with constant speed). As pheromone

is volatile, if a real ant travels more, pheromone will have

more time to evaporate, thus favoring better solutions to be

discovered in the future. We conclude that adding pheromone

evaporation to our model can be useful, especially for solving

a complex problem like TSP.

When an ant completes a tour it will retrace its steps

marking the edges on the way with pheromone. The update

will also take into account pheromone evaporation. Assuming

an evaporation rate 0 ≤ ρ < 1, evaporation and pheromone

update are implemented in ACS as follows:

τi,j = (1− ρ)τi,j + ρ∆τki,j (4)

Ants use equation (1) to probabilistically determine their

next step. Therefore they will often choose the edge with

the highest pheromone, while the exploration of less probable

edges is low. This behavior can be compensated by decreas-

ing the pheromone on edges chosen by ants using a local

pheromone evaporation process. This has the effect of making

them less desirable, increasing the exploration of the edges

that have not been picked yet. Assuming that 0 ≤ ξ < 1
is the local evaporation rate and τ0 is the initial amount of

198 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

Fig. 1: Node structure in ACODA.

pheromone on each edge, whenever an ant traverses an edge

it applies local evaporation by updating pheromone as follows:

τi,j = (1− ξ)τi,j + ξτ0 (5)

A good heuristics to initialize pheromone trails is to set

them to a value slightly higher than the expected amount of

pheromone deposited by the ants in one tour; a rough estimate

of this value can be obtained by setting τ0 = 1/(nC), where

n is the number of nodes, and C is the tour cost generated by

a reasonable tour approximation procedure [4]. For example

we can set C = nwavg where wavg is the average edge cost.

In order to observe the impact that evaporation has on

the solutions, we have also considered a pheromone update

scheme that does not include evaporation at all. In this case

equations (5) and (4) are replaced with:

τi,j = τi,j +∆τki,j (6)

III. ARCHITECTURE

In ACODA, the nodes of the graph are conceptualized and

implemented as software agents [2]. For the purpose of this

work, by software agent we understand a software entity that:

(i) has its own thread of control and can decide autonomously

if and when to perform a given action; (ii) communicates with

other agents by asynchronous message passing. Each agent is

referenced using its name, also known as agent ID.

The activity carried out by a given agent is represented

as a set of behaviors. A behavior is defined as a sequence

of primitive actions. Behaviors are executed in parallel using

interleaving of actions on the agent’s thread with the help of

a non-preemptive scheduler, internal to the agent [3].

Node design (see Figure 1) must include a behavior for

sending and receiving ants. Whenever an ant is received, the

RECEIVE-ANT() behavior (see Table I) immediately prepares

it and then sends it out to a neighbor node following ACO

rules.

Ants are represented as objects with a set of attributes: cost

of the currently search path (which becomes Lk when the

ant completes a tour), pheromone strength (value of ∆τki,j),

returning flag, best tour cost (value of the currently best tour

that the ant knows, based on its search history) and a list of

node IDs representing the path that the ant followed to reach

its current location. The list is necessary for two reasons: i)

the ant needs to retrace its steps in order to mark the tour with

pheromone and ii) we need to avoid loops so only unvisited

nodes are taken into account as possible next hops. Attributes

are initialized when an ant is created and updated during the

process of ant migration to reflect the current knowledge of

the ant about the explored environment.

Nodes (represented as software agents) manage a list of

neighbor nodes and best tour cost (the value of the currently

best tour that the node knows, based on ants that traveled

through this node). For each neighbor node we record the

weight and the value of deposited pheromone of the corre-

sponding edge. Note that each node and each ant maintain

their own values of the best tours they encountered so far.

So, whenever an ant is traveling through a node, the ant

and the node are able to exchange and update their best tour

information accordingly.

In our approach each node creates its own ant population

thus becoming an anthill. Nodes calculate pheromone strength

according to the tour cost (see equation (3)) and also update

the ants’ pheromone strength attribute. Additionally, nodes set

the returning flag for returning ants, exchange ant information

with other nodes, deposit pheromone when needed, and update

the cost of the currently search path of an ant.

The structure of a node is presented in Figure 1. RECEIVE-

ANT() behavior parses a received ant message, adjusts ant’s

attributes using ADJUST-ATTRIBUTES() method and sends

it out to the address determined by BEST-NEIGHBOR()

method. This happens whenever the agent’s message queue

isn’t empty [3]. ADJUST-ATTRIBUTES() method sets return-

ing flag and calculates pheromone strength using equation (3)

whenever an ant has completed a tour. Ants that have returned

to the anthill are re-initialized.

BEST-NEIGHBOR() uses the RANDOM-CHOICE()

method determine the address of the node where to send

the ant. When the ant returns to the anthill, the ant is sent

to the first node from its list of visited nodes, popping it

from the list, and the method DEPOSIT-PHEROMONE() is

then called. LOCAL-EVAPORATE-PHEROMONE() together

with DEPOSIT-PHEROMONE() implement pheromone

update (deposits and evaporation). In order to implement

different forms of ACO it is usually sufficient to modify the

methods LOCAL-EVAPORATE-PHEROMONE(), DEPOSIT-

PHEROMONE() and RANDOM-CHOICE() (see Section IV).

IV. EXPERIMENTS AND DISCUSSIONS

In order to facilitate experimentation with ACODA, we cre-

ated a distributed platform based on JADE framework [3] that

can be configured to run on a computer network. The focus of

the experiments was to show the effectiveness of ACODA to

support distributed ACO-based algorithms for solving TSP. We

configured ACODA platform on a high-speed cluster network

of 7 computers and then we analyzed experimental results

that we obtained by running (i) our distributed ACS-based

algorithm and (ii) other distributed random search algorithms.

Setup. An experiment is structured as a fixed number of

independent experimental rounds. A round consists of one

SORIN ILIE, COSTIN BADICA: EFFECTIVENESS OF SOLVING TRAVELING SALESMAN PROBLEM 199

TABLE I: Algorithms for processing ant information.

RECEIVE-ANT()
1. RECEIVE(ant)
2. ADJUST-ATTRIBUTES(ant)
3. SEND-TO(ant,BEST-NEIGHBOR(ant))

ADJUST-ATTRIBUTES(ant)
1. if AT-ANTHILL(ant) then

2. if RETURNING(ant) then
3. INITIALIZE(ant)
4. else

5. SET-RETURN-FLAG(ant)
⊲ calculate ant pheromone using equation 3.

6. CALCULATE-ANT-PHEROMONE-STRENGTH(ant)
7. UPDATE-BEST-TOUR()

BEST-NEIGHBOR(ant)
1. if RETURNING(ant) then

2. DEPOSIT-PHEROMONE()
3. return LAST-VISITED-NODE(ant)
4. bestNeighbor ← RANDOM-CHOICE()
5. UPDATE-CURRENT-PATH-COST(bestNeighbor)
6. LOCAL-EVAPORATE-PHEROMONE()
7. ADD-TO-VISITED-LIST(bestNeighbor,ant)
8. return bestNeighbor

execution of an algorithm on ACODA, for a given set of

parameters. All parameters are initialized at the start of each

round. Experimental data are collected during each round.

At the end of the experiment (when the fixed number of

rounds is reached) these data are used to calculate performance

measures.

ACODA is a distributed platform. Setting-up and running

it on several computers assumes two stages: (i) initialization;

and (ii) execution.

During the initialization stage: JADE platform is started, a

number of containers are created (typically one container for

each available machine), and finally node agents are created

and evenly distributed on available containers of the JADE

platform.

The experiment is ran during the execution stage. Experi-

ment execution is controlled using special control messages.

Control messages are distinguished from ant exchange mes-

sages using their conversation ID. Command messages have

their conversation ID set to “command”, while ant exchange

messages have their conversation ID set to “ant”. Command

messages are given higher priority than ant exchanging mes-

sages.

An experimental round starts when all node agents receive

a “start” command, and ends when all node agents receive

a “stop” command. A designated node agent – called Mas-

terNode is responsible with issuing commands and calculating

performance measures. MasterNode counts the total number

of ants that it receives. When this number reaches a given

maximum value M , MasterNode stops the current round

(issuing a “stop” command) and starts a new round (issuing a

“start” command). Note that MasterNode is needed only for

evaluation and consequently it is not part of the distributed

approach.

Duration Ti of a round i is recorded by MasterNode agent as

time elapsed between issuing a “start” and “stop” command.

While the distributed ACO algorithm is running, minimum

tour costs are passed from node to node via ants. Whenever

a node agent updates its current value of the minimum tour,

the time elapsed since the node received the “start” command

is also recorded. When an experimental round is finished,

MasterNode agent saves the experimental data collected during

the round.

We cannot assume that the best tour recorded by MasterN-

ode is actually the best tour computed during an experimental

round. So we must determine minimum of the best tours

computed by all node agents together with the time when this

tour was found.

Let us suppose that we have n node agents and k experi-

mental rounds. For each node agent j ∈ {1, 2, . . . , n}, let ti,j
be the time of the last update of the best tour performed by

node agent j in round i ∈ {1, 2, . . . , k}, and let vi,j be the

cost of the corresponding tour. MasterNode agent will collect

values vi,j and ti,j and will determine the solution vi and

associated time ti in round i as shown in first two rows of

Table II.

The experimental data that were acquired during all the

rounds of an experiment are post-processed to calculate per-

formance measures as shown in last five rows of Table II.

Initial performance analysis. We experimented with ACODA

on increasingly complex search versions (see Table III) in

order to establish its effectiveness for implementing ACO-

based algorithms. We considered our ACS-based version of

ACO, together with other three distributed search methods –

Random Choices, Cost Only, and Pheromone Search. The first

two are not ACO-based, while the third is ACO-based.

For the Random Choices (RC) version we replaced equation

(1) with randomly choosing the next hop of an ant from the

unvisited nodes – i.e. the deposited pheromone and the edge

weights are ignored.

For the Cost Only (CO) version we choose the next hop

using equation (2), setting α = 0 and β = 1 – i.e pheromone

deposits are not taken into account.

Pheromone Search (PS) is an ACO-based search that uses

equation (1) to determine the next hop. PS allows all ants to

deposit pheromone regardless of tour cost. For this model, the

ACO parameters were set to the values recommended by [4]

for the ACS algorithm: τ0 = 1/(n2wavg), ρ = ξ = 0.1, α = 1,

β = 5.

Finally, the ACS-based version of ACODA uses the same

parameters as PS, but it allows only the ants that found the

best tour so far to deposit pheromone. For all searches, the

total number of ants is chosen equal to the number of nodes

n (for each node the ant population consists of a single ant)

as recommended in [4].

Note that, as we focus on finding the best solution, we chose

q0 = 0 in Equation (1), thus avoiding the convergence to

a suboptimal solution (this fact is relevant for PS and ACS

versions).

We ran several experiments using the following benchmark

TSP maps selected from TSPLIB [6]: eil51, st70, kroA100,

200 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

TABLE II: Calculation of performance measures.

vi = minnj=1
vi,j vi is the solution found by round i.

ti = minnj=1
{ti,j |vi,j = vi} ti is the time in which solution was found by round i.

vavg = (
∑k

i=1
vi)/k vavg is the average value of solutions found in all rounds.

tavg = (
∑k

i=1
ti)/k tavg is the average time in which solutions were found in all rounds.

vmin = minki=1
vi vmin is the best solution found after carrying out all rounds.

tmin = minki=1
{ti|vi = vmin} tmin is the time taken to find the best solution in all rounds for the first time.

Tavg = (
∑k

i=1
Ti)/k Tavg is the average execution time of the rounds in an experiment.

TABLE III: Algorithms implemented on ACODA. “nop” means that the corresponding function has an empty body for that

specific case.

RC CO PS ACS
evaporation no no no yes no yes

LOCAL EVAPORATE PHEROMONE() nop nop nop eq (5) nop eq (5)
DEPOSIT PHEROMONE() nop nop eq (6) eq (4) eq (6) eq (4)

Observations: no
pheromone
update

no
pheromone
update

all ants deposit
pheromone

only the best tour
is marked

RANDOM CHOICE() random
unvisited
neighbor

eq (2)
α = 0,
β = 1

eq (1) α = 1,
β = 5

eq (1) α = 1,
β = 5

ch150. Note that the number in the map name indicates

the number of nodes of the map, so for example map st70

contains 70 nodes. These maps were chosen to experiment

with different values of wavg and ∆w = wmax−wmin where

∆w is the difference between the maximum and the minimum

edge weight and wavg is the average edge weight.

Taking into account that we create an agent for each node,

it follows that for st70 problem 70 agents were created. These

agents are evenly distributed on 7 computers, so 10 agents

must be created on each computer for solving st70 problem.

We define an ant move as the action of transferring an ant

from a source node to destination node along a given edge. The

number of ant moves was chosen according to the proposal

from [4]. There, 1000 moves per ant were chosen for a 19 node

map. Taking into account the sizes of our maps and scaling

up proportionally, we determine a number M = 10000 of ant

moves for our experiments.

We ran 10 rounds for each experiment on networks of 7

computers with dual core processors at 2.5 GHz and 1GB of

RAM memory. These workstations were interconnected using

a high-speed Myrinet interconnection network at 2Gb/s.

In the CO model the ants pick the smallest available weight

(i.e the nearest unvisited neighbor) with a greater probability

than the rest. This strategy guides the ants to worse solutions

than the RC model. As expected, in the RC model, the

difference vavg − vmin is larger as the tours variate in cost

more.

In Table V we considered both evaporation scheme sug-

gested by [4] for ACS (equation (4); see rows marked with

evap = 1 on Table V) and absence of evaporation (equation

(6); see rows marked with evap = 0 on Table V). Note that

the PS model has no significant benefit from using the ACS

evaporation scheme with the recommended parameter values

in [4]. As a matter of fact in most cases evaporation decreases

the quality of the solutions, see Table V for evap = 0 the

values of vmin and vavg are better than those for evap = 1.

This is not the case for the ACS version of ACODA where

evaporation improves the solutions. This suggests there is still

room for improvement in the PS model. However, further

study is needed in order to establish wether the evaporation

parameters should be adjusted or a completely new approach

should be developed.

Our experiments (see Table V) clearly show that the

ACODA versions that take into account pheromone deposits

are much more efficient at determining good solutions since

the values of vmin and vavg from Table V are better than those

in Table IV. The fact that all these variations can be easily

implemented using ACODA supports the flexibility of this

architecture, while the fact that the best results are obtained

when pheromone deposits are taken into account shows the

effectiveness of ACODA in supporting distributed forms of

ACO.

V. RELATED WORK

TSP is a classic benchmark problem for heuristic search

algorithms. With the advent of distributed computing tech-

nologies, distributed versions of heuristic algorithms for TSP

were also proposed. However, based on our literature review,

there are very few works that propose ACO-based truly

distributed TSP algorithms. Moreover, there are even fewer

proposals that utilize recent advances of multi-agent systems

middleware for ACO-based TSP [5]. Nevertheless, we could

find references to multi-agent approaches to ACO algorithms

for other combinatorial optimization problems ([7], [8], [9]).

A closely related approach to agent-based distributed ACO

is presented in [5]. There, both graph nodes and ants are

SORIN ILIE, COSTIN BADICA: EFFECTIVENESS OF SOLVING TRAVELING SALESMAN PROBLEM 201

TABLE IV: Experimental results for RC and CO.

RC CO
map vavg tavg [s] vmin tmin[s] Tavg [s] vavg tavg [s] vmin tmin[s] Tavg [s]

eil51(426) 1390 85.6 1240 1.72 37.6 1263.8 22 1236 1 38.4
st70(675) 2504.6 53.6 2386 48.9 58.6 2612.6 18.3 2596 6.2 57.8

kroA100(21282) 38729.8 31.4 35276 29.6 99.3 78510.4 49.7 76387 90 145.4
ch150(6528) 46409 58.5 44815 148.1 209.4 31724.8 45.3 30766 186.8 201.2

TABLE V: Experimental results for ACS and PS.

ACS PS
map evap vavg tavg [s] vmin tmin[s] Tavg [s] vavg tavg [s] vmin tmin[s] Tavg [s]
eil51 1 448.6 14 440 27.2 40.1 482.2 15.8 471 2 38.1
(426) 0 453.2 19.3 444 7.2 39.7 449.4 12.8 442 10.9 39
st70 1 688.4 37.4 682 47.2 55.2 688 25.3 684 6.4 56.2
(675) 0 729.2 29.2 722 20.2 54.5 684.6 28.1 679 20.8 54.6

kroA100 1 23066 66.7 22380 60 91.9 22601.8 53.8 22286 31.6 92.3
(21282) 0 24887 53 24396 76.7 94.2 22997 29.1 22605 77.3 92
ch150 1 7263 86.6 7150 131.2 188.6 7729.4 17.4 7638 26 194.2
(6528) 0 7930.4 45.3 7806 6 194.7 6753.8 71.7 6692 57.5 192.8

implemented as JADE software agents. Ants centralize infor-

mation about pheromone deposits and nodes’ best tour cost

through a single ACL message exchange per node [3]. This

procedure adds up to 2n messages per tour per ant, where n
is the number of nodes. Each ant has to notify the node about

its next hop and the cost of its tour in order for the node to

be able to update its pheromone levels. This generates other

n messages. When an ant completes a tour, it compares the

tour cost with the collected best tours from the nodes. A best

tour synchronization is triggered for all the nodes if a better

tour has been found. This brings an additional overhead of n
messages. So, [5] approach requires at most 4n messages per

tour per ant, while our approach requires at most 2n messages:

n messages (ant moves) to complete a tour and n messages

to deposit the pheromone. We avoid the additional overhead

of sending to nodes all the information necessary to carry out

their tasks, as in ACODA this information is already contained

in ant messages exchanged between nodes.

ACODA implementation reported here is based on the

sequential ACS algorithm presented in [4]. There are however

three notable differences: i) We avoid the explicit iterations

of the standard ACS. An iteration lasts until each ant has

found a tour. With the distributed architecture it would be

time consuming to provide the synchronization necessary for

implementing the explicit iterations, because it would cancel

the main benefits of an asynchronous, distributed architecture;

ii) In ACS, best tours are compared after each iteration, thus

allowing only the best ant to mark its tour. Again, this would

require synchronization and centralized computation and we

avoid it by allowing all ants to mark their tours; iii) In ACS

ants move synchronously, taking one step at a time, while in

our approach ants move asynchronously.

Papers [8] and [9] propose JABAT – a JADE-based middle-

ware for agent teams. JABAT supports distributed implementa-

tion and collaboration of population-based optimization algo-

rithms. In particular, JABAT was applied to TSP. There is how-

ever an important difference between JABAT and ACODA.

JABAT agents represent improvement algorithms, which basi-

cally means that improvement algorithms are sequential and

they cooperate for solving a problem in a distributed way.

ACODA agents provide a natural distributed model of the

problem environment that is suitable for distributed ACO

algorithms. Moreover, we could not find scalability studies

referring to JABAT.

Paper [7] proposes a JADE-based multi-agent environ-

ment for dynamic manufacturing scheduling that combines

intelligent techniques of ACO and multi-agent coordination.

However, the focus in [7] is to evaluate the impact of ACO

intelligence on multi-agent coordination, rather than to utilize

multi-agent middleware for improving ACO. ACO intelligence

is embedded into job and machine agents with the role of ants,

which is different from ACODA where ants are passive objects

exchanged by software agents that provide a distributed model

of the problem environment.

In [10] authors compare a distributed form of ACS with

flooding algorithm applied on resource discovery problem.

They experiment with both algorithms using ns-2 network

simulation tool [11]. The down side of this is that no real

execution time measure can be made using their approach.

They showed that ACS is the better approach in terms of:

best success rate, least number of hops and least traffic. The

detailed algorithm and ACO parameters are not presented in

order to duplicate their approach using our ACODA frame-

work, for a realistic comparison. The differences between their

approach and ACODA are: (i) resource queries are handled

centrally at a single anthill, thus introducing single point of

failure, (ii) they do not take edge weights into account as they

are trying to solve the resource discovery problem, not the TSP

problem, and (iii) ants are implemented as ns-2 mobile agents,

while in ACODA we are using JADE. Moreover, in practice

202 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

there is no need for code mobility as every ant is governed by

the same behavioral rules. So, in our approach we use “nodes

as agents” to control ants’ movement using messages, rather

than using code (i.e. JADE agent) mobility.

Paper [12] proposes purely theoretical frameworks for

multi-agent systems. No experiments or implementations are

mentioned. The authors present a distributed form of ACO

based on so called “smart messages” approach to multi-agent

systems where agent mobility is used to implement complex

communication over dynamic networks. They use delegate

multi-agent systems to manage these smart messages in order

to design a multi-agent approach for ACO. They do not

present ways of representing the environment, determining

convergence or stopping condition of ACO experiments.

In [13] authors thoroughly analyze multi-colony ACO al-

gorithms applied on TSP. The main difference between their

and our approaches is that they run a separate colony on

each available processor. At predetermined points in time, the

solutions are centrally collected and local search is performed

on the best solution provided by each of the colonies. This

is not a fully decentralized approach to ACO, as it requires

synchronization and centralized sequential local search after

each solution was centrally collected. Our approach is com-

pletely decentralized, parallel and asynchronous, and thus it

could lend itself to heavy parallelization.

VI. CONCLUSIONS

In this paper we presented experimental results with our new

multi-agent framework for truly distributed ACO. An initial

implementation of the framework using JADE multi-agent

platform was outlined. This implementation followed the ACO

approach initially proposed for the ACS system. However,

three important differences between ACODA and original ACS

system were highlighted. This approach was initially evaluated

on sample benchmark TSP problems. Experimental results

were encouraging, as they clearly support the effectiveness of

our proposal for distributed ACO, thus confirming the feasibil-

ity of our ACODA framework. We already identified suitable

directions for future works: i) strengthen the scalability results

by experimenting with this approach on larger TSP problems

and larger computer networks; ii) support the generality of our

framework by considering other forms of ACO rather than

only ACS; iii) improve the ACODA architecture to enable

experimentation with larger TSP problems than the current

version of ACODA is able to support.

ACKNOWLEDGMENT.

This work was partially supported by the strategic

grant POSDRU/88/1.5/S/50783, Project ID50783 (2009), co-

financed by the European Social Fund—Investing in People,

within the Sectoral Operational Programme Human Resources

Development 2007–2013.

REFERENCES

[1] S. Ilie and C. Bădică, “Distributed multi-agent system for solving
traveling salesman problem using ant colony optimization,” in Intelligent

Distributed Computing IV, Proc.4th International Symposium of Intelli-

gent Distributed Computing, IDC’2010, ser. Studies in Computational
Intelligence. Springer, 2010, vol. 315, pp. 119–130.

[2] M. Wooldridge, An Introduction to MultiAgent Systems. John Wiley &
Sons Ltd, 2002.

[3] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent

Systems with JADE. John Wiley & Sons Ltd, 2007.
[4] M. Dorigo and T. Stutzle, Ant Colony Optimization. MIT Press, 2004.
[5] E. Ridge, D. Kudenko, and D. Kazakov, “Parallel, asynchronous and

decentralised ant colony system,” in In Proc.of the First International

Symposium on Nature-Inspired Systems for Parallel, Asynchronous and

Decentralised Environments (NISPADE), 2006.
[6] G. Reinelt, “Tsplib - a traveling salesman library,” ORSA Jour-

nal on Computing, 1991, http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/.

[7] W. Xiang and H. P. Lee, “Ant colony intelligence in multi-agent dynamic
manufacturing scheduling,” Engineering Applications of Artificial Intel-

ligence, vol. 21, no. 1, pp. 73–85, 2008.
[8] D. Barbucha, I. Czarnowski, P. Jedrzejowicz, E. Ratajczak, and

I. Wierzbowska, “Jade-based a-team as a tool for implementing
population-based algorithms,” in Proc.6th International Conference on

Intelligent Systems Design and Applications: ISDA’2006. IEEE Com-
puter Society, 2006, pp. 144–149.

[9] I. Czarnowski, P. Jedrzejowicz, and I. Wierzbowska, “A-team mid-
dleware on a cluster,” in Proc.3rd KES International Symposium on

Agent and Multi-Agent Systems: Technologies and Applications: KES-

AMSTA’2009, ser. Lecture Notes in Computer Science. Springer-Verlag,
2009, vol. 5559, pp. 764–772.

[10] S. M. Fattahi and N. M. Charkari, “Ant distributed acs algorithm for
resource discovery in grid,” Special Issue of the International Journal

of the Computer, the Internet and Management, vol. 17, no. SP1, 2009.
[11] The ns-2 project, a network simulation tool.

Http://nsnam.isi.edu/nsnam/index.php/.
[12] T. Holvoet, D. Weyns, and P. Valckenaers, “Patterns of delegate mas.”

Los Alamitos, CA, USA: IEEE Computer Society, 2009, pp. 1–9.
[13] C. Twomey, T. Stützle, M. Dorigo, M. Manfrin, and M. Birattari, “An

analysis of communication policies for homogeneous multi-colony aco
algorithms,” Inf. Sci., vol. 180, no. 12, pp. 2390–2404, 2010.

SORIN ILIE, COSTIN BADICA: EFFECTIVENESS OF SOLVING TRAVELING SALESMAN PROBLEM 203

