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ABSTRACT
In this paper, we create a unified framework for spectrum sens-

ing of signals which have covariance matrices with known eigen-
value multiplicities. We derive the generalized likelihood-ratio test
(GLRT) for this problem, with arbitrary eigenvalue multiplicities un-
der both hypotheses. We also show a number of applications to spec-
trum sensing for cognitive radio and show that the GLRT for these
applications, of which some are already known, are special cases of
the general result.

1. INTRODUCTION
One of the most essential parts of cognitive radio is spectrum sens-
ing. An erroneous decision results in either increased interference
for the primary users (missed detection), or underutilized spectrum
(false alarm). Therefore, it is important to design good detectors,
that exploit most of the available knowledge about the signal to be
detected. All man-made signals have some structure, which is in-
tentionally introduced for example by the channel coding, the mod-
ulation and by the use of space-time codes. Usually, some of these
properties of the signal are known from standards.

In this work, we consider a discrete-time model, and the struc-
ture of the signal is then inherent in the covariance matrix of the
signal if the signal is stationary. Such structures incurs that some of
the eigenvalues of the signal covariance matrix are larger than oth-
ers, even though the exact eigenvalues or their multiplicities may not
be known. Detection of correlated signals, exploiting features with
unknown parameters is often referred to as blind detection. Blind de-
tectors based on functions of eigenvalues of the sample covariance
matrix were proposed and analyzed e.g. in [1, 2]. These detectors
are blind in the sense that they do not exploit any knowledge of the
eigenvalues nor their multiplicities. In this work, however, we con-
sider the eigenvalues of the signal covariance matrix to have known
multiplicities. This can occur, for example, when a single signal is
received by multiple antennas (SIMO) [2, 3, 4, 5], when the signal is
encoded with an orthogonal space-time block code (OSTBC) [6], or
if the signal is an OFDM signal [7].

A related problem was considered in [8], also dealing with co-
variance matrices with known eigenvalue multiplicities. The prob-
lem of [8] was not only to detect the presence or absence of a signal,
but rather to detect the number of signal sources embedded in noise.
The paper [8] assumed that each signal source gives rise to a distinct
eigenvalue, and that the remaining eigenvalues are equal to the noise
power. This is a special case of the problem we consider in this
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paper, which allows arbitrary eigenvalue multiplicities. The work
of [8] made use of the results on principal component analysis in
[9]. In this work, we also use the results of [9], in particular for the
maximum-likelihood estimation of the covariance matrices.

Contributions: We derive the generalized likelihood-ratio test
(GLRT) when the covariance matrices have arbitrary and known
eigenvalue multiplicities under both hypotheses. We show that this
is a unifying framework for some applications of spectrum sensing,
which are special cases of the general result. In particular, we show
that the GLRT of [2, 3, 4, 5], for detection of a single signal using
multiple antennas, is a special case of the problem. Furthermore, we
show that two of the detectors proposed in [6], for signals encoded
with an OSTBC, are equivalent to the GLRT. We also derive the
eigenvalues and their multiplicities of a synchronized OFDM signal
in an AWGN channel, using the model in [7]. From this, we derive
the GLRT for detection of an OFDM signal in AWGN.

2. MODEL AND PROBLEM FORMULATION
Let yk, k = 1, . . . ,K, be the observed N -length column vectors.
We wish to discriminate between the two hypotheses

H0 : yk ∼ N (0,Q0), i.i.d. k = 1, . . . ,K

H1 : yk ∼ N (0,Q1), i.i.d. k = 1, . . . ,K,
(1)

where Qi has ri distinct eigenvalues λ1,i > λ2,i > . . . > λri,i,
with known multiplicities q1,i, . . . , qri,i respectively, and yk ∈
R

N×1. Then,
∑ri

j=1 qj,i = N . Note that the model is real-valued.
This is not a restriction in most cases, since a complex valued model
can be split into its real and imaginary parts.

Let Y � [y1 y2 . . . yK ] ∈ R
N×K , and denote by R̂ the sam-

ple covariance matrix

R̂ �
1

K

K∑
k=1

yky
T
k =

1

K
YY

T . (2)

Then the likelihood functions of Y, under the two hypotheses can
be written

p(Y|Qi) =
1

(2π)NK/2 det (Qi)
K/2

exp

(
−
K

2
tr
(
Q

−1
i R̂

))
.

(3)

3. DETECTION
In general, the covariance matrices Qi are unknown. A standard
technique to deal with unknown parameters, that usually performs
well, is the generalized likelihood-ratio test (GLRT):

p
(
Y|H1, Q̂1

)
p
(
Y|H0, Q̂0

) H1

≷
H0

η, (4)
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where Q̂i is the maximum-likelihood (ML) estimate of Qi, and the
multiplicities q1,i, . . . , qri,i of the eigenvalues ofQi are assumed to
be known. As already mentioned, this can be the case for example
in a SIMO transmission [2, 3, 4, 5], if the signal is encoded with
an orthogonal space-time block code [6], or if the signal is OFDM
modulated as we will show in Section 4.4. This also includes the
special case of [10] when the structure of the transmitted signal is
assumed to be completely unknown, so that all eigenvalues of the
covariance matrix are assumed to have multiplicity one.

3.1. ML-Estimation of the Covariance Matrices
In this subsection, we will show the maximum-likelihood estimates
that are required for the GLRT. The main work in deriving the ML
estimates ofQi was done in [9]. We will then use the result of [9] to
derive the likelihood functions and the GLRT in (4).

Let u1,i, . . . ,uN,i denote the eigenvectors ofQi, normalized so
that ‖uj,i‖ = 1, ∀j, i. Define the set of indices

Sk,i �

(
k−1∑
j=1

qj,i

)
+ 1, . . . ,

k∑
l=1

ql,i (5)

(⇒
⋃ri

k=1 Sk,i = 1, . . . , N ). For example, if there are two dis-
tinct eigenvalues with multiplicities q1,1 and q2,1 (= N − q1,1)
respectively under hypothesis H1, then S1,1 = 1, . . . , q1,1 and
S2,1 = q1,1 + 1, . . . , N . The covariance matrix Qi is completely
defined by its eigenvalues and eigenvectors, and can be written

Qi =

ri∑
k=1

∑
j∈Sk,i

λk,iuj,iu
T
j,i.

Denote by dk and vk, k = 1, . . . , N , the eigenvalues sorted
in descending order, and the corresponding normalized eigenvectors
respectively of the sample covariance matrix R̂. Following [9], the
ML estimates of the eigenvalues and eigenvectors are

λ̂k,i =
1

qk,i

∑
j∈Sk,i

dj , k = 1, . . . , ri,

ûk,i = vk, k = 1, . . . , N.

(6)

3.2. Generalized Likelihood-Ratio Test
Inserting the ML estimates (6) into the likelihood function (3) yields
(7). Now, consider the likelihood functions of the two hypotheses.
Then, inserting (7) for both hypotheses into (4) yields

p
(
Y|H1, Q̂1

)
p
(
Y|H0, Q̂0

) =

⎛⎝∏r0
k=1

(
1

qk,0

∑
l∈Sk,0

dl
)qk,0

∏r1
j=1

(
1

qj,1

∑
i∈Sj,1

di
)qj,1

⎞⎠K/2

We state the result in a theorem.

Theorem 1 The GLRT of (1), where Qi has distinct eigenvalues
λ1,i > λ2,i > . . . > λri,i, with known multiplicities q1,i, . . . , qri,i
respectively, is ∏r0

k=1

(
λ̂k,0

)qk,0

∏r1
j=1

(
λ̂j,1

)qj,1 H1

≷
H0

η, (8)

where
λ̂k,i =

1

qk,i

∑
j∈Sk,i

dj ,

the sets Sk,i are given by (5), and dj are the eigenvalues of the sam-
ple covariance matrix given by (2) sorted in descending order.

4. SPECTRUM SENSING APPLICATIONS
In spectrum sensing for cognitive radio, the problem is to discrim-
inate between noise only and a signal embedded in noise. In the
following, we will show a number of spectrum sensing applications,
that are special cases of our general result in Theorem 1. A standard
assumption is that the noise is zero-mean white, so that

yk|H0 ∼ N (0, σ2
I).

That is, under H0 there is only one eigenvalue with multiplicity N .
This assumptions yields that the numerator in (8) is(

1

N

N∑
i=1

di

)N

=

(
1

N
tr(R̂)

)N

.

We will use this assumption in the sequel of this section.

4.1. Multiple Receive Antennas (SIMO)
The first special case we consider is when the detector have multiple
antennas, which was analyzed in [2, 3, 4, 5]. Assume that there are
nr = N > 1 receive antennas at the detector. Then, under H1, the
received signal can be written

yk = hxk +wk, k = 1, . . . ,K, (9)

where h is the channel vector, xk is the transmitted signal sample,
and wk is the noise vector. The signal is assumed to be zero-mean
Gaussian, i.e. xk ∼ N (0, γ2). The noise is the same as under H0,
i.e. wk ∼ N (0, σ2I). Then, the covariance matrix under H1 is
Q1 = γ2hhT + σ2I.

Now we have the following eigenvalues with their correspond-
ing multiplicities under the two hypotheses

H0 : λ1,0 = σ2, q1,0 = N,

H1 :

{
λ1,1 = γ2‖h‖2 + σ2, q1,1 = 1,

λ2,1 = σ2, q2,1 = N − 1.

(10)

Inserting these into (8) yields the GLRT(
1
N
tr(R̂)

)N
d1
(

1
N−1

∑N
i=2 di

)N−1

H1

≷
H0

η.

This test is equivalent to [4, eq. (35)], showing that the GLRT of
[2, 3, 4, 5] is a special case of Theorem 1.

4.2. Orthogonal Space-Time Block Codes
Now consider a slightly more general case, when the transmitted sig-
nal is encoded with an orthogonal space-time block code (OSTBC).
This problem was considered in [6], and we use the same model
here.

Assume that there are nr receive antennas and nt transmit an-
tennas. The OSTBC code matrix X ∈ C

nt×T is a linear function
of ns symbols s1, . . . , sns and their complex conjugates. The coded
symbols (columns of X) are transmitted over T time intervals. Let
Y ∈ C

nr×T be the received matrix that consists of the space-time
coded signal plus noise, i.e.

Y = HX+W, (11)
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p(Y|Q̂i) =
exp
(
−K

2
tr
(
Q̂−1

i R̂
))

(2π)NK/2 det
(
Q̂i

)K/2
=

exp
(
−K

2
tr
(∑ri

k=1

∑
m∈Sk,i

1

λ̂k,i

vmvT
m

∑N
j=1 djvjv

T
j

))
(2π)NK/2 det

(
Q̂i

)K/2
=

exp
(
−K

2

∑ri
k=1

∑
m∈Sk,i

dm
λ̂k,i

)
(2π)NK/2

(∏ri
k=1 λ̂

qk,i

k,i

)K/2

=

exp

(
−K

2

∑ri
k=1

∑
m∈Sk,i

dm

1

qk,i

∑
l∈Sk,i

dl

)
(2π)NK/2

(∏ri
k=1

(
1

qk,i

∑
j∈Sk,i

dj
)qk,i

)K/2
=

1(∏ri
k=1

(
1

qk,i

∑
j∈Sk,i

dj
)qk,i

)K/2

exp
(
−KN

2

)
(2π)NK/2

(7)
where H ∈ C

nr×nt is the channel matrix, and W ∈ C
nr×T is a

matrix of noise. Following [6], we have assumed perfect time and
frequency synchronization. Then, following [6], we can for an OS-
TBC equivalently write the model as

y = Gx+w,

whereG is a real-valued 2nrT × 2ns-matrix (ns < nrT ) with the
propertyGTG = ‖H‖2I, and

x =
[
Re(s1), . . . ,Re(sns), Im(s1), . . . , Im(sns)

]T
∈ R

2ns×1.

Now consider K space-time blocksYk, or equivalently K vec-
tors yk, received in a sequence. Moreover, we assume that the chan-
nel is slow fading, such that the generator matrix G remains the
same during the whole time of reception. Then, under H1, we have
the model

yk = Gxk +wk, k = 1 . . . ,K. (12)
We assume that the elements of xk are i.i.d. N (0, γ2). In this case,
the covariance matrix underH1 isQ1 = γ2GGT +σ2I. Therefore,
we have the following eigenvalue properties under H1{

λ1,1 = γ2‖H‖2 + σ2, q1,1 = 2ns,

λ2,1 = σ2, q2,1 = 2nrT − 2ns,

and under H0 the same as in (10). Using these particular eigenvalue
multiplicities in Theorem 1, we obtain the GLR(

1
2nrT

tr(R̂)
)2nrT

(
λ̂1,1

)2ns
(
λ̂2,1

)2nrT−2ns

=
1

(2nrT )
2nrT

(
2nsλ̂1,1 + (2nrT − 2ns) λ̂2,1

)2nrT

(
λ̂1,1

)2ns
(
λ̂2,1

)2nrT−2ns

=
1

(2nrT )
2nrT

(
λ̂2,1

λ̂1,1

)2ns
(
2nsλ̂1,1 + (2nrT − 2ns) λ̂2,1

λ̂2,1

)2nrT

=
1

(2nrT )
2nrT

(
λ̂2,1

λ̂1,1

)2ns
(
2ns

λ̂1,1

λ̂2,1

+ 2nrT − 2ns

)2nrT

By taking the derivative of this GLR, with respect to λ̂1,1/λ̂2,1, one
can show that the GLR is a monotonously increasing function of
λ̂1,1/λ̂2,1. Therefore, the GLRT can be equivalently written

λ̂1,1

λ̂2,1

H1

≷
H0

η. (13)

Now, we have shown that the estimate of the covariance matrix that
was proposed in [6], and referred to as “near-ML”, is actually the

true ML-estimate. Moreover, the ad-hoc detector proposed in [6] is
identical to (13). Thus, we have shown that the ad-hoc detector of
[6] is also equivalent to the GLRT. This explains why the numerical
performances of these detectors were identical in [6].

4.3. Signal with Unknown Correlation Structure
Now consider the case when the signal correlation is unknown, so
that all eigenvalues of the covariance matrix are assumed to have
multiplicity one. That is, under H1

qk,1 = 1, k = 1, . . . , N.

Again, we assume that the noise is white Gaussian, so that there is
only one distinct eigenvalue with multiplicity N under H0, as in
(10). Using these assumptions in Theorem 1, we obtain the GLRT(

1
N
tr(R̂)

)N
∏N

j=1 dj

H1

≷
H0

η.

This is of course equivalent to the GLRT obtained in [10] for this
special case of the problem, and also to the sphericity test of [11].

4.4. OFDM
In this section we consider an OFDM signal with a cyclic prefix
(CP). We will use the vector-matrix model of [7], and show the
eigenvalue properties of the received OFDM signal in an AWGN
channel. Again, we assume perfect synchronization.

Now, let xk be the Nd-vector of data associated with the kth
OFDM symbol. This data vector is the output of the IFFT operation,
used to create the OFDM data. An OFDM symbol is then created by
repeating the lastNc elements of xk at the beginning of the symbol.
Following [7], the received OFDM symbol can be modelled by (12),
where

G =

[
0Nc×Nd−Nc INc

INd

]
∈ R

(Nc+Nd)×Nd .

Here 0n×m denotes the n × m all-zero matrix, and In denotes the
n× n identity matrix. Then, G has the property

G
T
G = diag(1, . . . , 1︸ ︷︷ ︸

Nd−Nc

, 2, . . . , 2︸ ︷︷ ︸
Nc

) ∈ R
Nd×Nd . (14)

Since the matricesGTG andGGT have the same non-zero eigen-
values, this means that the matrix GGT have eigenvalues 2, 1 and
0 with multiplicities Nc, Nd − Nc and Nc respectively. Again, the
covariance matrix is Q1 = γ2GGT + σ2I under H1, and we get
the following eigenvalue properties⎧⎪⎨⎪⎩

λ1,1 = 2γ2 + σ2, q1,1 = Nc,

λ2,1 = γ2 + σ2, q2,1 = Nd −Nc,

λ3,1 = σ2, q3,1 = Nc.
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With these eigenvalue multiplicities, the GLR in Theorem 1 becomes(
1
N
tr(R̂)

)N
(
λ̂1,1

)Nc
(
λ̂2,1

)Nd−Nc
(
λ̂3,1

)Nc
.

Here, we assumed real-valued OFDM samples, but in reality they
are complex-valued. This is not a restriction. Since the generator
matrix G is real valued, we can split the received vectors into real
and imaginary parts and deal with them separately. The only con-
sequence of this is that the dimension of the received vector and the
multiplicities of the eigenvalues will increase with a factor of two.

5. MONTE-CARLO SIMULATIONS
In the following, we will show some numerical results of the pro-
posed GLRT exemplified by a signal encoded with the Alamouti
code. We will compare the proposed GLRT, that exploits the known
signal structure, with a few eigenvalue-based blind detectors.

5.1. Benchmarks
There were two blind detectors proposed in [1], based on functions
of the eigenvalues of the sample covariance matrix. The detectors of
[1] use the tests

d1
dN

H1

≷
H0

η′,
tr(R̂)

dN

H1

≷
H0

η′′. (15)

A similar test is
d1

tr(R̂)

H1

≷
H0

η̃. (16)

The detector (16) works as a blind detector for any kind of correlated
signal, although it was also shown in [2, 3, 4] to be equivalent to the
GLRT for the SIMO scenario of Section 4.1.

5.2. Numerical Results
The Alamouti code is an OSTBC, so the GLRT in this case is given
by (13). As a comparison, we show the detection performance of the
detectors presented in Section 5.1. Note in passing that none of the
detectors requires knowledge of the noise variance. Each detector
receivedK = 100 code blocks, using nr = 8 receive antennas. The
SNR in dB is defined as 10 log10(γ

2/σ2). Performance is given as
the probability of missed detection, PMD, as a function of SNR. The
channel coefficients were drawn from a complex circularly symmet-
ric N (0, 1) distribution. The probability of false alarm was chosen
to PFA = 0.05. The optimal decision thresholds were computed em-
pirically from a set of noise-only realizations, to achieve the chosen
PFA. The results are shown in Figure 1. It is clear that the GLRT,
exploiting the known eigenvalue structure, performs better than the
blind detectors.

6. CONCLUDING REMARKS
We generalized and unified numerous recent problems in spectrum
sensing. It should be noted that the general result also includes the
problem of discriminating two signals, of different kind, from one
another. This problem may be of large interest in the context of
cognitive radio, when one wishes to distinguish between primary
and secondary user’s signals.

−20 −15 −10 −5
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GLRT (13)
d1/tr(R̂) [2, eq. (6)]
d1/dN [1, Sec. III.A]
tr(R̂)/dN [1, Sec. III.B]

Fig. 1. Probability of missed detection versus SNR for detection of
an Alamouti coded signal. PFA = 0.05, K = 100, nr = 8.
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