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ABSTRACT

We introduce in this paper a new distributed sequential Monte
Carlo (SMC) algorithm for blind equalization of frequency-
selective broadcast channels. In the considered setup, mul-
tiple receiving nodes sense independently distorted versions
of the same broadcast signal and cooperate to recover it. The
proposed approach innovates by using parametric approxima-
tions based on the Variational Bayes (VB) method that allow
the inter-node communication burden to be greatly reduced
compared to previous communication-intensive distributed
SMC algorithms. We verify via numerical simulations that
the proposed method yields better performance than alterna-
tive methods that employ ad hoc parametric approximations,
while preserving roughly the same computational cost.

Index Terms— Distributed Algorithms, Particle Filters,
Variational Bayes Methods, Blind Equalization.

1. INTRODUCTION

We consider in this paper a scenario where a single transmitter
broadcasts a sequence of discrete-valued symbols to multiple
receivers located at different nodes in a network. Rather than
forwarding the local observations at each node to a centralized
data fusion center, our goal is to derive instead a decentralized
algorithm where the different receivers process their own lo-
cal measurements independently, but also cooperate with each
other, via some form of message passing over the network, to
come up with the best global estimate of the transmitted se-
quence given the observations at all nodes.

Previous work, e.g. [1],[2], introduced distributed algo-
rithms that approximate linear minimum-mean-square error
(LMMSE) estimates of a hidden parameter vector or signal
observed by multiple receivers located at remote nodes in a
sensor network. However, the algorithms in [1], [2] are not
ideally suited for distributed equalization of digital broadcast
channels, as, due to the non-Gaussian distribution of the trans-
mitted signals, the optimal minimum probability of error esti-
mate of the transmitted data stream may differ significantly
from the LMMSE estimates approximated by conventional
adaptive or Kalman filters.

In [3], we filled the gap in the literature by introduc-
ing novel maximum-a-posteriori (MAP) particle-filter-based
distributed equalization algorithms. To reduce the heavy
inter-node communication burden required by the (asymp-
totically) optimal distributed particle filter equalizer, [3] also
proposes the use of suboptimal parametric approximations to
certain particle-dependent quantities, at the expense of a mod-
est degradation in performance. Previous work [4], [5] also
considered distributed particle filtering algorithms, but in the
context of target tracking rather than digital communications.
Furthermore, [4],[5] assumed perfect knowledge of the ob-
servation model parameters at each network node, whereas,
in [3], we assumed unknown, random channel parameters.

In this paper, we innovate by proposing a new paramet-
ric approximation scheme based on the Variational Bayes
(VB) [6] method. The VB method allows joint probability
density functions (p.d.f’s) to be approximated by the product
of separable marginal p.d.f’s in a way that the Kullback-
Leibler (KL) divergence between the joint p.d.f. and its sep-
arable approximation is minimized. Using the VB method,
moment matching operations needed for the determination of
parametric density approximations can be performed while
avoiding ad hoc schemes that were previously verified to
perform poorly at low-noise levels [3].

The remainder of the paper is organized as follows: in
Sec. 2 we describe the signal model, briefly introducing in
Sec. 3 the particle filter approach for blind equalization. In
Section 4, we present the new variational Bayes approximate
distributed particle filter (VB-ADPF) scheme, whose perfor-
mance is evaluated in Sec. 5. Finally, we draw our conclu-
sions in Sec. 6.

2. SIGNAL MODEL

Denote by {bn} an independent, identically distributed (i.i.d.)
binary bit sequence and by {xn}, xn ∈ {±1}, the corre-
sponding differentially encoded symbols. We assume that the
observations yr,0:n � {yr,0, . . . , yr,n} at the r−th node of a
network of R receivers are obtained as the output of the addi-
tive noise frequency-selective FIR channel

yr,n = h
H
r xn + vr,n , (1)
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where hr ∈ CL×1 is a vector with the (time-invariant) chan-
nel impulse response terms, xn � [xn . . . xn−L+1]

T , and vr,n

represents an i.i.d zero-mean complex Gaussian random pro-
cess of variance σ2

r .
The unknown, random parameters hr and σ2

r , 1 ≤ r ≤
R, are assumed to be independent for r �= s, and dis-
tributed a priori as σ2

r ∼ IG(σ2
r |α;β) and hr | σ2

r ∼
NL(hr|0; Iσ2

r/ε2), where NL and IG denote respectively
an L−variate Gaussian and an inverse Gamma p.d.f., and
{α, β, ε} are the model’s hyperparameters.

Under these hypotheses, we aim at developing a recur-
sive method for obtaining smoothed MAP estimates b̂n−d =
arg maxbn−d

p(bn−d|y1:R,0:n), where d ≥ 0 and y1:R,0:n �

{y1,0:n . . . yR,0:n}.

3. BLIND EQUALIZATION VIA PARTICLE FILTERS

The posterior probability mass function (p.m.f) of the trans-
mitted bits can be approximated via particle filters as

p(bn−d|y1:R,0:n) ≈

Q∑
q=1

w(q)
n I

{
bn−d = b

(q)
n−d

}
, (2)

where I{·} stands for the indicator function; Q is the num-
ber of particles b

(q)
n , sampled from the importance function

π(·), and w
(q)
n are the importance weights. Exploiting the

fact that each distinct bit sequence b
(q)
−L:n−1 uniquely defines

a corresponding state sequence x
(q)
0:n, the optimal importance

function [7] can be expressed as π(bn|b
(q)
−L:n−1, y1:R,0:n) =

p(xn | x
(q)
0:n−1, y1:R,0:n), which can be evaluated as

p(xn | x
(q)
0:n−1, y1:R,0:n) =

p(xn,x
(q)
0:n−1, y1:R,0:n)∑

xn
p(xn,x

(q)
0:n−1, y1:R,0:n)

.

(3)
The importance weights can be propagated in turn by the re-
cursion [7]

w(q)
n ∝ w

(q)
n−1

∑
xn

p(xn,x
(q)
0:n−1, y1:R,0:n)

p(x
(q)
0:n−1, y1:R,0:n−1)

. (4)

From the a priori independence of the unknown parameters
for each receiver’s channel, one deduces that, see [3],

p(x
(q)
0:n, y1:R,0:n) ∝

R∏
r=1

p(x
(q)
0:n, yr,0:n). (5)

Using the channel parameter priors defined in Section 2, it can
be also shown after tedious algebraic manipulations [7] that

p(x0:n, yr,0:n) =

∫
R+

∫
CL

p(x0:n, yr,0:n,hr, σ
2
r) dhr dσ2

r

∝ |Σn| [βr,n]
−αn (6)

where Σn, βr,n, and αn can be recursively computed via

αn = αn−1 + 1, (7)

βr,n = βr,n−1 + γ−1
n ‖er,n‖

2, (8)

h̄r,n = h̄r,n−1 + γ−1
n Σn−1xne∗r,n, (9)

Σn = Σn−1 − γ−1
n Σn−1xnx

H
n Σn−1, (10)

with er,n � yr,n−h̄
H
r,n−1xn, γ−1

n � 1+x
H
n Σn−1xn, α−1 =

α, βr,−1 = β, h̄r,−1 = 0, and Σ−1 = Iε−2.

4. COOPERATIVE BLIND EQUALIZATION

Substituting (5) into (3), the expression of the optimal impor-
tance function can be rewritten as

p(xn|x
(q)
0:n−1, y1:R,0:n) =

∏R

r=1 λ
(q)
r,n(xn)∑

xn

∏R

r′=1 λ
(q)
r′,n(xn)

(11)

where λ
(q)
r,n(xn) � p(xn,x

(q)
0:n−1, yr,0:n). Likewise, the

weight update rule can be obtained by plugging in (5) into
(4), which yields

w(q)
n ∝ w

(q)
n−1

∑
xn

R∏
r=1

λ
(q)
r,n(xn)

λ
(q)
r,n−1(x

(q)
n−1)

. (12)

The DcPF-II algorithm in [3] is an exact decentralized im-
plementation of (11)-(12). Despite its asymptotic optimality,
that algorithm has heavy inter-node communication require-
ments (2Q real numbers per node per bit in a BPSK system
[3]), which preclude its use in practical applications. To mit-
igate this, we propose here a method to eliminate the need to
broadcast the Q distinct coefficients λ

(q)
r,n by replacing those

quantities in the s−th node (s �= r) with the approximation
λ̃r,n(xn), defined so as to depend on the r−th receiver parti-
cles only via a predefined set of parameters that are indepen-
dent of the particle label q.

To this aim, we first observe that, from the a priori inde-
pendence of the unknown parameters, it can be verified that
p(hr, σ

2
r |x0:n, y1:R,0:n−1) = p(hr, σ

2
r |x0:n−1, y1:R,0:n−1)

and

p(hr, σ
2
r |x0:n−1, y1:R,0:n−1) = p(hr, σ

2
r |x0:n−1, yr,0:n−1).

(13)
Assuming now the prior pdf’s in Section 2, it can be

shown that [7] p(hr|σ2
r ,x

(q)
0:n−1, yr,0:n−1) = N (hr|h̄

(q)
r,n−1,

σ2
rΣ

(q)
n−1) and p(σ2

r |x
(q)
0:n−1, yr,0:n−1) = IG(σ2

r |αn−1, β
(q)
r,n−1)

where Σ
(q)
n , h̄

(q)
r,n, α

(q)
n , and β

(q)
r,n are given by the recur-

sions in (7)-(10). Given then a Monte Carlo representa-
tion of p(x0:n−1 | yr,0:n−1) by the properly weighted set

{x
(q)
0:n−1, w

(q)
n−1} and using (13), we can make the approxima-
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tion

p(hr, σ
2
r |yr,0:n−1) ≈

Q∑
q=1

w
(q)
n−1p(hr, σ

2
r |x

(q)
0:n−1, yr,0:n−1)

=

Q∑
q=1

w
(q)
n−1IG(σ2

r |αn−1, β
(q)
r,n−1)N (hr|h̄

(q)
r,n−1, σ

2
rΣ

(q)
n−1).

(14)

4.1. VB-ADPF Algorithm

To drop the need to transmit particle-specific quantities, we
propose to replace (14) with the single-term approximation

p̃(hr, σ
2
r |x0:n, yr,0:n−1) =

N (hr|h̃r,n−1, σ
2
rΣ̃r,n−1)IG(σ2

r |α̃r,n−1, β̃r,n−1),
(15)

where the parameters (̃·), determined in the sequel, are in-
variant with x0:n−1. The joint density in (15) was designed
to allow the analytic derivation [7] of the approximate likeli-
hood

p̃(yr,n|x0:n, yr,0:n−1) �

∫∫
p(yr,n|hr, σ

2
r ,x0:n, yr,0:n−1)

×p̃(hr, σ
2
r |x0:n, yr,0:n−1) dhrdσ2

r (16)

=
γ̃−1

n β̃
α̃r,n−1

r,n−1(
β̃r,n−1 + γ̃−1

n ‖yr,n − h̃H
r,n−1xn‖2

)(α̃r,n−1+1)
, (17)

where γ̃n � 1 + x
H
n Σ̃r,n−1xn, from which we finally obtain

that

λ̃r,n(xn) � p̃(x0:n, yr,0:n) ∝
n∏

i=0

p̃(yr,i|x0:i, yr,0:i−1) (18)

from the iterative application of Bayes’ law.

4.1.1. Parameter Determination

Our aim is to determine the parameters (̃·) so that the first and
second moments of (15) match, as close as possible, those
of (14). Unfortunately, the exact solution of the aforemen-
tioned moment matching problem is intractable, which forces
us to resort instead to the application of the Variational Bayes
method [6]. First, we make the approximation

p(hr, σ
2
r |x

(q)
0:n−1, y1:R,0:n−1) ≈ f (q)(hr)f

(q)(σ2
r), (19)

where f (q)(·) are VB marginals [6], defined as the set of sep-
arable densities that minimize the KL divergence between the
p.d.f’s on the left and right-hand sides of (19). The derivation
of VB marginals is a somewhat cumbersome inductive pro-
cess (see [6, Ch. 3]) and is omitted here for lack of space.
After long algebraic manipulations, it can be shown that

f (q)(hr) = N

(
hr|h̄

(q)
r,n−1,

β
(q)
r,n−1

αn−1
Σ

(q)
n−1

)
,

f (q)(σ2
r) = IG

(
σ2

r |αn−1+L,
αn−1 + L

αn−1
β

(q)
r,n−1

)
.

(20)

Replacing (20) into (14) and integrating out σ2
r allows us to

analytically determine the approximate marginal

p̂(hr|y1:R,0:n−1) ≈

Q∑
q=1

w
(q)
n−1f

(q)(hr), (21)

whose first and second moments (̂·) can be computed as

ĥr,n−1 =

Q∑
q=1

w
(q)
n−1h̄

(q)
r,n−1, (22)

Σ̂r,n−1 =
∑Q

q=1

[
w

(q)
n−1

(
h̄

(q)
r,n−1h̄

(q)H
r,n−1+

+Σ
(q)
r,n−1

)]
− ĥr,n−1ĥ

H
r,n−1,

(23)

since the r.h.s. of (21) is a sum of Gaussian p.d.f’s. Likewise,
replacing hr with σ2

r on both sides of (21) yields an approx-
imation to p(σ2

r |y1:R,0:n−1). Exploiting properties of the in-
verse Gamma distribution, namely that if σ2 ∼ IG(σ2|α, β),
then E[σ2] = β/(α−1) and VAR[σ2] = E2[σ2]/(α−2), we
obtain that

Ên−1[σ
2
r ] =

(αn−1+L)
∑Q

q=1 w
(q)
n−1β

(q)
r,n−1

αn−1(αn−1+L−1)
, (24)

V̂ARn−1[σ
2
r ] =

(αn−1+L)2

α2
n−1(αn−1+L−1)(αn−1+L−2)

×

Q∑
q=1

[
w

(q)
n−1(β

(q)
r,n−1)

2
]
− Ê2

n−1[σ
2
r ].

(25)

We now wish to determine the parameters of the separable
approximation

N
(
hr|ĥr,n−1, Σ̂n−1

)
IG

(
σ2

r |α̂n−1, β̂r,n−1

)
, (26)

such that the moments of (26) match (22)-(25). The pa-
rameters for the normal distribution in (26) are directly
given by (22) and (23). Solving for the parameters of
the inverse Gamma distribution, we obtain that α̂r,n−1

= 2 + Ê2
n−1[σ

2
r ]/V̂ARn−1[σ

2
r ], and β̂r,n−1 = (α̂r,n−1 −

1)Ên−1[σ
2
r ].

Finally, to analytically evaluate (16), we need to deter-
mine the parameters of the nonseparable approximation (15)
that best matches (26). To this aim, we employ the VB ap-
proximation (20) for a second time, which yields

α̃n−1 = α̂n−1 − L, (27)

β̃r,n−1 =
α̃n−1

α̃n−1 + L
β̂r,n−1, (28)

h̃r,n−1 = ĥr,n−1, (29)

Σ̃r,n−1 = Σ̂r,n−1
α̃n−1

β̃r,n−1

. (30)

The proposed VB-ADPF equalizer runs then as follows:
at instant n, the r−th receiver evaluates (18) for all 2L pos-
sible values1 of xn and broadcasts those quantities. Upon

1Note that the communication cost can be reduced to O(L2) without fur-
ther approximations by broadcasting h̃r,n−1, Σ̃r,n−1, α̃n−1, β̃r,n−1 and
yr,n, which allow (18) to be evaluated at the remote receiver.
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receiving the data broadcast by the remaining receivers, the
r−th receiver evaluates the approximate optimal importance
function and the corresponding importance weights via mod-
ified versions, respectively of Equation (11) and (12), where,
for s = 1, . . . , R, λ

(q)
s,n(xn) is computed via (6) if r = s and

replaced, if s �= r, with λ̃s,n(xn) in (18). In the actual imple-
mentation of (22) and (23), a pivoting technique [7] is used to
mitigate phase ambiguity in h̄

(q)
r,n−1.

5. SIMULATION RESULTS

The performance of the proposed algorithm was evaluated
via simulations consisting of 200 independent Monte Carlo
runs. In each realization, we computed the mean bit error
rate (BER) as a function of EB/N0, transmitting a random
sequence of 300 i.i.d bits, with the first 150 bits discarded
to allow for convergence. For comparison, we ran with the
same setup the previous ADPF and DcPF-II algorithms from
ref. [3]. The simulated communication system has R = 2
receivers and the filters employed Q = 300 particles. All al-
gorithms perform (synchronized) residual resampling [4] at
all iterations. The transmission channels hr have L = 3 co-
efficients, and were obtained by sampling independently in
each realization and for each receiver from a complex Gaus-
sian pdf N (0; Λ), Λ = diag(2, 1, 0.5), and normalized so
that ‖hr‖

2 = 1. The noise variances were determined as
σ2 = ‖hr‖

2N0/EB . The model hyperparameters were set to
α = 3, β = 0.1 and ε = 1.

The results are displayed in Fig. 1. For comparison, we
also show in Fig. 1 the mean BER when the receivers oper-
ate independently and do not cooperate to improve their local
signal estimate. The mean BER for the centralized Forward-
Backward algorithm with perfect knowledge of the channel
parameters is shown as a lower bound to performance. As one
may observe, the cooperative algorithms (DcPF-II, ADPF and
VB-ADPF) outperform the isolated receivers. The VB-ADPF
performance gap relative to DcPF-II at low noise levels is less
than that observed for the previous ADPF algorithm from [3],
indicating the better quality of the VB parametric approxima-
tions compared to the ad hoc approach employed in [3].

6. CONCLUSIONS

We introduced in this paper a novel cooperative particle filter
(PF) algorithm for blind equalization of frequency-selective
broadcast channels. The proposed algorithm relies on para-
metric approximations to reduce the inter-node communica-
tion burden associated with traditional distributed PF meth-
ods. Specifically, in the simulated example shown in the pa-
per, data broadcast requirements were reduced from 2Q =
600 real numbers per node per bit (DcPF-II algorithm [3])
to 2L = 8 real numbers per node per bit, while maintaining
roughly the same computational cost as the communication-
intensive DcPF-II scheme. By replacing the ad hoc para-
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DcPF−II
ADPF
VB−ADPF
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Fig. 1. Mean bit error rate (BER) estimated in 200 indepen-
dent runs.

metric approximations in [3] with the more principled VB
approach, we were able in our numerical simulations to re-
duce the performance gap relative to the theoretically opti-
mal DcPF-II algorithm by a margin of roughly 1 dB in low-
to-medium SNR’s. However, as future work, the asymptotic
convergence of the proposed VB-ADPF algorithm still needs
to be proven analytically.
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fusion of random measures,” Signal, Image and Video Process.,
vol. 1, no. 2, pp. 149–161, June 2007.
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