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Background: Automated cell recognition from histologic
images is a very complex task. Traditionally, the image is
segmented by some methods chosen to suit the image
type, the objects are measured, and then a classifier is
used to determine cell type from the object’s measure-
ments. Different classifiers have been used with reason-
able success, including neural networks working with
data from morphometric analysis.
Methods: Image data of cells were input directly into
neural networks to determine the feasibility of direct clas-
sification by using pixel intensity information. Several
types of neural network and their ability to work with
cells in a complex patterned background were assessed
for a variety of images and cell types and for the accuracy
of classification.

Results: Inflammatory cells from animal biomaterial im-
plants in rabbit paravertebral muscle were imaged in his-
tologic sections. Simple, three-layer, fully connected,
back-propagation neural networks and four-layer net-
works with two layers of a shared-weights neural network
were most successful at classifying the cells from the
images, with 97% and 98% correct recognition rates, re-
spectively.
Conclusions: The high accuracy recognition rate shows
the potential for direct classification of visual image pixel
data by neural networks. Cytometry Part A 57A:1–9,
2004. © 2003 Wiley-Liss, Inc.

Key terms: image analysis; neural networks; direct clas-
sification

Automating biomaterial histology has been an area for
active research since a series of papers published by
Mellors between 1951 and 1956 (1–3). Standard manual
microscope screening has its limitations: the intense con-
centration required from the screener, the high cost in-
volved in using and training the expert, and the time of
quantification in screening. Thus automatic quantitative
analysis is highly desirable.

Many attempts have been made to mimic the procedure of
cell recognition from images. Most traditional computerized
image analysis systems rely on morphologic segmentation,
feature extraction, and classification techniques for cell rec-
ognition. In histologic preparations containing debris and
synthetic materials, it is difficult to automate cell counting
with standard image analysis tools (4).

Artificial neural networks (ANNs) in combination with
algorithmic processing and artificial intelligence tech-
niques are emerging software engineering tools for the
development of new systems in quantitative cytology and
histology from color images. Techniques have been em-
ployed for segmentation and pattern recognition (5,6).

ANNs, especially back-propagation neural networks, are
widely used for different classification tasks in areas such
as remote sensing (7,8), cervical cancer grading (9–12),
and flow cytometry (11).

Different cells in microscope images can be differenti-
ated by human visual analysis by using only the spatial and
intensity information. The purpose of this study is to
introduce several neural network structures and the asso-
ciated learning procedure for examining the possibility of
directly classifying cell types from image input pixel data
rather than using standard image analysis methods to
derive morphologic parameters. Most of the current ap-
plications of neural networks in cell classification from
literature rely on the extracted morphologic parameters
(13,14). For example, for assessment of bronchial inflam-
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mation, Berger et al. (13) developed an automated cell
recognition system based on color analysis. Three inde-
pendent criteria (optic density, hue density, and hue)
combined with morphologic parameters were used to
recognize a positive staining cell.

It is hypothesized that cells may be directly classified by
using back-propagation neural networks on the pixel in-
tensity information in an area of the image. The most
appropriate type of neural network, its ability to work
with cells in a complex patterned background, and the
accuracy of classification need to be assessed. Classifica-
tion by direct application of neural networks has the
potential for much faster cell image processing. We report
on our progress in investigating this method of direct
classification.

IMAGES
Sample images were acquired from a histologic source

of considerable complexity. The nature of this complexity
was in the number or type of cells to be recognized and in
the background. The tissue under examination was from a
14-day inflammatory reaction to implantation of kangaroo
tail tendon into rabbit paravertebral muscle. The histo-
logic sections were embedded in paraffin, sectioned, and
stained with hematoxylin and eosin. Figure 1 shows ex-
amples of the different cell types from the materials at the
original resolution obtained as described below.

The slides were imaged with a commercially available
image analysis system. This system comprised a Nikon

Eclipse E800 (Nikon Instech, Kanagawa, Japan) micro-
scope with a PCO SensiCam 12-bit cooled color CCD
camera (PCO Computer Optics GmGH, Kelheim, Ger-
many). Control of image capture was done with Sensi-
Control 4.03 software supplied with this camera.

The size of the images captured was 1,280 � 1,024
pixels, saved in a bit-map (.bmp) format. Calibrated scale
rulers in x and y directions were captured at the same
time as the sample images. The size of one pixel in the
images as calculated from these calibration rulers is ap-
proximately 130 � 130 nm. The Sensicam red, green, and
blue (RGB) color filter set produces a blue band from 400
to 575 nm, with a peak relative sensitivity of 0.7 at about
450 nm. The blue band crosses over with the green band
at approximately 495 nm, with a relative sensitivity of
0.32. The green band extends from 455 to 640 nm, with
a peak relative sensitivity of 1.0 at about 540 nm. The
green band crosses over with the red band at 580 nm,
with a relative sensitivity of 0.42. The red band covers the
spectrum from 550 to 700 nm, with a peak relative sen-
sitivity of 0.95 near 620 nm.

METHOD
Neural networks under investigation include (a) a three-

layer, fully connected, back-propagation architecture, (b)
a four-layer, fully connected, back-propagation architec-
ture, and (c) a two-layer, shared-weights architecture
(15,16). Figure 2 shows the basic architectures of the
neural networks used in this study.

FIG. 1. The three major types of inflammatory cells from rabbit back muscle found in the sample histology. Individual cell images were cropped from
the original and are about 50 to 100 pixels across depending on cell size. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Figure 2a shows the three-layer, fully connected, back-
propagation neural network. There are 3,072 input neu-
rons in the input layer (3,072 � 32 � 32 input image pixel
matrix � 3 colors for each pixel), 12 hidden neurons in
the hidden layer, and four outputs in the output layer. This
is a simple structure, with one hidden layer. The four-
layer, fully connected, back-propagation neural network
has similar a structure, with two hidden layers (12 and
seven neurons) between the input and output layers. The
numbers of the hidden neurons were chosen on the basis
of trials with the training set to be as low as possible
consistent with learning.

Figure 2b shows the four-layer, two-layer shared-
weights, back-propagation neural network. There are
3,072 input neurons in the input layer and four output
neurons in the output layer. These two layers are the same
as the input and output layers in the three-layer structure
shown in Figure 2a.

A training set and an independent test set of cells from
each tissue sample were prepared and assessed manually
by an independent expert for cell type (e.g., three types of
sample cells shown in Table 1 are heterophil, lymphocyte,
and macrophage).

The original images (1280 � 1024) were cropped to
include only the object of interest (one cell in each

cropped frame) and then scaled down to form a 32 � 32
pixel frame containing each cell image. These scaled im-
ages were used as direct RGB inputs to the neural net-
work. Image cropping was done by manually placing a
selection window over a target object (cell) in the original
image so that the cell was selected. Each pattern in the
training and testing set consists of a pattern name, 32 �
32 � 3 color pixel data, and a target output code. Test set
cells are never used for training and used only for testing
the performance of a trained neural network. Figure 3
illustrates the actual input, target, and output of cell pat-
terns. The outputs from the neurons in the output layer of
the neural network are presented in percentages, from 0%
to 100%. With respect to the target outputs, “0” equals 0%
and “1” equals 100%. The target outputs are defined as
[0010] for heterophil, [0100] for lymphocyte, and [1000]
for macrophage. All the patterns were manually classified
by an expert to define the target output of the patterns.

The training set was manually selected to include only
25 easily recognizable cells of each type. The testing set
consisted of the remainder. Figure 3 shows all the cell
types used for training. The selected neural network was
trained by the training patterns. The connection strengths
were modified during the training to classify the three
types of training patterns correctly. Then the testing set

FIG. 2. Basic structures of the neural networks in this study. a: Three-layer, fully connected, back-propagation neural network with 3,072 input neurons,
12 hidden-layer neurons, and four output-layer neurons. b: Two layers of shared-weights structure with 3,072 input neurons, 128 first hidden-layer neurons
in two groups of 64, and 64 second hidden-layer neurons in four groups of 16, and four output-layer neurons. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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was input into the neural network to test the classification
rate of the trained neural network.

The output neurons of the ANN generate analog data.
Figure 3 shows sample outputs consisting four integers,
ranging from “0” to “99.” The larger value of the integer
implies a more active neuron.

A post-processing procedure is required to produce a
classification result from the neural network. In this study,
all the sample patterns had target outputs that were coded
according to the classification by an expert. There are
three steps involved in this post-processing.

● The sum of square errors (pss) was calculated when
each pattern was presented. The equation for calculating
the pss is as follows:

pss � �
i

�tpi � opi�
2 (1)

where the index p is the input pattern that is presented to
the network, the index i is the index of the output neu-
rons “1” to “4” in the output layer, and pss is the squared
error of pattern p. Tpi is the target output of the neuron i
in the output layer when the input pattern p has been
presented, and opi is the output from the neuron i for-
warded by the forward propagation when the input pat-
tern p has been presented.

Next, the pss will be compared with a threshold to
determine the class of the input pattern. The threshold of
the pss is set as 0.5 during the testing. If the pss is less than
0.5, the network has classified the input cell. Otherwise
(pss � 0.5), the ANN has not classified the input cell
pattern.

For the new samples without expert classification of
target output, another post-processing procedure is nec-
essary to present a classification result. This post-process-
ing has the following rules:

● Peak output neuron: There are four output neurons.
According to the target codes, it is obvious that the first
neuron will be active when macrophage pattern is recog-
nized, the second neuron will be active when lymphocyte
is presented, and the third neuron will be active when
heterophil is presented. It is important to locate the active
neuron to distinguish the specific cell pattern.

● If the peak output is over “50” and the other neurons
have outputs less than “50,” the cell type is classified to
the cell type specified by the targets in the pattern.

● If there is more than one neuron with an output over
“50,” then the cell type can not be decided.

● Conversely, if there is no output value more than
“50,” then the cell should not be classified by the ANN
even if one neuron has a value much higher than the
others.

● For the entire set of cells, a parameter, tss (tss �
¥npss) is calculated, where tss is the sum of the pss values
for the set of n cells.

RESULTS

The three-layer back-propagation neural network, the
four-layer back-propagation neural network, and the four-
layer plus two-layer shared-weights neural network were
fully trained on the image sources. The four-layer, fully
connected, structure did not perform as well as the three-
layer one, and the four-layer plus two-layers shared-
weights neural network had the best performance in the
test.

Table 1 shows the results for all three neural networks.
The number of training and testing patterns and of sample
cell types are listed in the left part of the table. The
training and testing error with classification rates are pre-
sented in the right part of the table. This part of the table
is further sub-sectioned into three parts relating the results
from the three different neural networks. In this table, the

FIG. 3. Sample data from a neural network for the three types of cell. Each data set consists of input data (cell id, 32 � 32 pixel image, target output
pattern) and the neural network output. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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parameter tss is the total sum square error, and pss is the
average sum square error for each cell.

Three kinds of cells (heterophil, lymphocyte, and mac-
rophage) are presented for cell typing in the training and
testing. From the left part of the table, 75 cells with 25 in
each of three different kinds of cell are in the training set.
Two hundred five cells are in the testing set, with 26, 94,
and 85 in each corresponding cell type. The cells in the
testing set were not the same cells as in the training set,
but were selected to be the same types of cells as in the
training set.

From the right side of the Table 1, the result for the
three-layer ANN shows that seven cells were not correctly
recognized by the three-layer back-propagation neural net-
work. They are listed in Figure 4a. One heterophil, three
lymphocytes, and three macrophages in the testing set
were misclassified or non-classified. The direct classifica-
tion rate was 97% for the entire test set cells, with 96%,
97%, and 96% for each cell type separately.

The results from the four-layer, fully connected,
neural network are presented in the middle part of
Table 1. There were nine cells that were not correctly

FIG. 4. Misclassified cells in the testing set. a: Misclassified cells from the three-layer back-propagation neural network: a, an H was misclassified as an
M; b, an L was misclassified as an unknown cell; c, an L was misclassified as an M; d, an L was misclassified as an M; e, an M was misclassified as an L; f,
an M was misclassified as an H; g, an M was misclassified as an unknown cell. b: Misclassified cells from the four-layer back-propagation neural network:
a, an H was misclassified as an M; b, an H was misclassified as an M; c, an L was misclassified as an unknown cell; d, an L was misclassified as an M; e,
an L was misclassified as an M; f, an L was misclassified as an unknown cell; g, an M was misclassified as an H; h, an M was misclassified as an unknown
cell; i, an M was misclassified as an L. c: Misclassified cells from the two-layer shared-weights neural network: a, an H was misclassified as an M; b, an L
was misclassified as an M; c, an L was misclassified as an M; d, an L was misclassified as an unknown cell; e, an M was misclassified as an H. H, heterophil;
L, lymphocyte, M, macrophage. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

6 ZHENG ET AL.



recognized by the neural network. They were two het-
erophils, four lymphocytes, and two macrophages and
are shown in Figure 4b. The recognition rates for each
type of cell were 92% for heterophil, 95% for lympho-
cyte, and 96% for macrophage. The total correct recog-
nition rate was 96%.

The results from the four-layer with two hidden layers
of shared-weights neural network are presented at the
right side of Table 1. Five cells were not correctly recog-
nized by the neural network—one heterophil, three lym-
phocytes, and one macrophage—and are shown in Figure
4c. The testing rates for each type of cells were 96% for
heterophil, 97% for lymphocyte, and 99% for macrophage.
The total correct recognition rate was 98%.

Figure 4 lists the details of misclassified cells, and the
misclassification cases are stated after each figure. For
example, cell H06 was not correctly classified in all three
neural networks. The outputs from the neural networks
were [58,17,19,3], [80,6,5,1], and [83,4,4,0] for the three-
layer, the four-layer, and the shared-weights neural net-
works, respectively. According to the predefined classifi-
cation rule, the neural networks classified cell H06 as a
macrophage because the first neuron was the active neu-
ron with a value over “50.” However, it had a target
output of [0,0,1,0], active at the third position, indicating
a manual classification result from an expert as a hetero-
phil.

L26 was classified as an unknown cell by all the three
neural networks. From the outputs [1,60,70,3] in Figure
4a, the three-layer neural network could not classify this
cell into any of the three types of cells defined because it
had two outputs that were over “50.” From the outputs of
[3,39,27,0] and [2,42,22,0] shown in Figure 4b and 4c, it
could not be classified because none of the outputs was
over “50.”

There were three macrophages, M18, M20, and M11,
that were not correctly classified by the three-layer neural
network; three macrophages, M16, M08, and M19, that
were not correctly classified by the four-layer neural net-
work; and one macrophage, M16, that was misclassified
by the shared-weights neural network.

DISCUSSION AND CONCLUSION
A classification accuracy of up to 98% (with two-layer

shared-weight ANN) was achieved in this study. This
shows that the direct classification with image pixel in-
tensity data through ANN is possible, even with some
background variation in the image. This compares favor-
ably with a previous study in the same project using
sequential morphologic methods, which included princi-
pal component transform, and color similarity transform,
which had the correct classification rate of 86% (17). It is
interesting to note that, in bladder cancer screening, Hurst
et al. reported correct classification of up to 78% of test
cells by using a neural network with direct input of gray
pixel intensities (6). In cervical cancer screening, Romeo
et al. reported a testing result of 10–15 of 20 correct
classifications (50–75%) of the cervical samples when
using ANN on seven preprocessed parameters (10). Auto-

mated tumor grading based on the analysis of four major
morphometric features by ANNs were present, with the
correct grading rates of over 90% (18). For standard image
analysis, the range of classification accuracy is 60–95.7%
in the literature (18–21).

There are cells shown in Figure 4 that were not cor-
rectly classified. It can be seen that cells H06, L22, L23,
and L26 were misclassified in all three neural networks
(three-layer, four-layer, and shared-weights neural net-
works). Some reasons for these discrepancies may be the
specific appearance of the cell images and in particular:

● Compared with the other heterophils in the training
set, H06 has two larger and lighter nucleus lobes, and the
nucleus lobes are at the middle of the image frame. Light-
blue chromatin clustered in the middle of the image frame
is more typical for a macrophage nucleus, and this may
explain the discrepancy from the neural network. H06
also does not contain much red cytoplasm.

● From the cell images of L22 and L23, for example, it
is not difficult to observe that these lymphocytes have less
dense nucleus as compared with the typical lymphocytes
in the training set. Further, the lower density of nucleolus
region is one of the most important features of a macro-
phage. This may be the reason why lymphocytes L22 and
L23 were misclassified as macrophages by all of three
neural networks. L26 was misclassified as a heterophil
because it has a light nucleus on a pink background.

The sum square error pss value varies when each new
sample cell is presented to a neural network. The cutoff
threshold of the pss was preselected as “0.5.” Most of the
samples had pss values less than “0.1,” and some of them
were between “0.1” and “0.5.” All were in the correctly
classified group; however, the samples with pss � “0.1”
might have been classified into wrong group if the prese-
lected threshold of “0.5” had been increased further.
These samples presumably have some different features
from the training samples according to the neural net-
work. Further study into these samples may lead to im-
provements in the neural network performance. The spe-
cific features may be found in these cells and may be used
to select training sets to generate better classification
performance.

When unknown cells are presented to a trained ANN,
the input cell will be classified by the neural network
according to which of the four outputs is over a cutoff
value of “50.” This was defined in the post-processing rule
under Method. The selection of this threshold was based
on the experience with the neural networks. Although
this selection of the threshold value for neuron outputs
proved to be satisfactory in this study, further investiga-
tion of this parameter may improve the neural network
performance. If the pre-chosen threshold is too low, the
wrong classification rate will be increase. In contrast, if
the pre-chosen threshold is too high, it will increase the
number of unclassified cell samples.

The study of why and how the misclassifications oc-
curred is necessary, even though a high correct recogni-
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tion rate of 98% was achieved. Previous studies also have
misclassification cases; however, it is uncommon to find
the explanations for those misclassifications. It will be-
come even more important to understand how misclassi-
fication occurs as the number of cell types is increased in
subsequent studies.

In manually selecting the cropping windows, we used
only those cells that visually could be classified as one of
the defined cell types. This is similar to a rough segmen-
tation procedure, thus greatly restricting the identification
target area from the whole image (cell � background) and
simplifying the classification task. Automating selection
window placement is another enhancement step that
could be integrated into this study procedure. This will
require further study, in particular for areas with cell
overlapping or tight clustering.

This study features direct classification of cells from cell
image pixel data without a feature extraction procedure.
Traditionally, direct image pixel data as inputs to neural
networks have been used widely for statistical pattern
recognition of numeric data and general character recog-
nition tasks (22,23). The input image data for the above
studies were binary, and the window sizes generally were
smaller (e.g., 16 � 16). Compared with those studies, the
cell images used in this study are full color images con-
taining three-color intensities, with each color having 8
bits/pixel on a 32 � 32 pixel window.

There are a few difficulties in the use of direct pixel data
as inputs in this study, mainly because of the large amount
of data for each image. For example, for a color image
with a size of 32 � 32 pixels having three intensities (red,
green, and blue), this image requires 3,072 neural net-
work inputs. These input neurons were fully connected to
the hidden neurons, with every hidden neuron in the next
layer having 3,072 connections to it. In Figure 2a, the
three-layer, fully connected, neural network “3072-12-4”
has 12 hidden neurons in first hidden layer, and the
connections between the input layer to the hidden layer
amounted to 76,864. There were 48 connections between
the hidden layer and the output layer. Thus there were
76,912 connections in this neural network, which had to
be modified during the training procedure. This proce-
dure required considerable processing power to validate
the weights of all these connections in an iterative basis.

All 3,072 pixel intensities are used as input, because
compressing information before inputting it into the neu-
ral network may lose vital information required for recog-
nition. However, image compression is required when the
computing power is limited, even though compression of
the image will lose some information. In this particular
study, an input image size of 32 � 32 was selected as the
most suitable in light of the available computing power. It
can be improved by using the original pixel data instead of
the compressed image pixel data. How well this com-
pressed 32 � 32 frame works as compared with the
original pixel will need further examination when more
powerful computing resources become available.

Although most of the cells in this study do not have
obvious orientation problems, orientation of cells is often

a consideration (4). In this study, cells were randomly
oriented in the images and could be classified without
reorientation. The four-layer back-propagation neural net-
work with two layers of shared weights performed the
best in this study. The share-weights structure has built-in,
shift-invariant, feature map layers in hidden layers 2 and 3
(H2 and H3). Each H2 neuron looks at a 3 � 3 patch of H1
neurons; and each H3 neuron looks at a 5 � 5 patch of H2
neurons. All the neurons within a feature map share the
same input weights but have independent biases. Thus,
there are only two distinct 3 � 3 weight vectors from H1
to H2, one for each feature map in H2, and there are four
distinct 5 � 5 weight vectors from H2 to H3. Theoreti-
cally, this shared-weights structure can reduce distortion
and orientation problems because shift-invariant feature
maps force the same operation on different parts of the
image. This performs an operation similar to a convolu-
tion procedure (24). This neural network structure
worked slightly better than the other fully connected
structures in this study. However, the other two neural
network structures appeared to cope adequately with
respect to cell orientation for the present study.

Although there were only three valid cell classification
types in this study, the neural networks were set up with
four output neurons. In training, the fourth output value
was set to zero for the target outputs. One would expect
properly classified test set cells to have a zero or very low
value for the fourth output. This occurred most of the
time, but some test outputs had significant values for the
fourth output, indicating that classification is less reliable.
The use of an extra output prevents the ANN from being
constrained into making a choice among the main classi-
fication types.

In this study, ANNs performed to a very high accuracy
(up to 98% classification rate). Direct input of image pixel
information without image segmentation and feature ex-
traction is applicable. Neural networks have the potential
to process a large amount of image data and classify the
cells.

Further investigations involving automating cell selec-
tion and cropping, increasing the number of classification
types (i.e., cell types), and analysis of misclassification
results have been identified as areas of future research that
may achieve a clinical application potential.
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