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ABSTRACT 
 

Sparse representations of signals have received a great deal 
of attention in recent years, and the sparse representation 
classifier has very lately appeared in a speaker recognition 
system. This approach represents the (sparse) GMM mean 
supervector of an unknown speaker as a linear combination 
of an over-complete dictionary of GMM supervectors of 
many speaker models, and 1-norm minimization results in a 
non-zero coefficient corresponding to the unknown speaker 
class index. Here this approach is tested on large databases, 
introducing channel-/session-variability compensation, and 
fused with a contemporary GMM-SVM system. Evaluations 
on the NIST 2006 SRE database show that when the outputs 
of the MFCC GMM-SVM-NAP based classifier are fused 
with the MFCC GMM-Sparse Representation Classifier-
NAP (GMM-SRC-NAP) based classifier, a baseline EER of 
6.56% can be reduced to 2.65%, significantly improving the 
performance of the speaker verification system. 
 

Index Terms— sparse representation, compressive 
sensing, speaker verification
 

1. INTRODUCTION 

An automatic speaker recognition system normally 
comprises three stages: feature extraction, speaker 
modelling and score computation. In current speaker 
recognition systems, speech is pooled from many speakers 
to train a single model, known as a universal background 
model (UBM). Individual speakers are then adapted from 
the UBM using the maximum a posterior (MAP) adaptation 
algorithm (Fig 1). Once the adaptation is complete, the 
mean ( spk) will be different for varying speakers compared 
with the mean ( UBM) of the UBM. Normally the covariance 
and weight parameters  and  are not adapted [1].  
 Campbell et al. [2] introduced the GMM based 
supervector concept for a Support Vector Machine (SVM) 
based classifier for a speaker verification task. The SVM 
tries to discriminate the target speaker from a set of 
impostor speakers by mapping the feature space (cepstral 
space) to a high dimensional SVM space (supervector 
space) to form a boundary between the two classes. The 

supervectors of target or impostor speakers are formed by 
concatenating the means of their corresponding GMMs (Fig 
2). The GMM supervector for a particular speaker may be 
interpreted as a mapping between an utterance and a high 
dimensional vector. In addition, this transformation 
facilitates any length utterance to be represented by a fixed 
length supervector. 
 Compressive sensing/Sparse Representation is a recent 
development in digital signal processing. This technique 
samples a signal and simultaneously compresses it at a 
greatly reduced rate than the standard Shannon-Nyquist 
rate. The compressed signal can be reconstructed using an 
optimization process which employs non-adaptive linear 
projections that preserve the structure of the signal. In 
compressive sensing, the familiar least squares optimization 
is inadequate for signal reconstruction, and other types of 
convex optimization are used [3]. The sparse representation 
paradigm, when it was originally developed, was not 
intended for classification purposes; however sparse 
representation based classifiers are beginning to emerge for 
various applications [4-7]. 

Naseem et al. [8] were the first to introduce a classifier 
based on compressive sensing/sparse representation for 
speaker identification. Their experiments were conducted 
using the TIMIT database and they found that speaker 
identification using a sparse representation classifier 
showed good performance compared with GMM-SVM 
speaker identification algorithms. 

 In this paper, we propose the use of the sparse 
representation classifier (SRC) for a speaker verification 
task. In Section 2, we describe the sparse representation 
formulation. Section 3 discusses the sparse representation 
feature. Section 4 presents the experiments performed, 
followed by a discussion on the results obtained using the 
NIST 2001 and NIST 2006 speaker recognition databases. 

 

2. SPARSE REPRESENTATION CLASSIFIER (SRC) 

For a speaker identification task, [8] proposed the use of a 
GMM mean supervector to develop an over complete 
dictionary using training utterances from all the speakers. 
Following this, the GMM mean supervector of a test 
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utterance from an unknown speaker is represented as a 
linear combination of this over-complete dictionary. 

This representation is sparse since the test utterance 
corresponds to only a small fraction of the whole training 
database. As a result, the unknown vector of coefficients, 
obtained efficiently via 1- minimization, will have non-zero 
entries (ideally) corresponding to the class of the test 
utterance. Finding the sparsest representation implies that 
the various classes present in the over complete dictionary 
are automatically discriminated. In this paper we exploit this 
discriminative nature of sparse representation for a speaker 
verification task. 

If we have N distinct speakers, then we have N 
supervectors (after MAP adaptation), each with a column 
vector of D x M rows; where D is the feature dimension and 
M is the number of Gaussian mixtures. According to Figure 
1, we select k speaker models for a speaker verification task 
and a global dictionary matrix A can be constructed by 
concatenating all the supervectors of the k speaker models, 
thus creating a matrix of D x M rows and k columns. The 
speaker selection is random but includes one supervector 
from the claimed speaker. The test speaker supervector y 
can be represented as a linear combination of all 
supervectors of k speaker models. i.e  y = Ax (Fig 1): 
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where p = D x M  and x is a k-dimensional vector 
coefficients that will be sparsely represented in A. When 
equation (1) is solved, ideally all coefficients of  are zero, 
except one non-zero coefficient: its index corresponds to the 
class of the given unknown utterance y.  
 We need to solve the system of linear equations given in 
(1) in order to obtain the sparse vector x. Since the 
dimensionality (p) of the supervectors is much larger than 
the number of speakers (k), Equation (1) is over-determined 
and has no unique solution. Recent research in compressive 
sensing [3, 9] has shown that if x is sparse, it can be 

recovered with high probability by solving Equation (1) 
using 1-norm minimization as given in (2): 
 

Axytosubjectxx 11 minargˆ  (2) 
  

 Once we have estimated 1x̂ , due to modelling 

limitations, 1x̂ would have small non-zero entries belonging 
to impostors in A. Therefore, we should assign y to the class 
which has the largest support in . i.e search for the largest 
value in the sparse vector x and locate the index which 
corresponds to the class of the unknown utterance y.   
 In order to demonstrate Equation (1) using 1-norm 
minimization, we created a matrix A using a small number 
of 3-dimensional data, where the columns of A represent 5 
impostors and a true speaker. These are represented by C1 
to C6 in Figure 2. A test vector (representing the unknown 
speaker) was chosen such that it belongs to class C4. 
Solving Equation (2) produces the vector x  [0, 0, -0.2499, 
0.8408, 0, 0.2136] T with the largest 1-norm of 0.8408. This 
corresponds to class C4 and is identified as the correct class. 
This value is kept as the true speaker score and the 
remaining 1-norm values are denoted as impostor scores. In 
speaker verification experiments, all true speaker and 
impostor scores are collated to generate a Detection Error 
Tradeoff (DET) curve. 

3. FEATURE EXTRACTION 
 

In this paper, we use the conventional Mel Frequency 
Cepstral Coefficients (MFCC) and Spectral Centroid 
Frequency (SCF) in the feature extraction block of Figure 1 
to evaluate the consistency of the new SRC approach across 
more than one feature type. The front-end of the 
recognition/verification system includes an energy-based 
speech detector which is applied to discard silence and noise 
frames. We used 20 ms Hamming-windowed frames, 
overlapped by 10 ms. The magnitude based MFCCs were 
extracted using a 26 Mel-scaled triangular filterbank and the 
frequency based SCF features were extracted as outlined 
below. Each feature vector consisted of 14 dimensions and 
the deltas were appended, following feature warping, 
providing a 28 dimensional feature vector.  

Figure 1 A Sparse Representation Classifier (SRC) based speaker recognition system 
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 In our previous work, the effectiveness of SCF features 
for speaker recognition was investigated [10]. We briefly 
outline the spectral centroid feature extraction process. Let 
s[n] represent a frame of speech of N samples and |S[f]| 
represent the magnitude spectrum of this frame. |S[f]| is then 
divided into K sub-bands, where each sub-band is defined 
by a lower frequency edge (lk) and an upper frequency edge 
(uk).  
 We define spectral moment in a frequency sub-band as 
the spectral magnitude multiplied by its frequency. When 
the resultant spectral moment in a sub-band (numerator term 
in Equation (3)) is divided by the sum of the magnitude 
spectrum in that band, we obtain the spectral centroid 
frequency, fsc: 

k

k

k

k

uf

lf

uf

lf
sc fSfSff  

(3) 

The spectral centroid frequency measure captures the 
center of gravity of each sub-band, detecting the 
approximate location of formants (in sub-bands containing 
multiple harmonics), but is also affected by changes in pitch 
and harmonic structure of the vocal source (particularly in 
sub-bands containing few harmonics). In our experiments, 
SCF are extracted with a 14 mel-scale Gabor filter-bank. 
We also increased the number of FFT points by an order of 
magnitude (from 160 to 2048) to better approximate the 
speech power spectrum, which was found to have a 
significant effect on the SCF performance [10]. 
 

4. SPEAKER VERIFICATION EXPERIMENTS  
 

4.1. Database 
Speaker verification experiments were conducted using the 
NIST 2001 SRE database, which is a convenient size for 
initial validation without SVM-NAP. The NIST 2001 SRE 
development database consists of 38 male speakers and 22 
female speakers. The evaluation database comprises 74 
male speakers and 100 female speakers for training, 850 
male speakers and 1188 female speakers for testing. The 
training utterance for each speaker was 2 minutes and the 
testing segment duration was less than 60 seconds. 
 The final evaluation data is the core test condition of the 
NIST 2006 SRE (1conv4w-1conv4w), containing 51 448 

trials of which 3612 are true and 47 836 are false. The 
background data consists of 3079 speech utterances from 
the NIST 2004 SRE, which cover a number of speakers 
(female and male). The Nuisance Attribute Projection 
(NAP) [11] training data includes approximately 10000 
speech utterances from the NIST 2004 and 2005 SRE 
corpus. 
 

4.2. Speaker verification systems 
The baseline back-end of the verification system for the 
NIST 2001 SRE database was based on Universal 
Background Model-Gaussian Mixture Models (UBM-
GMMs) for simplicity. The baseline back-end of the NIST 
2006 SRE database was a GMM-SVM-NAP classifier 
(NAP rank 40).  We also created an SRC back-end using 
linear programming to implement the sparse representation 
classifier as per Section 2, with k = 11 and k = 15-16 for 
2001 and 2006 respectively, and applied NAP. 
 

4.3. Results and discussion 
Results for the speaker recognition experiments based on 
the NIST 2001 and NIST 2006 SRE database with different 
features and classifiers are given in Table 1. It can be 
observed that SRCs are able to achieve almost comparable 
performance to the UBM-GMM back-end on the NIST 
2001 database. On NIST 2001, the fusion of two systems 
with a different classifier improved on an 8.28% EER 
baseline to 7.01% for MFCC and for SCF, from 8.83% to 
7.43% as shown in Table 2. Furthermore, the fusion of three 
subsystems (not shown in the table), MFCC (UBM-GMM), 
MFCC (GMM-SRC) and SCF (GMM-SRC) reduced the 
EER to 6.32% which demonstrates the complementary 
nature of the classifiers and features.  
 Interestingly, SCF which was introduced as a 
complementary feature to MFCC in [10] outperforms 
MFCC on NIST 2006 database for both GMM-SVM and 
GMM-SRC back-end (without NAP compensation). In 
addition, by incorporating NAP compensation to SRC, we 
could improve the EER from 15.06% to 11.19% and from 
14.18% to 12.82% for MFCC and SCF respectively. 
Although GMM-SVM-NAP outperforms GMM-SRC-NAP 
for both features on NIST 2006 (Table 1), we observed 
from the fused results, given in Table 2, that the fusion of 
systems with different classifiers significantly improves on 
the individual subsystem performance. The MFCC features 
with the standard back-end, produced the lowest single-
feature system EER of 6.56%, while the sparse 
representation classifier with NAP produced an EER of 
11.19%.  However, the fusion of these two systems 
improved on a 6.56% EER baseline to 2.65% as shown in 
Figure 3. This result provides strong encouragement that 
sparse representation classifier (GMM-SRC-NAP) carries 
complementary information to the standard GMM-SVM-
NAP classifier. Furthermore, the fusion of SCF-based 
GMM-SVM-NAP (EER 7.67%) and SCF-based GMM-
SRC-NAP (EER 12.82%) showed an improvement and the 

Figure 2:  Plot of entries in matrix A [[5 5 5] T, [3 3 3] T, [7 4 
9] T, [8 3 2] T, [4 6 8] T, [9 10 9] T] and the test vector y [7 4 1]T
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EER was reduced to 3.51%. as shown in Figure 4. Similar 
improvements after fusion were also observed for this 
database without NAP. Subsequently it was observed that 
the A matrix composition shouldn’t be drawn from the same 
database. Therefore we repeated the experiments on MFCC 
GMM-SRC-NAP with A matrix composed using NIST 2005 
SRE database (372 Female and 274 Male), with an EER of 
6.66%. Similarly the fusion of MFCC GMM-SVM-NAP 
and MFCC GMM-SRC-NAP improved on a 6.56% EER 
baseline to 1.83%.
 

6. CONCLUSION 
 

In this paper, we investigated the discriminative nature of a 
sparse representation classifier (SRC) for a speaker 
verification task. Sub-systems were developed using 
MFCCs and SCFs as features and various back ends were 
used in the system. We demonstrated that SRC classifiers 
benefit from NAP compensation as expected and provide 
good performance particularly when two sub-systems are 
fused. Evaluation on the NIST 2006 database using a fusion 
of MFCC GMM-SVM-NAP and MFCC GMM-SRC-NAP 
subsystems, demonstrated relative improvements of 60% 
over the performance of MFCC GMM-SVM-NAP only. 
Similarly when SCF was used as features instead of MFCC, 
we find a relative improvement of 77%. This strongly 
supports the hypothesis that these two classifiers carry 
complementary information. 
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Figure 3 DET curve showing the MFCC GMM-SVM-NAP, 
MFCC SRC-NAP and fused speaker recognition system, tested 
on NIST 2006 

Figure 4 DET curve showing the SCF GMM-SVM-NAP, SCF 
SRC-NAP and fused speaker recognition system, tested on NIST 
2006
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