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Abstract

Computer vision has come a long way since its beginnings. In this article we review
some of the recent successes, which seem to indicate that many aspects of vision have
indeed been solved and that the way should now be paved for robotic systems that can
operate freely in the real world. On closer inspection though that is not the case just yet.
A set of specialised solutions in different sub areas, however impressive individually,
does not constitute a unified theory of vision. We point out some of the problems
of current approaches, most notably lack of abstraction and dealing with uncertainty.
Finally we suggest where research should and should not focus on in order to advance
on a broader basis.

1. Introduction

Computer vision has made huge advances since its beginnings in the 1960’s. After
a slow start, plagued by limited computing power and sometimes overly optimistic pre-
dictions, recent years have seen increasing numbers of real world applications appear-
ing on the market, from face tracking in consumer digital cameras, driving assistance
systems in cars, autonomous vacuum cleaning robots to augmented reality applications
or home entertainment. Of course industrial machine vision confined to the clearly
structured environments of factory floors and assembly lines or medical imaging ap-
plications with a human in the loop have been on the market far longer. But within
the scope of this article we are interested in computer vision as it was seen by its early
proponents as exemplified by (Roberts, 1965; Binford, 1971; Clowes, 1971; Huffman,
1971; Waltz, 1975; Nevatia and Binford, 1977; Marr, 1982; Biederman, 1987): to un-
derstand the computational principles that allow human or animal vision to seemingly
arrive at generic scene interpretations from images. Or put another way, vision that
serves an agent to operate in and interact with the unconstrained real three-dimensional
world.

This is of course a very broad definition and encompasses many different abilities
related to locomation, manipulation, learning, recognition or social interactions. Part
of the recent successes of vision, apart from increased computing power and the avail-
ability of new mathematical tools, is a high degree of specialisation of solutions in
each of these areas. For many of these specialised solutions impressive videos can be
watched online and one is left wonderering “Ok, done! So, where is the problem?”. Yet
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performance of robots at competitions like the Semantic Robot Vision Challenge 1 or
RoboCup@Home 2, while clearly progressing from year to year, show that still these
parts do not necessarily make a whole. There are of course many more problems to be
solved in a complete robotic system besides vision, such as issues of power consump-
tion and dexterity in manipulation, but limitations in percption and most notably vision
typically do play a central role. So something must be still missing.

In the next section we will review a selection of state of the art solutions in some
of the respective areas, showing which impressive things computer vision can in fact
already do. Section 3 will then try to identify some fundamental problems in the current
approach to computer vision, followed by suggestions on where future research could
advance on a broader basis in Section 4.

2. What Vision Can Do

The following selection of work is not intended as a genuine review of work in
different areas of computer vision, but rather to highlight some state of the art solutions
that taken together could seem to have solved computer vision for robotics. So, what
can vision do for robotics?

Navigation, Localisation. Self localisation and mapping (SLAM) has been addressed
by the robotics community early on, starting with ultrasonic and later laser range
sensors where it can essentially be considered solved (Thrun et al., 2005). With in-
creasing computational power and mathematical tools such as sparse bundle adjust-
ment (Lourakis and Argyros, 2009) vision based methods (Visual SLAM) began to
replace laser based ones (e.g., Nistér et al., 2006; Davison et al., 2007), which can now
handle very large areas (Cummins and Newman, 2010).

These methods rely on the robust extraction of uniquely identifyable image regions,
for which a variety of image features have been proposed, such as MSER (Matas et al.,
2002), SIFT (Lowe, 2004), FAST (E. Rosten and T. Drummond, 2006), SURF (Bay
et al., 2008) or DAISY (Tola et al., 2008). These features in general play an essential
role in many modern computer vision approaches, from SLAM and structure from
motion to object recognition and tracking.

3D Reconstruction. Using similar techniques, structure from motion (SfM) approaches
put an emphasis of dense reconstruction of the scene rather than navigation based
on sparse landmarks. Microsoft’s Photo Tourism (Snavely et al., 2006) is quite well
known. It can reconstruct in very high detail a building such as the cathedral of Notre
Dame from a colection of thousands of photographs taken from the web. Going even
further (Agarwal et al., 2009) scales the approach to entire cities, although that does
take, as the title of their paper suggests, a day of computation on a cluster of 500 com-
puters.

Real time solutions are available for smaller scale scenes. The approach by (Klein
and Murray, 2007) uses a parallel processing pipeline highly optimised to today’s

1http://www.semantic-robot-vision-challenge.org
2http://www.ai.rug.nl/robocupathome
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multi-core machines to build a semi-dense map of the environment based on track-
ing distinctive image features. Based on that the work by (Newcombe and Davison,
2010) fills in the details using GPU-based optical flow computation (Zach et al., 2007)
to arrive at a dense 3D scene reconstruction with visually very pleasing results.

Scene Segmentation. The above approaches reconstruct the scene as a whole, essen-
tially treating it as a single rigid and static object. Multibody structure from motion
approaches (e.g., Fitzgibbon and Zisserman, 2000; Ozden et al., 2010) observe a dy-
namic scene and segment it into independently moving rigid objects.

Given only a static scene (Rusu et al., 2009) segments a 3D point cloud as provided
by stereo or depth sensors into parametric object models such as planes, spheres, cylin-
ders, and cones. Similarly (Biegelbauer et al., 2010) fit superquadrics to point clouds
to seamlessly cover a wider range of parametric shapes. Using a strong prior model of
the 3D scene and again parametric object models (Hager and Wegbreit, 2011) is able
to handle scenes exhibiting complex support and occlusion relations between objects,
and also reasons explicitly about dynamic changes of the scene such as objects being
moved, added or removed.

Taking a more active approach (Björkman and Kragic, 2010) combine wide angle
and foveated stereo to segment 3D objects of arbitrary shape standing isolated on a
supporting surface. Even more active, (Fitzpatrick and Metta, 2003) use a robot ma-
nipulator to poke parts of the scene in order to use the resulting motion in 2D image
sequences to segment objects.

Recognition. Object recognition is of course a central theme in computer vision es-
pecially in the context of robotics. Early attempts at generic recognition of 3D solids
(e.g., Binford, 1971; Waltz, 1975; Nevatia and Binford, 1977; Marr and Nishihara,
1978; Brooks, 1983; Biederman, 1987; Lowe, 1987; Dickinson et al., 1992), often
based on edge features, tended to suffer from scene complexity and textured surfaces.
With the advent of invariant interest point detectors (Mikolajczyk and Schmid, 2004)
and strongly distinctive point descriptors mentioned above (Matas et al., 2002; Lowe,
2004; E. Rosten and T. Drummond, 2006; Bay et al., 2008; Tola et al., 2008) appearance
based recognition of arbitrarily shaped object instances in highly cluttered real world
environments was essentially solved (e.g., Lowe, 1999; Gordon and Lowe, 2006; Fer-
rari et al., 2006; Özuysal et al., 2007; Collet et al., 2009; Mörwald et al., 2010), even
for non-rigid objects such as clothing (Pilet et al., 2007) – provided of course that the
respective objects are textured.

Recent advances in 3D sensing, most notably the Microsoft Kinect RBD-D sensor,
brought a renewed interest in 3D methods. Making use a combination of color image
and dense depth map the fast template based approach by (Hinterstoisser et al., 2011)
also detects untextured objects in heavy clutter at close to frame rate.

The above appearance based methods are intrinsically suited to detect individual
object instances with specific surface markings. Going beyond single instances ap-
proaches such as (Fei-Fei et al., 2006; Leibe and Schiele, 2003; Dalal and Triggs, 2005)
detect categories also of deformable objects such as cows or walking humans.
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Online Learning. Acquiring models for the above recognition methods often involves
hand-labeling of images or placing objects on turn tables as an offline learning step,
which is clearly not desirable for an agent supposed to act autonomously in the world.

Various online learning methods have been proposed, such as (Özuysal et al., 2006)
which keeps “harvesting” additional features as it tracks the model acquired so far. The
ProFORMA system (Pan et al., 2009) even reconstructs high quality dense triangle
meshes while tracking a model and also suggesting new views to add.

Going further in the direction of a complete system (Kraft et al., 2008) and (Welke
et al., 2010) let a robot pick up and rotate objects in its hand to actively cover all views
of an object.

Tracking. Much as recognition, model based 3D object tracking has been well covered
in computer vision (Lepetit and Fua, 2005). Especially with the availability of cheap
and powerful graphics cards computationally heavy methods such as particle filter-
ing (Klein and Murray, 2006) have been rendered real time (Chestnutt et al., 2007;
Murphy-Chutorian and Trivedi, 2008; Sánchez et al., 2010; Choi and Christensen,
2010; Mörwald et al., 2011) and allow tracking of complex 3D objects through heavy
clutter.

So far for an (incomplete) overview of some of the success stories of computer
vision in the realm of robotics. Next we will look at where we stand with this and why
service robots are not yet scurrying around in our appartments.

3. What Vision Can’t Do

What vision can’t do is simply to allow a robot to operate in and interact with the
unconstrained real three-dimensional world, as was our stated goal in the introduction.

Abstraction. One of the reasons why this is the case is explored in the very compre-
hensive review by (Dickinson, 2009). The author there sums up the evolution of object
categorization over the past four decades as different attempts to bridge the large rep-
resentational gap between the raw input image at the lowest level of abstraction and
3D, viewpoint invariant, categorical shape models at the highest level of abstraction. In
the 1970’s this gap was closed by using idealised images of textureless objects in con-
trolled lighting to extract quite generic shape models. In the 1980’s the images could
become more complex, by sacrificing model generality and searching for specific 3D
shapes, thus effectively closing the gap at a lower level. Methods of the 1990’s allowed
recognition of complex textured objects in cluttered scenes, however objects were now
esentially 2D appearance models of specific instances (and even views), thus closing
the gap very low at the image level. The feature-based methods of the 2000’s allowed
recognition of arbitrary 3D object instances in very cluttered environments, while also
slowly extending generality back up towards object categories.

So, much of the success of vision was bought by sacrificing generality and the
ability of abstraction. This is less of a problem for navigation, where anything is an
obstacle or a landmark, but more so for purposeful interaction with specific parts of
the scene, viz, objects. Learning each object individually or perhaps narrow categories
of objects is not feasible in the long run and leaves out the ability to make sense of
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a scene even if a similar scene was never encountered. Humans, say an Inuit seeing
tropical jungle for the first time, have no problem perceiving a completely unfamilier
scene in terms of complete 3D shapes plus their possibilities of interaction rather than
an assortment of object and category labels. Otherwise the mentioned Inuit would have
to appear essentially cortically blind, having no categories for all the different tropical
trees and bushes.

Putting it Together. Another reason as to why the assorted successes of vision do not
yet comprise a unified solution for robotic vision lies in the difficulties of merging these
specialised solutions under one framework. One of the difficulties is robustness. Many
methods rely on tuning of parameters or some hidden implicit assumptions. Operating
these methods outside their safe zones can make them fail abruptly rather than degrade
gracefully, leaving a system comprised of many such isolated solutions extremely brit-
tle. A more severe problem actually lies in bridging the semantic gaps between differ-
ent methods. What does it mean if an object recogniser reports a confidence of 0.4 of
detecting an object right inside a wall while robot localisation reports an uncertainty
of 40 cm? Approaches like (Hoiem et al., 2006) have started exploring the interplay
between e.g., object recognition and estimation of coarse 3D scene geometry, and the
work by (Hager and Wegbreit, 2011) mentioned above explicitly reasons about support
and occlusion relations between objects. But a more generic solution of integrating the
semantics (together with uncertainties) of individual processing results still seems far
off.

Dealing with Failure. A third, somewhat related reason is that researchers in indi-
vidual specialised sub-fields (quite naturally) strive for perfection, inching recognition
rates on standardised benchmarks ever higher in increments of 0.5%, while from a sys-
tems perspective it makes more sense to accept the inevitable uncertainties and failure
modes and reason explicitly about them. This of coures hinges on having a common
framework as explained above, to meaningfully express these unertainties. Even more
importantly however it requires researchers to accept that perfection is futile.

4. What Vision Should Do

So what should be done to alleviate the above problems? There is of course no
simple answer to that. But let us first look at some of the apparent solutions.

It isn’t 3D. With the availability of cheap and powerful 3D sensors such as complete
stereo solutions by companies like Point Grey 3 or Videre Design 4 or depth sensors
such as the Mesa Imaging Swissranger 5 or Microsoft Kinect 6 one important part of
vision seems to be have been solved, namely reconstructing a 3D scene. There is more
to it though, as humans do not perceive a scene as a sort of flip-up cardboard diorama

3http://www.ptgrey.com/products/stereo.asp
4http://www.videredesign.com
5http://www.mesa-imaging.ch
6http://www.xbox.com/en-US/kinect

5



with missing object back sides. Reasoning about occluded parts of the scene as well as
segmentation into individual objects remains to be solved.

More importantly however, a quick test on yourself by closing one eye will reveal
that 3D sensing is not all that important for human vision. Picking up a small object
or putting a key into a lock might require several attempts, so clearly direct perception
of distance via stereo is an advantage for close-range manipulation, such as using tools
or grasping branches when swinging from tree to tree. But the vivid impression of
being situated in a 3D scene does not suffer significantly when being deprived of stereo
vision. Also many grazing animals tend to have non-overlapping fields of view of
the left and right eye, as large field of view (to notice approaching predators) is more
important than accurate 3D perception.

For various reasons cups and cows are prominent example objects in computer
vision. Advocates of 3D computer vision will point out that given a cup with a picture
of a cow printed on it, a 2D recogniser would be likely to rather recognise a (nicely
textured) cow than a (probably untextured) porcelain cup, whereas a 3D shape based
recogniser would correctly identify the cup. However, given a 2D image of a cup with
a cow on it humans have no problem recognizing both, the cup and the fact that there
is a picture of a cow printed on it.

We are not arguing that 3D sensing would not be a powerful cue, and in fact robotics
is likely to benefit a lot from depth sensors in the near future. But 3D sensing does not
seem to be essential for perceiving a 3D scene. Human vision has developed powerful
computational mechanisms to infer a complete 3D scene from rather limited informa-
tion. And these mechanisms are more important then a specific sensing modality.

It isn’t Resolution. In a similar vein image resolution does not seem to be critical.
Certainly nature has evolved foveated vision for a good reason. The combination of
attentional mechanisms based on low resolution cues with saccades to salient image
regions to be processed at high resolution is an important mechanism to optimise vi-
sual processing and keep the amount of information tractable. Likewise any computer
vision task benefits significantly from the object of interest being shown large and cen-
tred in the image, rather than occupying a small image region somewhere in the scene.
However, humans looking at a low resolution, say 640 × 480, image of a scene typi-
cally have no problem interpreting it correctly (otherwise watching TV would be rather
confusing).

Moreover, experiments with rapid serial visual presentation (Thorpe and Imbert,
1989) have shown that humans are remarkably good at identifying objects and scenes at
presentation times well below 200 ms, which leaves no time to perform any saccades.
For example in (Intraub, 1981) subjects were able to identify pictures of a category
(“look for a butterfly”), superordinate category (“look for an animal”) or negative cat-
egory (“look for a picture that is not of house furnishings and decorations”) presented
for only 114 ms.

So the human visual system can perform (at least a significant deal of) its processing
within an instant without requiring to scan the image with the high resolution fovea.

It isn’t (just) Bayes. There is no doubt that much progress in vision is owed to the adop-
tion of probabilistic frameworks over crisp symbolic methods, which are typically too
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brittle when confronted with the cluttered, uncertain, ambiguous real world. However
sometimes the actual probabilities at the end of some lenghty mathematical argument
are rather ad-hoc, say the number of matching edgels divided by the total number of
edgels, or assumptions about uniform priors. The respective approaches still work fine,
thanks to the exraordinary robustness of statistical methods. But the results from dif-
ferent processing modules, although supposedly derived within the same mathematical
framwork, become difficult to compare to each other within a common system. Just
using probablities is not enough. Care has to be taken, that they refer in the same way
to the same underlying causes.

A different way to treat uncertainties, rather than aiming for precise 3D estimates
plus a measure or remaining uncertrainty, could be to not aim for exactness in the first
place. Instead one could use more qualitiative measures, such as surface A is behind
surface B, which is an observation that can be established with high certainty over a
wide range of actual distances. This sort of information might be sufficiently accurate
for many types of actions, such as reaching for A. However, it is not clear whether the
mathematics for this kind of reasoning over a complex 3D scene would actually turn
out to be simpler than more traditional probability theory.

Back to the Roots?. Armed with the lessons learned along the way (and with con-
siderably increased computing power), it might be worth reconsidering some of the
early approaches to computer vision. These in general aimed at reconstructing a 3D
scene from very impoverished visual information, such as edge images only. While
simply taking a depth sensor would certainly provide a more direct route, attacking
the harder problem, with all the modern mathematical machinery, is still worthwile.
Partly because advances there are more likely to shed light on the computational prin-
ciples underlying human vision. But also because, as pointed out above, the problem
of dealing with incomplete and ambiguous information persists, no matter how rich
the underlying sensory information. This problem can be pushed back a little by more
advanced sensors, but not avoided alltogether.

A Conjecture: Vision as Prediction. In the following we will put forward a conjecture
of what might be one of the computational principles underlying human vision, based
on an anecdotal example of severly impoverished visual information.

I enter a room at night, put a glass of water on a table, walk back to the door
to switch off the lights and the room becomes almost completely dark. I
walk back to the table and can not actually see the glass or anything else
on the table, or even the table itself. Scene reconstruction in this case is
simply hopeless. Still I expect the glass at the same position where I left
it and I can very roughly estimate that position by backtracking my steps.
So I turn my head this way and that looking towards a window, which is
slightly illuminated from outside, until I can see a glint typical of glass
surfaces near the expected position. I reach out (carefully, as I might still
collide with other unseen objects on the table) and successfully grab the
glass (relying of course heavily on tactile feedback). By no means could I
have reconstructed the glass with its 3D shape in that case, still I did “see”
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it. Or rather I saw something I expected to see given that the glass were
there.

Vision as a process of reconstructing the 3D scene is an ill-posed problem, yet humans
seem to do it effortlessly. Still there are enough every-day cases where also for humans
scene reconstruction becomes quite impossible (e.g., in very low light situations). Hu-
mans can however still employ vision successfully in such cases, because what if not
vision eventually allowed the detection of the glass in the above darkened room exam-
ple. Only a little visual information was needed to confirm some hypothesis about the
scene.

The point is that that while reconstruction is a notoriously difficult problem, the
inverse problem - prediction - is often very simple. One avenue of progress might thus
be to view vision (at least in part) as a prediction problem, based on strong priors. A
general framework should be able to incorporate multiple cues (visual and possibly
non-visual), where the appearance of each cue (such as edges, shadows, highlights)
is predicted, given a scene hypothesis. Predictions and actual observations could then
used in a Bayesian filter to update an estimate of the scene.

This is just a rough sketch of course. But maybe observing human performance
in such visually challenging situations can point the way to technical solutions that
degrade equally gracefully.

5. Conclusion

The power of biological vision systems seems not to lie in perfect sensors and
processing results, but in dealing with imperfect ones. Failures, uncertainties and am-
biguities are not exceptional states of an otherwise perfectly functioning system, but
instead part of the normal flow of processing.

We should thus aim at understanding the powerful computational principles al-
lowing biologial vision to infer a sufficiently accurate model of reality from partial,
ambiguous, sometimes erroneous information derived from various cues. Actually this
is already happening within many of the approaches presented above in the form of
probabilistic models, however not on a system wide level.

Bringing the individual successful pieces of vision together into an equally success-
ful system that eventually allows robots to operate within the challenging environments
of our appartments, remains a ambitious goal.
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