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In multiple-input–multiple-output (MIMO) broadcast channel the throughput can be
enhanced by channel state information (CSI) feedback, but it is resources and feedback
expensive. We propose a compressed sensing (CS) feedback scheme for zero-forcing beam-
forming (ZFBF) in MIMO broadcast channel, which can reduce the feedback load and
resource consumption. The feedback channels are shared and opportunistically accessed
by users who are self pre-selected based on their channel vectors’ norm and correlation.
Multiple measurement vectors (MMV) CS is used for the CSI feedback. Orthogonal match-
ing pursuit and reduced MMV and boost algorithms are applied for CS recovery to get the
CSI. Semi-orthogonal user selection and ZFBF are implemented at the base station to
achieve spatial multiplexing gain. Both the analog and digital CS feedback schemes are ana-
lyzed. Simulations show that the proposed CS feedback has good performances compared
with traditional feedback schemes in points of feedback load and throughput due to user
self pre-selection algorithm and CS feedback.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Multi-user multiple-input–multiple-output (MU-MIMO) communication with partial channel state information (CSI) can
substantially increase channel capacity while it requires low feedback overhead and is practical in engineering [1–4]. How-
ever, it requires that each user reports its CSI, such as channel quality indicator (CQI) and channel direction information
(CDI), which is resources expensive. On the other hand, there is a throughput loss because of the feedback inaccuracy
induced by the feedback quantization. In order to improve the feedback performance and save the resources, we need to
adopt more efficient feedback scheme for the MIMO broadcast system.

Compressed sensing (CS) is a promising technology in signal processing and communications and has attracted lots of
researchers’ attention. Recently some authors have applied CS technology to the wireless broadcast channel, multiple users
access channel and sensor networks to reduce the resource consumption and enhance the accuracy of the transmitted infor-
mation. A high-precision feedback technique by using sparse approximation and compression called compressive feedback
has been proposed in [5], which quantifies the channel vector by the linear combination of several unit vectors in the defined
codebook, then the base station can obtain more accurate channel information, since the linear combination can be recov-
ered by CS. In [6] the authors propose a CS based opportunistic feedback protocol for feedback resource reduction in MIMO
broadcast channel with random beamforming (RBF), and the users in each beam with better channel quality, which means
that user’s CQI is above a threshold, will feed back their CQI and will be the candidates in the user set for transmission. Signal
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to interference plus noise ratio (SINR) based user self-selection algorithm is proposed in [7], and the channel estimation of
selected users are acquired via CS by exploiting the fact that only partial users are selected which is also a kind of sparcity. It
should be noticed that analog feedback of the channel gain vector is used in [5–7].

A simple on-off random multiple access scheme is introduced in [8], in which CS can be applied to the multiple user
detection. In [9] the authors propose a novel CQI feedback schemes in a wireless Orthogonal Frequency Division Multiplexing
(OFDM) system. The CS is used for compressing and recovering the CQI. The orthogonal matching pursuit algorithm and sub-
space CS algorithm are used for the CQI recovery, and the subspace CS outperform the cosine transform based CQI feedback.

Meanwhile CS has been applied to the sensor networks and can greatly reduce the resource consumption. In [10] the
sparse nature of monitored sensor network is exploited and a random access CS scheme is proposed in which the sensors
transmit at random to a fusion center. Meanwhile the author has applied the random access CS scheme to the underwater
sensor networks [11]. In [12] CS is applied to sensor data gathering for large-scale wireless sensor networks, which can
reduce global scale communication cost without introducing intensive computation or complicated transmission control.
What’s more, the proposed scheme can cope with abnormal sensor readings by using overcomplete hybrid dictionary.

It can be seen that CS can make the wireless communications more efficient in transmission or resource consumption,
however, most of the above researches are based on single measurement vector (SMV) CS and recovery algorithms, which
have been introduced in [13] and other related literatures. In the MIMO communication, the user selection is based on SNR or
SINR which are scalars, and the analysis are with RBF [6,7]. Since multiple-user and multiple-antenna are the essential nat-
ures of MIMO broadcast channel, the channel vector of each user is a vector and only partial users are selected and active
which means that the channel vectors for all the selected users composite a sparse multiple dimensional vectors. Hence
it is straightforward to apply multiple measurement vectors (MMV) CS to the MIMO broadcast channel. MMV CS has been
discussed in [14–18]. In these literature and references therein, some conditions for MMV CS and recovery algorithm such as
matching pursuit (MP), orthogonal matching pursuit (OMP), reduced MMV and boost algorithm (ReMBo) and convex relax-
ation, are thoroughly discussed.

In [4] the zero-forcing beamforming (ZFBF) and random vector quantization for MU-MIMO are introduced. Semi-orthog-
onal user selection (SUS) and greedy selection are illustrated, and the performance bounds are analyzed. In the paper, we
propose a CS feedback scheme in ZFBF MU-MIMO broadcast channel with CS MMV algorithm which is different from the
previous research with CS SMV and RBF, and the proposed feedback scheme can reduce the feedback resource consumption.
A self pre-selection algorithm is based on the channel vector’s norm and correlation, which is different from the previous
researches based on SNR and SINR. What’s more, both the analog and digital CS feedback are analyzed and compared with
the quantization feedback of all users. The MMV OMP and ReMBo algorithms are used for the feedback information recovery.

The main contributions of our work are as following:

– A self pre-selection algorithm based on the channel vector’s norm and correlation is introduced which can reduce the
feedback load and obtain better orthogonality among selected users at high probability.

– The CS MMV is firstly applied to the MIMO channel state information feedback. Both the analog and digital CS MMV feed-
back are considered, and the recovery rate and accuracy are analyzed.

– The feedback recovery performances of MMV OMP algorithm and ReMBo algorithm with noise are analyzed and simu-
lated. MMV OMP outperforms the ReMBo algorithm.

– The impacts of CS digital/analog feedback on ZFBF are given, and the noise and quantization error on the sum throughput
are presented.

The remaining of the paper is organized as follows. Section 2 presents broadcast channel model and feedback channel
model. CS MMV background and CS feedback strategy are explained in Section 3. Section 4 evaluates the performances of
sum throughput, feedback reduction, CS MMV recovery performance and algorithm complexity. Simulations and conclusion
are given in Sections 5 and 6.
2. System model

2.1. MIMO broadcast channel model

In this paper, we focus on the MIMO broadcast channel. The base station is equipped with Nt antennas, and each user has
a single antenna. There are U > Nt users in the system. We assume that users are in flat Rayleigh fading, and the channel is
assumed to be constant during each transmission period. For the MIMO broadcast channel, we assume that there are Nt users
scheduled simultaneously. The received signal at user k is given by
yk ¼
ffiffiffiffi
q
p

hkxþ zk ð1Þ
where hk 2 C1�Nt is the channel vector with zero mean unit variance i.i.d complex Gaussian entries, x is the transmitted sym-
bol vector and EðxHxÞ ¼ 1, zk is the additive noise with zero mean and unit variance. It should be noticed that although
Rayleigh fading channel is considered here, the proposed scheme can be directly extended to other channel models such
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as Rician channel since the proposed scheme does not depend on the channel model. We assume that all the scheduled users
are equal power allocated and have the same SNR q. The transmitted symbol vector x is given by
x ¼
X
i2T

wisi ð2Þ
where si and wi are the transmitted symbol and beamforming vector for user i, T is the scheduled user set. Then the received
symbol for user k is
yk ¼
ffiffiffiffi
q
p

hkwksk þ
X

j–k;j2T

ffiffiffiffi
q
p

hkwjsj þ zk ð3Þ
For the choice of beamforming vectors, it is well know that linear zero-forcing precoding is optimal and simple. The base
station will compute the beamforming vectors provided the channel direction information of the scheduled users, which are
mutually near-orthogonal. After user set T is selected according to the semi-orthogonal user selection algorithm, define
Ĥ ¼ ðĥpð1Þ; . . . ; ĥpðjTjÞÞ, ĥpðiÞ is the channel gain vector obtained by the base station for user pðiÞ. Then the beamforming vectors
are
Ŵ ¼ ðĤHĤÞ�1ĤH ð4Þ
The beamforming vector is obtained by normalizing the ith column of Ŵ, and the scheduled users will receive signal from
the base station.

2.2. Feedback channel model

In the wireless communication system, the feedback information of different users are distinguished by frequency, time
slot or orthogonal code. Taking long term evolution (LTE) system for example, the feedback information is transmitted on
allocated resource blocks (RB), which are time-frequency resources. The frequency, time slot or orthogonal code resources
used for feedback are regarded as the general feedback channel in the paper.

We present a general feedback channel model for the multiuser feedback with M feedback channel among U users, in
which users report their CSI/CDI to the base station. We assume that the feedback channels are constant and Rayleigh fading
during the feedback period, the received signal by base station is given by
Y ¼ ffiffiffiffi
q
p

AV þ Z ð5Þ
where Y 2 CM�N is the received signal matrix, A 2 CM�U is the channel gain matrix of feedback channels, V 2 CU�N is the feed-
back information from U users, and Z 2 CM�N is complex Gaussian noise matrix with i.i.d zero mean unit variance entries. The
ith row vector in V is feedback information from user i. When N is 1, our feedback model is the same as the model in [6]. It
should be noticed that in this feedback channel model the feedback channels are general channel and can be different
resources, such as frequency band, time-frequency element and others.

When M is equal to U, it means that each user has its dedicated feedback channel, which is popular case in the existing
communication systems. When M is less than U, it means that U users share M feedback channels together, which can be an
resource-efficient way to feed back information to the base station. However, how can we retrieve the feedback information
since the feedback channels are shared among the users? Fortunately the emerging compressed sensing technology offers a
solution. If only parts of the users feed back information on all the shared channels to the base station, which means that V is
row sparse, we can identify and recover the feedback information via compressed sensing.

In order to implement zero-forcing beamforming, the users report the CSI to the base station through feedback channels.
In [6] this channel model is used for feeding back the channel quality information (CQI) which can be represented by one
scalar or one bit. In our feedback channel model, the CSI information, such as channel direction information (CDI) or channel
quantization indexes are transmitted through feedback channels.

3. Compressed sensing feedback

Before discussing the proposed compressed sensing feedback algorithm, we present some important results for MMV CS
used in our work.

3.1. Compressed sensing background

CS is a technology that can capture and represent compressible signals by employing nonadaptive linear projection. CS
can be used for reconstructing single measurement vector (SMV) and multiple measurement vector (MMV) [19,20]. In this
paper, we focus on applying the MMV CS to the multiuser MIMO feedback scheme. MMV CS can be considered as how to
recover multiple SMV with the same support simultaneously. Give a multiple measurement vectors B and a redundant
dictionary A, the MMV problem in a noiseless scenario can be represented as
B ¼ AX ð6Þ
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where A 2 Rm�n, X 2 Rn�l and B 2 Rm�l. If there is only one column in X and l ¼ 1, MMV problem is degraded to a SMV prob-
lem. The column vectors in X are sparse and with the same support. A noiseless MMV CS is an optimization problem as
ðP0Þ : min R0 ¼
Xl

j¼1

jxijj
 !

i2X

������
������

0

; X 2 1;2; . . . ;n; s:t: B ¼ AX ð7Þ
where R0 is sparsity and also the number of nonzero row of X. The optimization problem for problem ðP0Þ requires searching
all the subset of f1;2; . . . ;ng and is NP-hard problem, and the complexity grows exponentially with the size n.

Because of the difficulty of problem ðP0Þ, it can be relaxed as
ðP1Þ : min R1 ¼
Xl

j¼1

jxijj
 !

i2X

������
������

1

; X 2 1;2; . . . ;n; s:t: B ¼ AX ð8Þ
It has been proved that problem ðP0Þ and problem ðP1Þ have identical and unique solution when the sparse level R0 and the
matrix mutual coherence Mc satisfy the following restriction [14]
R0 < 1þ 1
Mc

� ��
2 ð9Þ

McðAÞ ¼ max
16i;j6n;i–j

Gði; jÞj j ð10Þ
where Gði; jÞ is the ði; jÞth entry of the Gram matrix G: G ¼ AHA. This restriction for MMV is similar to the Theorem 12 in [17].
It is possible to show that the coherence of a matrix is always in the range of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�mÞ=mðn� 1Þ

p
;1

� �
[21]. Then (9) is given

by
R0 < 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðn� 1Þ

n�m

r !,
2 ð11Þ
Problem ðP1Þ can be solved by greedy algorithm, such as matching pursuit (MP) and orthogonal matching pursuit (OMP)
[14,20]. Since problem ðP1Þ is a convex optimization problem, it can also be solved by convex optimization algorithm [16,20].
Problem ðP0Þ and problem ðP1Þ are noiseless model, for noisy scenario the MMV problem can be represented as
B ¼ AXþ N ð12Þ
where A 2 Rm�n, X 2 Rn�l, B 2 Rm�l and N 2 Rm�l. The optimization problem is given by
ðP2Þ : min R1 ¼
Xl

j¼1

jxijj
 !

i2X

������
������

1

; X 2 1;2; . . . ;n; s:t: B� AXk kF 6 e ð13Þ
where e is related to the noise N and the recovery accuracy requirement. Problem (P2) can be solved by greedy algorithm and
convex relaxation algorithm [15,16]. It should be noticed that above discussion for MMV is in R, however, the results can be
easily extended to the situation in C, such as the CS applications in [5,6].

3.2. Algorithm of compressed sensing feedback

We apply the emerging compressed sensing technology to the feedback algorithm in MU-MIMO system, which can
reduce the feedback resource consumption. The system model is illustrate in Fig. 1. Unlike the zero-forcing beamforming
scheme in [1–3], in our system the mobile users are firstly self pre-selected according to the user pre-selection algorithm,
then the pre-selected users feed back the channel state information via compressed sensing feedback scheme on all the feed-
back channels. The pre-selected users set is S ¼ fpð1Þ; . . . ;pðjSjÞg. The CSI information can be analog or digital according to
the feedback strategies which will be further explained in the following sections. At the base station, the compressed CSI will
be recovered and the pre-selected users will be identified via compressed sensing recovery algorithm, such as MP, OMP or
convex optimization. The base station will select Nt users among the pre-selected users, then zero-forcing beamforming will
be carried out for the selected users. The selected user set is T ¼ fpð1Þ; . . . ;pðjTjÞg. The details of the process are illustrated as
following.

3.2.1. User self pre-selection algorithm
The self pre-selection algorithm is to select partial users to report their channel information to the base station, which is a

kind of sparsity that is vital for compressed sensing. Firstly we give the cumulative distribution function (CDF) of the squared
absolute inner product between two uniformly distributed m-dimensional unit complex vectors, which will be used in the
self pre-selection algorithm.
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Lemma 1. The CDF of the squared absolute inner product x between two uniformly distributed m-dimensional unit complex
vectors is give by
1� ð1� xÞm�1
; for x 2 ½0;1�
Proof. The uniformly distributed m-dimensional unit complex vector can be seen as the point on the surface of m-dimen-
sional unit complex hypersphere in Fig. 2. As the two vectors are random distributed, it is reasonable to assume that one
vector, such as c1, is fixed and another vector, such as ci , is random on the surface of unit complex hypersphere as shown
in Fig. 2. The squared absolute inner product for the vectors are shown. It can be seen that the points (such as c2 and c3) on
the spherical cap which is intersected by the hyperplane jdj2 P d filled with the diagonal line have squared absolute inner
product with ci larger than d. Therefore, the probability of jcicjj2 P d is the ratio between the surface area of the spherical cap
and the surface area of the hypersphere.

The surface area of a m-dimensional complex hypersphere of radius r is [3]
AðrÞ ¼ 2pmr2m�1

ðm� 1Þ! ð14Þ
The surface area of the spherical cap formed by the intersection of the subspace jdj2 P d and the m-dimensional complex
hypersphere of radius r is
AðSðrÞÞ ¼ 2pmrðr2 � dÞm�1

ðm� 1Þ! ð15Þ
Then the ratio between the surface area of the spherical cap and the surface area of the hypersphere is given by
P0 ¼ 1� d
r2

� �m�1

ð16Þ
Fig. 2. Complex unit vectors and their square of inner product in the unit complex hypersphere.



1592 W. Lu et al. / Computers and Electrical Engineering 39 (2013) 1587–1600
Hence the CDF of the squared absolute inner product � between two uniformly distributed m-dimensional unit complex
vectors is give by 1� P0 with r ¼ 1. h

The channel vector hk is a Nt dimensional complex vector where each entry is distributed as complex Gaussian with zero
mean and unit variance. c ¼

PNt
i¼1jhk;ij2 is the sum of the squares of 2Nt Gaussian random variables with zero mean and 1=2

variance, and has a central chi-square distribution with 2Nt degree of freedom. The probability density function and cumu-
lative distribution function of c are given by [22]
PcðcÞ ¼
cNt�1e�c

ðNt � 1Þ! ð17Þ

FcðcÞ ¼ 1� e�c
XNt�1

k¼0

ck

k!
ð18Þ
Then we can have that
Pðc > fÞ ¼ 1� Pðc 6 fÞ ¼ 1� FcðfÞ ¼ e�f
XNt�1

k¼0

fk

k!
ð19Þ
In the self pre-selection algorithm, each user generates an Nt-dimensional unit complex random vector g 2 C1�Nt . The
normalized channel gain vector for mobile user k is ehk ¼ hk=khkk, and ck ¼ khkk2. Each user will compute jehkgj2, and com-
pare it with the threshold d. The self pre-selection user set is given by
S ¼ ðk : jehkgj2 < d; ck > f; k 2 ð1; . . . ;UÞÞ ð20Þ
We need to set a proper value of d and f which will determine the number of mobile users who will report their CSI and
occupy feedback resources. The algorithm to determine d and f is given by Lemma 2.

Lemma 2. If kp users out of U users are chosen to feed back CSI during the self pre-selection strategy, then d and f are
given by
d ¼ 1� 1� kp

U � Pðc > fÞ

� �1=ðNt�1Þ
Proof. We want the probability of the selection of kp users is maximized, and it requires that
Fðd; fÞ ¼ arg max
d2½0;1�

U

kp

� �
Pðd; fÞkp ð1� Pðd; fÞÞU�kp ð21Þ

Pðd; fÞ ¼ Pðjehkgkj
2 < d; ck > fÞ ð22Þ
By deriving Fðd; fÞ respect to Pðd; fÞ, we can get
@Fðd; fÞ
@Pðd; fÞ ¼

U
kp

� �
kpPðd; fÞkp�1ð1� Pðd; fÞÞU�kp � ðU � kpÞPðd; fÞkp ð1� Pðd; fÞÞU�kp�1
n o

ð23Þ
We can get the maximum Fðd; fÞ by
@Fðd; fÞ
@Pðd; fÞ ¼ 0) Pðd; fÞ ¼ kp

U
ð24Þ
According to the Lemma 1, the CDF of jehkgj2 is given by
Pðjehkgkj
2
< dÞ ¼ 1� ð1� dÞðNt�1Þ ð25Þ
where jehkgkj
2 and ck are independent to each other. In the self pre-selection algorithm, we choose those users that their sig-

nals are strong by setting proper value of f, then we can get the threshold of d by
Pðjehkgkj
2
< dÞ ¼ kp

U � Pðc > fÞ ð26Þ
Then substituting (25) and (26), and we can get Lemma 2. h

By self pre-selection algorithm only part of users, which have better channel qualities and have better orthogonality to
each other with high probability, will feed back their CSI to the base station. So there is sparsity among the users, and com-
pressed sensing can make use of the sparsity to recover the feedback information and identify which users have reported the
CSI. In the following section we will discuss the compressed sensing feedback and recovery.
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3.2.2. Compressed sensing feedback and recovery
The feedback information can be analogy feedback or digital feedback which occupy different amount of feedback

resources and have different robustness to the noise. In the CS feedback, the kp self pre-selected users will feed back their
analog channel vectors or the digital index of quantified channel vector to the base station. According to the feedback chan-
nel model in Section 2.2, we can get
Ya ¼
ffiffiffiffi
q
p

AVa þ Z ð27Þ

Yd ¼
ffiffiffiffi
q
p

AVd þ Z ð28Þ
where the row vectors in Va are the analog channel vectors of users, the row vectors in Vd are the digital indexes of the quan-
tified channel vectors. It should be noticed that Va and Vd are row sparse since the non-selected users will not feed back their
CSI and the corresponding row vectors are 0. As assumed in Section 2.2, there are M feedback channel among U users. It is
obviously that the feedback model can be regarded as a CS MMV problem. As discussed in Section 3.1, feedback channel M,
user number U and self pre-selected user number kp should satisfy (10) and (11). Otherwise, the CS MMV recovery algorithm
cannot guarantee a high recovery probability. The impacts of feedback channel M and noise Z on the recovery probability and
accuracy will be discussed in the simulations. It should be noticed that in order to compare the performance of CS analog
and digital feedback, we let the column numbers of Va and Vd are identical in the simulation, which means that both of them
occupy the same feedback resources. For example if there are 4 transmitting antenna at the base station, the channel gain
vector is 4 dimensional, and the column number of Va is 4 which means the selected users transmit the feedback information
in 4 times. Then in CS MMV digital feedback the quantization bits is 8 for QPSK modulation which needs 4 times to transmit
the 4 symbols.

After receiving the feedback information at the base station, CS MMV recovery algorithm is applied to recovery the CSI
information. There are typically 2 classes of recovery algorithms. one class of algorithm is to recover the row-sparse matrix
itself by greedy algorithm or convex relaxation [14–17]. Another class of algorithm is to recover the support of the row-
sparse matrix firstly and then to recover the matrix. In this paper, we will apply both of the 2 classes of algorithms. For
the first class of algorithm, we will apply MMV OMP algorithm to the CSI recovery. For the second class of algorithm, the
ReMBo algorithm is used [18]. The feedback CS models are given as (27) and (28). The MMV OMP, outlined in Algorithm
1, is directly extended form the SMV OMP.

Algorithm 1. Orthogonal matching pursuit for MMV.

(1) Initialization: residual R0 ¼ Y.
(2) At the tth iteration (or iteration ending condition):
(a) Choose the column vector akt , which satisfies akt ¼ arg maxak

kYkk2, where Yk ¼ RH
t�1ak.

(b) Let At ¼ ½At�1; akt �, and V� ¼ arg min kAtV � Yk2
F , Yt ¼ AtV

�.
(c) Set Rt ¼ Y � Yt .

The ReMBo algorithm proceeds by taking a random vector d and combining the individual observations in Y into a single
weighted observation y0 :¼ Yd. The random combination yields an SMV with the same nonzero location set as the MMV.
Then, an SMV problem is solved in order to find the support of and SMV and MMV. Finally, the MMV can be recovered
by the sub-matrix of A which is composed of the column vectors indicated by the support.

Algorithm 2. ReMBo algorithm for MMV.

(1) Initialization: give Y and A and set iteration to 0.
(2) At the tth iteration (or iteration ending condition):
(a) Draw a random vector d, and ¼ Y0d.
(b) Solve y0 ¼ Av0 using SMV recovery algorithm to recover the support bS and solution v̂0.
(c) if jbSj 6 sparsitylevel and ky0 � Av0k2 6 �, then go to step 3), else go to step 2).
(3) Based on the support bS and the corresponding submatrix As indicating by the support bS, get the nonzero subm-

atrix of Vs ¼ ðAsÞ y Y,Asy is the pseudo-inverse of ðAsÞ.
(4) Recover V by Vs and setting row vector of V: vi ¼ 0; i R bS.

3.2.3. User selection and zero-forcing beamforming
The base station performs user selection algorithm to select Nt out of kp users at one time based on the feedback CSI infor-

mation. Although the user number for base station to select has been reduced from U to kp, finding the optimal user set that
maximizes the throughput requires a large search. In the paper, we use a user selection algorithm based on the semi-orthog-
onal user selection (SUS) procedure [1]. The SUS algorithm is as follows.
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Algorithm 3. Semi-orthogonal user selection (SUS) algorithm.

(1) Initialization: Candidate user set S ¼ f1;2; . . . ; kpg, and the selected user set is T0 ¼ fpð1Þg , where pð1Þ ¼
arg max khkk; k 2 S.

(2) At the ith iteration (i 6 Nt):
(a) Find the user set Ii ¼ f1 6 k 6 kp : jhkhH

pðjÞj 6 d0;1 6 j 6 i.
(b) Find the ðiþ 1Þth user that pðiþ 1Þ ¼ arg max khkk; k 2 Ii.
(c) Then the selected user set is Ti ¼ fTi�1;pðiþ 1Þg.

In the semi-orthogonal user selection algorithm, d0 is related to the allowed correlation threshold. The CSI information
used by the SUS algorithm can either be the analog feedback information or the digital feedback information according to
the CS MMV feedback strategy.

4. Performance evaluation

4.1. Throughput of CS feedback in ZFBF

Firstly we will discuss the throughput of CS digital feedback in ZFBF. According to the broadcast channel model given in
Section 2.1, the signal to interference plus noise ratio (SINR) of user k is as
SINRk ¼
qjhkwkj2

1þ q
P

j–kjhkwjj2
¼ qkhkk2j~hkwkj2

1þ qjhkk2P
j–kj~hkwjj2

; 1 6 k ð29Þ
where ~hk is the normalized vector of hk, wk is the beamforming vector.
When feedback channel number M and self pre-selected users kp are chosen properly, the MMV recovery algorithm can

perfectly recover the feedback information with high probability and accuracy. If the feedback information is digital CSI and
modulated by BPSK and QPSK, it is more robust to the noise effect, and the feedback impacts on the throughput is mainly due
to the quantization error of channel vector. Denote hk as the angle between ~hk and ĥk , then we have [1]
~hk ¼ cos hkĥk þ sin hkgk ð30Þ
where cos hk ¼ j~hkĥ�kj, ĥk and gk are the quantified channel vector and the error vector, and they are orthogonal to each other.
Then the SINR can be presented as
SINRk ¼
qjhkwkj2

1þ q
P

j–kjhkwjj2
¼ qkhkk2j~hkwkj2

1þ qkhkk2 sin2 hk
P

j–kjgkwjj2
ð31Þ
In the CS digital feedback strategy, the self pre-selected users feed back its quantified CDI ĥk and the channel magnitude
khkk. In high SNR regime, the throughput upper bound is given by [1]
EðRdÞ ¼ E
X
i2T

log2ð1þ SINRiÞ
( )

6
Nt

Nt � 1
ðBþ log2kpÞ ð32Þ
In the CS analog feedback strategy, the feedback information are the channel vectors. When there is no noise and feedback
channel number M and self pre-selected users kp are chosen properly, CS MMV recovery algorithm can almost recovery the
vector perfectly. We assume that the actual channel gain vector is impacted by the noise according to different SNR ratios.
Directly analyzing the impact of noise on the throughput is complicate, and the mathematic derivation is tricky. For analysis
simplicity, we can regard the impact of noise as the quantization error for digital feedback which has been analyzed in many
literatures and reference therein [1–3].

As shown in Fig. 2 and Refs. [1–3], in the quantization channel feedback the complex hypersphere is divided into many
spherical caps, and each cap is represented as a codeword in the codebook. When the channel gain vector is projected into
the spherical cap, the corresponding codeword is used to present the quantified channel gain vector. The quantization error
is represented by the angle between the actual channel vector and quantified channel vector.

The noise has the same impact on the channel vector as the quantization error. When the SNR is high, the received chan-
nel gain vector will fluctuate around the actual channel gain vector in a small area, which is similar to a small spherical cap in
quantization feedback, and vice versa. Hence we need to map the effect of noise to the number of quantization bits. The rela-
tionship of noise impact and the equivalent quantization error impact is given in Lemma 3.

Lemma 3. The noise impact on channel vector with SNR (SNR > 0) is equivalent to the quantization error impact on the channel
gain vector by quantization bits B, and they satisfy
B � ðNt � 1Þlog2ð1þ SNRÞ ð33Þ
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Proof. As shown in (30), the SNR can be approximated by
SNRk ¼
k cos hkĥkk2

k sin hkĝkk2 ¼
cos2 hk

sin2 hk

ð34Þ
According to the quantization error analysis in [4], the upper bound of sin2 hk is given by
Eðsin2 hkÞ < 2�
B

Nt�1 ð35Þ
In the worst situation that the quantization error is maximal, we have
Eðsin2 hkÞ � 2�
B

Nt�1 ð36Þ
Substituting (36) to (34), we can get
B � ðNt � 1Þlog2ð1þ SNRÞ � ð37Þ

Then in high SNR regime, the throughput upper bound of CS analog feedback is given by
EðRaÞ � E
X
i2T

log2ð1þ SINRiÞ
( )

6
Nt

Nt � 1
ðNt � 1Þlog2ð1þ SNRÞ þ log2kp
	 


ð38Þ
4.2. Feedback resource reduction

The number of feedback channels required for CS feedback strategy is greatly reduced as only M ¼ OðkplogðU=kpÞÞ feed-
back channels are needed compared to U feedback channels for ZFBF without CS in which each users need to feed back their
CSI. The comparisons of resource consumption for CS analog/digital feedback and ZFBF feedback without CS are shown in
Table 1.

In our simulations, M is set to U=2 to achieve a steady recovery probability and accurate CSI. QPSK is used to modulate the
digital feedback information which is widely used in LTE Release 8/9 to ensure the robustness of the feedback, then B=2 sym-
bols are needed to transmit B bits. Consequently, when Nt ¼ B=2 the feedback resource reduction can be up to 50% for CS
digital feedback compared to ZFBF feedback without CS. For CS analog/digital feedback, the total feedback resource con-
sumption is linear with MNt .

4.3. CS feedback recovery performance

CS recovery performance is vital for the CSI information recovery and has important impacts on the performance of the
ZFBF. The feedback channel model is illustrated in Section 2.2. The recovery performance for CS digital feedback is better
than the CS analog feedback, and it is more robust to the noise. The simulation in next section will show that the robustness
of CS MMV digital feedback. Hence, we only analyze the recovery performance for CS analog feedback. As discussed in Sec-
tion 3.2.2, we will simulate the performance of MMV OMP(M-OMP) algorithm and ReMBo algorithm. We adopt 2 rules for
measuring the performance of the 2 algorithms [20]:

� Recovery rate: the percentage of identifying the non-zero rows correctly.
� The relative mean squared error (MSE): the relative mean squared error between the true and the estimated solution, and

is given by
MSE ¼ E
kV̂ � Vk2

F

kVk2
F

 !
ð39Þ
Fig. 3 shows the recovery rate and MSE for different SNR. The simulations are with 100 users, 16 feedback users and 50
feedback channels for different SNR. Fig. 4 shows the recovery rate and MSE for different number of feedback channel. The
simulations are with 100 users, 16 feedback users and 10dB SNR for different feedback channels. It can seen that with the
increase of SNR and channel number, the recovery rates for both M-OMP and ReMBo increase dramatically and the MSEs
reduce quickly. Meanwhile the M-OMP algorithm is superior to the ReMBo algorithm in the sense of recovery rate and
MSE. Fig. 5 shows the recovery rate and MSE for different sparsity level. As the increase of sparsity level, the recovery rates
for M-OMP and ReMBo reduce quickly while there is a sparsity threshold for M-OMP algorithm. When the sparsity level is
below the sparsity threshold the recovery rate for M-OMP is almost to 1.

From the analysis above, it can be seen that the M-OMP algorithm is superior to the ReMBo algorithm. The CS feedback is
suitable for moderate and high SNR regime, and the feedback channel number is good to set to the half of the users. The
impacts of SNR and feedback channel number are equivalent, which means that in low SNR we can obtain high recovery rate



Table 1
Feedback resource comparisons for different feedback strategies.
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Number of feedback channels M M U
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Fig. 3. Recovery rate and MSE for different SNR.
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Fig. 4. Recovery rate and MSE for different feedback channel number.
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and accuracy by more feedback channels and vice verse. In the low SNR regime, we need to increase the feedback channel
number to insure the high recovery rate. The impact of SNR and feedback channel number on the throughput will be further
discussed in next section.

Next we discuss the complexity of the proposed feedback scheme. The computation in this scheme is mainly imple-
mented on the base station side. In practical the processor of the base station is powerful and can handle the complexity.
However, there are different CS recovery algorithm which have different complexity. It is important to apply the efficient
algorithm to make the feedback information up-to-date. In [20] the complexity of different CS recovery algorithms are
presented. Generally the M-OMP and MMV order recursive matching pursuit (M-ORMP) are with about less than 1/4 com-
plexity of the MMV FOcal underdetermined system solver (M-FOCUSS) and regularized M-FOCUSS in the point of computa-
tional complexity, however, the MSE of M-OMP and M-ORMP is slightly worse than M-FOCUSS and regularized M-FOCUSS.
In [23] the author compares the linear programming and greedy algorithms for the CS recovery, and show that greedy
algorithms such as M-OMP and its evolutions are with less complexity. Hence greedy algorithm can be regarded as a
practical algorithm for the implementation of the proposed scheme in the engineering applications.
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5. Simulations and analysis

5.1. Simulation environment

In our simulations, we set the number of transmit antennas at the base station to Nt ¼ 4, the total user number is 100. The
semi-orthogonal user selection algorithm for zero-forcing beamforming is applied. Since the M-OMP algorithm has better
performance than the ReMBo algorithm, the M-OMP is used for the CSI information recovery in our simulations. We simulate
the CS analog and digital feedback algorithms, and compare their performance with ZFBF with perfect CSI and quantization
CSI with all users. Meanwhile we compare the proposed CS feedback to ZFBF with the same users as CS feedback.
5.2. Results

Fig. 6 compares the sum throughput for CS digital feedback and analog feedback with different feedback users by self
pre-selection algorithm. The SNR is 10dB, and the feedback channel number is 50. The sum throughput results for perfect
CSI and quantified CSI for all users and numbered feedback users are also shown. Numbered feedback users are the same
as the users in the CS feedback. The results show that both CS digital feedback and analog feedback have capacity gain as
the increase of the feedback users, while the capacity gain with CS analog feedback increases more obviously. CS analog feed-
back outperforms CS digital feedback, and even better than the ZFBF with quantified CSI of all users. The quantization bits for
digital feedback and quantified CSI is 8 bits with QPSK for the fair comparison with CS analog feedback in the sense of occu-
pying the same feedback resources. The proposed CS feedback algorithm can save 50% feedback resource compared with the
ZFBF algorithms in [1–4]. On the other hand, the CS analog feedback outperforms the prefect CSI for numbered feedback
users, and the CS digital feedback outperforms the quantified CSI for numbered feedback users. The reason is that CS feed-
back can pre-select the better users among all the users, and there is a user-selection gain. For the analog CSI of all users with
8 bits feedback for each user which is the same as the scalar quantization in [24], the throughput has no obvious increase due
to the inaccuracy of feedback is the main aspect that impacts the throughput. Since the feedback channel number is fixed as
50, with the increase of self pre-selected users the CS recovery accuracy will degrade, which will impact the sum throughput.
This is the reason why the sum throughput for CS MMV digital/analog feedback increase slowly when pre-selection users is
more than 12. However the feedback channel number can be chosen adaptively according to the number of self pre-selection
users.

Fig. 7 shows the sum-throughput versus SNR for different feedback strategies. The self pre-selected users are 16, and the
feedback channels are 50. It shows that with the increase of SNR, the sum-throughput for CS analog feedback increases as the
same rate of the sum-throughput for ZFBF with perfect CSI of all users, and the sum-throughput for CS digital feedback
increases as the same rate of the sum-throughput for ZFBF with quantified CSI of all users. Meanwhile, the sum-throughput
for CS analog feedback outperforms the ZFBF with quantified CSI of all users, while the sum-throughput for CS digital feed-
back is slightly lower than it. However, CS feedback with the simulation parameters can save 50% feedback resources. When
the CSI feedback user number is the same as the CS feedback, the throughput of perfect CSI for numbered feedback users is
slight lower than CS MMV analog feedback, and the throughput of quantified CSI for numbered feedback users is slight lower
than CS MMV digital feedback. For the analog CSI of all users with 8 bits feedback for each user [24], the throughput increase
with the SNR but reach a plateau with SNR larger than 10 dB. This is because the feedback accuracy has larger impacts on the
throughput than the SNR.

Fig. 8 shows the sum-throughput versus feedback channel number. The SNR is 10 dB, and the self pre-selected users are 16.
It shows that with the increase of feedback channel number, the throughput for CS analog feedback increase dramatically, and
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then reaches a plateau because that the CSI is accurate enough as the feedback channel reach a threshold, such as 50 for this
scenario. The throughput for CS digital feedback increases slowly as the increase of feedback channel, which is because that
the CSI is quantified and robust to the impact of noise and recovery accuracy. Even the recovery accuracy is low with less feed-
back channels, the base station can recovered it to quantization bits successfully. Hence, the CSI quantization error is the key
factor that affects the throughput for CS digital feedback, which means that we can further reduce the feedback resource for CS
digital feedback.
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6. Conclusion

We have proposed a resource-efficient feedback scheme based on compressed sensing for multiple users ZFBF MIMO sys-
tems. Due to the self pre-selection algorithm, the proposed CS feedback can greatly save the feedback resources. Compared
with the ZFBF with quantified CSI of all users and numbered users, simulations and analysis show that the proposed CS ana-
log feedback has better performance than the ZFBF with quantified feedback of all users, and the proposed CS digital feed-
back has a close performance with the ZFBF with quantified feedback of all users while occupying less feedback resources
than the ZFBF with quantified feedback of all users. Meanwhile, the simulations show that M-OMP algorithm has better
recovery rate and MSE performance than ReMBo algorithm for CS recovery with noise.
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