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Weighted Median Regression Estimates

Jose L. Paredes, Senior Member, IEEE, and Gonzalo R. Arce, Fellow, IEEE

Abstract—In this paper, we propose a simple and robust algo-
rithm for compressive sensing (CS) signal reconstruction based on
the weighted median (WM) operator. The proposed approach ad-
dresses the reconstruction problem by solving a [, -regularized least
absolute deviation (/o -LAD) regression problem with a tunable reg-
ularization parameter, being suitable for applications where the
underlying contamination follows a statistical model with heavier-
than-Gaussian tails. The solution to this regularized LAD regres-
sion problem is efficiently computed, under a coordinate descent
framework, by an iterative algorithm that comprises two stages.
In the first stage, an estimation of the sparse signal is found by
recasting the reconstruction problem as a parameter location es-
timation for each entry in the sparse vector leading to the mini-
mization of a sum of weighted absolute deviations. The solution
to this one-dimensional minimization problem turns out to be the
WM operator acting on a shifted-and-scaled version of the mea-
surement samples with weights taken from the entries in the mea-
surement matrix. The resultant estimated value is then passed to a
second stage that identifies whether the corresponding entry is rel-
evant or not. This stage is achieved by a hard threshold operator
with adaptable thresholding parameter that is suitably tuned as
the algorithm progresses. This two-stage operation, WM operator
followed by a hard threshold operator, adds the desired robustness
to the estimation of the sparse signal and, at the same time, ensures
the sparsity of the solution. Extensive simulations demonstrate the
reconstruction capability of the proposed approach under different
noise models. We compare the performance of the proposed ap-
proach to those yielded by state-of-the-art CS reconstruction algo-
rithms showing that our approach achieves a better performance
for different noise distributions. In particular, as the distribution
tails become heavier the performance gain achieved by the pro-
posed approach increases significantly.

Index Terms—Basis selection, compressive sensing, inverse
problem, model selection, reconstruction algorithm, robust re-
gression, sparse model, weighted median.
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I. INTRODUCTION

ECENTLY, the theory of compressive sensing (CS) has
R emerged as a promising approach that unifies signal
sensing and signal compression into a single and simple task
[1], [2]. The basic principle behind the CS framework is the
use of nonadaptive linear projections to acquire an efficient,
dimensionally reduced representation of a sparse signal. From
that low-dimension representation, the original sparse signal
can be recovered/recontructed by solving an inverse problem.
Interestingly, the theory of compressive sensing has shown
that by randomly projecting a sparse signal the most salient
information is preserved in just a few measurements such that,
with high probability, the sparse signal can be recovered from
the measurements by solving the inverse problem Y = AX +¢
where Y is an M -dimensional measurement vector, A is the
M x N measurement matrix with M < N, X is the target
sparse signal, and £ is the noise vector.

To this end, several algorithms have been proposed for signal
reconstruction. A first class of reconstruction algorithms, tries
to identify iteratively the column-vectors in A that are closer,
in the Euclidean distance sense, to the measurement vector Y.
Matching pursuit (MP) [3], orthogonal matching pursuit (OMP)
[4], stagewise OMP [5], regularized OMP [6], subspace MP [7],
and compressive sensing MP (CoSaMP) [8] are examples of
greedy-based algorithms that belong to this family. The basic
idea behind these reconstruction methods is to find the location
of the nonzero values of X by maximizing the correlation be-
tween the columns of A and a residual vector (measurement
vector for the first iteration). Then, the nonzero values of X
are estimated by minimizing the /3-norm of the residual vector.
These two stages (correlation maximization and [, minimiza-
tion) emerge naturally as the optimal processing approaches
under the assumption that the underlying contamination follows
a Gaussian distribution.

A second class of reconstruction algorithms, known as
convex-relaxation algorithms, recovers the sparse signal by
solving a constrained [,, optimization problem. Reconstruction
algorithms based on interior-point methods [9]-[11], projected
gradient methods [12] and iterative thresholding [13], among
others, belong to this class. One of these reconstruction algo-
rithms that is particularly useful since it takes into account the
fact that in a practical scenario the random measurements may
be corrupted by noise is the basis pursuit denoising (BPDN)
reconstruction algorithm [14], [15]. In this approach, the sparse
signal X is found as the solution to the optimization problem
minx [|[Y — AX]|?, + 7||X||;, where 7 is a regularization
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parameter that controls the influence of the data-fitting term
(lo-term) and the sparsity-inducing term (/;-term) on the
optimal solution. Note that the solution to this optimization
problem is, indeed, the maximum a posteriori (MAP) estimate
for X under the assumption that the underlying contamination
follows a Gaussian model and using a Laplacian model as
the sparseness-promoting prior model [16]-[19]. Interestingly,
under a Bayesian framework the sparse signal is found by
solving a [;-regularized least square problem whose solution
leads to a sparse vector X that minimizes the /5-norm induced
by the Gaussian assumption.

Despite its Bayesian optimality under a Gaussian noise as-
sumption, the /;-regularized least square reconstruction algo-
rithm tends to be very sensitive to outliers or gross error present
in the measurements. More precisely, if the underlying contam-
ination no longer follows a Gaussian noise model and, instead,
it is better characterized by a statistical model with heavier-
than-Gaussian tails the performance of these reconstruction al-
gorithms degrades notably due, mainly, to the poor robustness of
the least square estimator. Moreover, greedy-based reconstruc-
tion algorithms which are optimum under the /5-norm based as-
sumptions are no longer effective in solving the inverse problem
leading to spurious components in the recovered signal. This
invites us to explore the rich theory of robust linear regression
[20]-[23] as a plausible approach to address the CS reconstruc-
tion problem when the random projections are contaminated
with heavy-tailed noise.

In this paper, a CS reconstruction algorithm is proposed
that combines the robust properties of the least absolute
deviation (LAD) regression with the sparsity forced by
an lp-norm. More precisely, we address the reconstruction
problem by solving a [y-regularized LAD regression problem,
minx ||Y — AX||;, + 7||X]|;, where T controls the influence
of the /;-term and the sparsity-inducing term in the optimum
solution. Unlike [;-regularized LS based reconstruction al-
gorithms, the proposed [p-regularized LAD algorithm offers
robustness to a broad class of noise, in particular to heavy
tail noise [23], being optimum under the maximum likelihood
(ML) principle when the underlying contamination follows a
Laplacian-distributed model. Furthermore, the use of /;-norm
in the data-fitting term has been shown to be a suitable approach
for image denoising [24], image restoration [25] and sparse
signal representation [18], [26], [27].

Solving this [g-regularized LAD problem, however, is
N,-hard complex owing to the sparsity constraint imposed by
the ly-norm [28]. Therefore, a suboptimal approach based on
the coordinate descent framework is adopted here to find the
sparsest signal that minimizes the residual LAD. Interestingly,
under the coordinate descent approach the solution to the mul-
tidimensional /o-LAD problem can be efficiently computed by
an iterative algorithm based on the weighted median operator
followed by a hard threshold operator acting on a shifted and
scaled version of the observation vector. The former operator
which emerges naturally as the optimum solution of a scalar
LAD regression problem adds the desired robustness to the
estimation of the nonzero values of X while the latter operator,
induced by the sparsity-promoting term, ensures the sparsity
of the solution. Furthermore, the regularization parameter,
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7, of the multidimensional [o-LAD problem becomes the
hard-thresholding parameter of the second operation, in turn, it
controls whether an entry of the sparse vector is significant or
not.

The proposed approach can be thought of as a greedy-based
algorithm since at each iteration one or several entries of X, es-
timated by the WM operator, are tested for relevancy and added
to or removed from the supporting set of the unknown sparse
signal. As the iterative algorithm progresses, the hard-thresh-
olding parameter is suitably tuned allowing thus to identify in
order of descending signal strength the nonzero entries of the
sparse vector. Furthermore, a refined estimate of the nonzero
entries in X is carried out at each iteration based on a more
reliable samples set—the sample set that results from removing
the contribution of previous estimated entries from the measure-
ment samples. Extensive simulations show that the proposed ap-
proach outperforms state-of-the-art CS signal reconstruction al-
gorithms for noise model with heavier-than-Gaussian tail distri-
bution while, for Gaussian noise, it yields a comparable perfor-
mance to those outputted by CoSaMP [8] and convex-relaxation
based algorithms [9].

II. PROBLEM FORMULATION

Consider an N-dimensional, K -sparse signal X that is re-
motely sensed by projecting it onto an M X N random basis A.
Furthermore, assume that the projections are noisy as described
by

Y=AX+¢ (1

where Y is an M-dimensional measurement vector with
K < M <« N, A is the measurement matrix with i.i.d.
random entries following a Gaussian or a Bernoulli distribu-
tion and € = [&1,&a,...,&y]T is the noise vector with i.i.d.
components obeying a common distribution f¢(£). In this
model, the noise vector comprises the noise introduced during
the sensing and transmission processes including, among
other sources, thermal noise, quantization, sensor system, and
communication channel. Furthermore, the noise may contain
outliers, hence, it is better characterized by a distribution with
heavier-than-Gaussian tails.

The aim of a reconstruction algorithm is to recover the sparse
signal X = [X1, Xs,..., Xn]7 from the reduced set of noisy
projections {Y1,Ys,... Yy }. Since the number of measure-
ments is in general much smaller than the signal dimension, the
linear equation system (1) is underdetermined and has multiple
solutions. Furthermore, since the measurement signal has been
contaminated by noise, the recovery process reduces to finding
an approximation of the signal, X, such that a performance cri-
terion is achieved under the constraint that the signal is sparse
in some orthonormal basis, ¥.! A common criterion widely
used in the Compressive Sensing literature is to reconstruct the
sparse signal by minimizing a norm of a residual error subject
to the constraint that the signal is sparse [1]. Formally [29]

A

X = argmin Y — AX];, subject to |[|X[};, <K

I'Without loss of generality, we assume that the signal is sparse in the canon-
ical domain, therefore, the sparsity basis ¥ reduces to the identity matrix.
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where ||-||;, denotes the /,,-norm with || - ||;, as the [y quasi-norm
that outputs the number of nonzero components in its argument.
This constrained minimal-norm optimization problem can be
reformulated as [29]

A

X = argn%én 1Y — AX]J;, + 7| Xz, @

where 7 is a regularization parameter that balances the con-
flicting goals of minimizing the /,,-norm of the residual errors
while yielding, at the same time, a sparse solution on X [17].

The first term in (2), named as data-fitting term, gives us a
measurement of a distance between the measurement vector and
the projected reconstruction signal AX. The smaller the dis-
tance, the better the estimation is. The choice of the optimum
norm for the data-fitting term is closely related to the character-
istic of the noise. Thus, if the underlying contamination follows
a Gaussian-distributed model, the Euclidean norm (/3-norm) is
the optimum choice under the Maximum Likelihood principle
leading thus to solve a regularized least square (LS) regression
problem for the recovery of the sparse signal X. Most CS re-
construction algorithms rely on the assumption that the under-
lying contamination follows the Gaussian model and use the
lo-norm in the data fitting term [11], [14]-[16]. However, it is
well known that the least square based estimators are highly sen-
sitive to outliers present in the measurement vector leading to an
unacceptable performance when the noise no longer follows the
Gaussian assumption but, instead, it is better characterized by
heavier-than Gaussian tail distributions [20].

To mitigate the effect of impulsive noise in the compressive
measurements, a more robust norm for the data-fitting term has
to be used. A natural choice will be to replace the lo-norm by an
l1-norm [18], [24]-[27], reducing the reconstruction problem to
solve an [y-regularized LAD (lo-LAD) regression problem. That
is

X = argn%énHY—AXHll + 71X ]ls, - 3)

LAD regression has been widely used in the statistical
community as an alternative approach to solve linear regres-
sion problem when the observation vector is contaminated by
outliers or gross errors, being optimum under the ML prin-
ciple when the underlying contamination follows a Laplacian
distribution (see [23] and references therein). We exploit these
properties of the LAD estimator in the context of compressive
sensing signal reconstruction.

The second term in (3) imposes sparsity in the solution. That
is, we are interested in finding the signal X with the smallest
possible number of nonzero components such that the absolute
deviation between the observation vector, Y and the projected
sparse signal, AX, is minimized. This leads inevitably to an
optimization problem that is IVp,-hard whose direct solution even
for modest-sized signal is unfeasible [28].

A. lIterative Coordinate Descent Approach for Solving the
lo-regularized LAD

To overcome the computational complexity of solving the
N-dimensional optimization problem (3), a suboptimum ap-
proach based on the coordinate descent (CD) framework is
used here. Under the CD framework, the solution of (3) is
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found by considering it as /V scalar minimization subproblems,
solve each single-variable minimization subproblem at once
by keeping the other variables fixed to the value obtained in a
previous iteration and repeat this procedure until a performance
criterion is achieved. Coordinate descent methods have been
widely used as a powerful optimization tool to solve multivari-
able optimization problems [30], [31]. More recently, it has
been proposed for solving regularized linear regression prob-
lems in [32], [33] and for CS signal reconstruction in [34]. The
key to the success of this framework relies on the fact that it is
much easier to solve a one-dimensional minimization problem
than a multidimensional one. Furthermore, if a closed form
expression is available for the solution of the single-variable
minimization subproblem, the multidimensional optimization
problem reduces to update each component of the signal in an
optimal fashion way. We exploit these features of the coordinate
descent approach in deriving a robust CS signal reconstruction
algorithm that tries to solve the /o-LAD minimization problem.

Before ending this section, it should be pointed out that a
second approach to reduce the computational complexity in-
volved in solving the /o-LAD optimization problem (3) is to ap-
proximate the [p-norm in the sparsity-forcing term by a convex
norm that at the same time induces sparsity. This convex-re-
laxation approach has been widely used as a feasible path to
solve the [y-regularized LS problem in [9]-[13]. Following this
line of thought, the reconstruction problem reduces then to the
following [, -regularized LAD [18], [25], [26], [35], [36]: X =
arg minx [Y — AX]l;, + 7[X],.

Interestingly, the solution to this optimization problem turns
out to be the maximum a posteriori (MAP) estimate when the
underlying contamination model and the sparseness-promoting
prior model are both assumed to be Laplacian [37]-[39]. Al-
though this /;-LAD optimization problem can be efficiently
solved by linear programming technics [18], [26], the use
of Laplacian model as a sparsity-promoting model may not
induce the necessary sparsity in the solution. Furthermore, as
was shown in [40], to achieve the same performance in signal
recovery, solving a convex-relaxation problem like [;-regu-
larized LAD requires more measurements than those needed
by nonconvex optimization at the cost of more computational
complexity.

III. THE ONE-DIMENSIONAL LAD PROBLEM

Before deriving a closed form expression for the solution of
the regularized LAD problem, let us review briefly the weighted
median operator since it emerges naturally as the underlying op-
eration in the solution of the [,-regularized LAD scalar prob-
lems.

A. Overview of Weighted Median Operator

The weighted median (WM) operator has deep roots in
statistical estimation theory since it emerges as the maximum
likelihood (ML) estimator of location derived from a set of
independent samples obeying a Laplacian distribution. Con-
sider an N-dimensional observation vector that follows the
linear model: z = al + v, where z = [z1,22,...,2n]"
is the observation vector, 1 = [1,1,...,1]7, a € R is an
unknown location parameter and v is an N-dimensional vector
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that denotes additive white noise. Assume that the noise vector
satisfies v = Au where A = diag ‘{—?7 }{—3% is a
diagonal matrix of known entries and u are independent and
identically distributed (i.i.d.) samples obeying a zero-mean,
unit-variance Laplacian distribution. This model allows for the
possibility of heteroscedasticity in the noise vector, thus, each
element in the observation vector follows a Laplacian distri-
bution with a common location parameter, & and a (possibly)
unique variance, a,? = %

Under the ML criterion the best estimate of « is the one for
which the likelihood function reaches its maximum. That is,

o

arg max f(z; @)
«

N
= argmaXH%exp(—)ﬂzi —al). 4)

=1

This is equivalent to minimizing the sum of weighted absolute
deviations

]\T
& = argminz Wiz — af (5)

« i=1

where W; = \; denotes the weight associated to the ith obser-
vation sample. It represents a measurement of its influence on
the estimation of location parameter. Thus, as W; — 0 the influ-
ence of the +th observation sample in the minimization problem
becomes practically negligible, while as W; becomes larger the
value of « that minimizes (5) is pulled toward the ¢th observa-
tion sample.

Note, in (5), that the cost function to be minimized is a piece-
wise linear and convex function, therefore the value of o mini-
mizing (5) is guaranteed to be one of the observation samples.
It turns out that the solution to the minimization problem given
by (5) is the weighted median operator originally introduced in
[41] and defined as

5[:MEDIAN(WlOZl,WQOZQ,...7W]\,'<>ZN) (6)

where the symbol ¢ denotes the replication operator defined as
W, times

W; oz = m Thus, the weighted median operator
reduces to: replicating the ith observation sample W; times,
sorting the samples of the new expanded set and choosing the
median value from the new set. Although this definition seems
to constrain the weights to take on positive integer values, a
more general definition of WM operator that admits positive
real-valued weights exists which turns out to be computationally
more efficient [42]-[44]. Appendix A presents a pseudocode of
an efficient implementation [45] to compute the WM operator
based on a fast computation of the sample median [46], [47].
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It is worth mentioning that although the WM operator
emerges naturally as the ML location estimation when the
underlying contamination follows a Laplacian distribution, its
inherent robustness makes it suitable for applications when the
noise model has tails heavier than those of a normal distribution
[42]-[44], [48]-[50].

B. Regularized LAD Problem: One-Dimensional Case

Consider the following one-dimensional minimization
problem:

M
argn}yinz Vi — aia] + 7 |, @)
i=1

where |-|lp denotes the /,-norm for scalar values,? Y; is the ith
observation sample, a = [a1, az, ..., a M]T is a vector of known
coefficients and 7, is a regularization parameter whose effects
in the minimization problem will be seen shortly. Note that in
the context of linear regression theory, Y;’s are the measured
variables, a;’s are the predictor variables and « is the unknown
regression coefficient. We are interested in finding the value of «
that minimizes the LAD subject to the constraints imposed by
the [,,-term. The following theorems give closed form expres-
sions for the solution of the optimization problem (7) for [y and
[1 constraint terms.
Theorem 1 [ly-LAD]: The solution to the minimization
problem
M
&zargrrgnZ|Y,,;—a,;oz|+Tg|a|lo ®
i=1
is given by the equation at the bottom of the page, where Y =
[Yl,YQ, . 7}/]\/[]T and a = [al, as, ..., a]\,[]T.
Proof: Let G1(a;Y,a) and Ga(«; Y, a) be, respectively,
the cost functions Zi\il |Y; — a;a| and Zﬁl [Y: — a;a] +
7|a|. Note that G1(«; Y, a) can be rewritten as: G1(«; Y, a) =
Zf\il | ?l—/ — a|. Since (G is a piecewise linear and convex
function, it follows that it reaches its minimum at the weighted

median sample [41], [42] of the scaled observation samples
{X M, } with weights |a;],i = 1,2,..., M. This is,

& = argmin G1(a; Y, a) = MEDIAN (|a,| o~

v M
i:l) .

T

Furthermore, since Gy = G1+7¢ forall « # 0 and G5 = G
for o = 0, it is clear that the cost function GG5 has two local min-
imums, one at zero and one at &. The global minimum is found
by evaluating the cost function G5 at these local minimums and
chose the one that yields the smaller cost value. If a tie occurs,

2The I -norm for a scalar value is defined as |a,, = 1if o # 0, 0 otherwise.

M
&= {&:MEDIAN <|ai|<>§

0

) IVl = 1Y = all, > o

Otherwise
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Fig. 1. Cost functions for the regularized optimization problems (a) {o-LAD
and (b) I,-LAD as a function of o and the regularization parameter 7,. The
observation set {Y;| M, } is {0.45, —3.00,0.40, —0.50,—2.10,0.10} and the
weight vector a is [0.15,0.75,0.40,0.50,0.70,0.05]7. Solid line 7, = 0,
dashed line 7, = 0.75 and dash-dotted line 7, = 2.50.p € {0,1}.

i.e., Go(&@) = G2(0), we favor the sparse solution. Thus, & = &
if Ga(a) < G2(0) = ||Y|l;, = |IY — aal|;, > 7, otherwise
a=0. |

Interestingly, Theorem 1 states that the solution to the ly-reg-
ularized LAD problem can be thought of as a two-stage op-
eration. First, an estimate of the parameter that minimizes the
LAD is found by the weighted median operator and, then, a hard
thresholding operator is applied on the estimated value. Note
that the estimation stage has been reformulated as a location
parameter estimation problem for which closed form solution
exist. Note also that the hard thresholding parameter is equal to
the regularization parameter, 79. Thus, large values for the reg-
ularization parameter force the solution of (8) to become zero
while small value for 7 yields the weighted median sample as
the solution of the /o-LAD minimization problem.

For comparison purposes, let’s consider the optimization
problem (7) where the sparsity is induced by an [;-term. The
following theorem gives the solution to the one-dimension
l1-LAD problem.

Theorem 2 [l;-LAD]: The solution to the minimization
problem

M
o= argminz |Y; — a;af + 11 |, )
is given by
Y] Y,
& = MEDIAN <T1 00, lar| o —, ..., |an| o ﬂ)
ai am

Proof: 1t is easy to see that the regularization term 71 ||
can be merged into the summation term by augmenting the ob-
servation set with an additional observation that takes on a zero
value and whose weight is the regularization parameter 7. The
proof follows since the weighted median operator minimizes the
weighted LAD of the augmented data set. ]

Note that the regularization process induced by the /; -term
leads to a weighting operation on a zero-valued sample in the
WM operation. Thus, large values for the regularization param-
eter implies a large value for the weight corresponding to the
zero-valued sample. This, in turns, pulls the WM estimation to-
ward zero favoring sparsity. On the other hand, small values for
the regularization parameter implies less influence of the zero-
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valued sample on the estimation of « leading to a WM output
driven by the observation vector, Y = [Y1,Ys,...,Yy/]? and
the weight vector a = [a1, as, ..., ax]7.

To better illustrate the effect of the regularization term on
the optimization problems (8) and (9), Fig. 1 depicts the cost
functions as a function of the parameter « for several values for
the regularization parameter 7,,. As can be seen in Fig. 1(a), for
T # 0 the cost function has two local minimums one at « = 0
and one at o = @, that is, the value at which the cost function
G1(a;Y, a) reaches its minimum. The global minimum is se-
lected from these two local minimums to yield the solution to
the minimization problem (8). Note also that the /y-term in (8)
shifts vertically the cost function without changing the location
of the local minimum.

Fig. 1(b) shows the effects of the regularization parameter on
the cost function of the optimization problem (9). As is shown
in Fig. 1(b), the estimate is pulled to zero as the regularization
parameter that, in turns, defines the weight for the zero-value
sample, is increased. Note also that the regularization term pro-
duces a shift of the cost function along the horizontal direction
changing gradually the location where it reaches its minimum
as 71 increases. This shifted effect introduces a bias on the es-
timation of o much like the bias observed in a median based
estimator when one of the samples is contaminated by an out-
lier, the middle order statistic will move in the direction of the
outlier [51, p. 90].

IV. CS SIGNAL RECONSTRUCTION BY SOLVING /y-LAD: A
COORDINATE DESCENT APPROACH

Consider the CS reconstruction algorithm where the sparse
signal is recovered by minimizing the sum of absolute deviation
of the residual (Y — AX),, ¢ =1,2,..., N subject to the con-
straint imposed by the sparsity-inducing term. More precisely,
we recover the sparse signal by solving

M
X = argminZ (Y — AX);| + 70| X]]s, -
X ‘

=1

(10)

Note that having the LAD as the data-fitting term, it is expected
that the resulting estimator be robust against noise [20], [23] and
also enjoy a sparse representation since it combines the LAD
criterion and the sparsity-forced regularization.

To solve this optimization problem under the coordinate
descent framework, let’s proceed as follows. Assume that we
want to estimate the nth entry of the sparse vector X while
keeping the other entries fixed. Furthermore, assume for now
that the other entries are known or have been previously esti-
mated. Thus, the /V-dimensional optimization problem of (10)
reduces to the following single variable minimization problem

M N
X, = argminz Y; — Z Ay X — A Xy
S j=1
i#n
N
+TO|Xn|lo + 7o Z |Xj|lo7 (11)
i=1

J#n
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which can be rewritten as

N
M Yi— ;7& Aij X
Xn = arg min Ain J= 7 - X,
%('n ;| | Atn
+70|Xnl, (12)

provided that none of the entries in the nth column of the mea-
surement matrix A is zero. Note that if one of these entries is
zero, then the corresponding summand in (12) can be dropped
since it becomes a constant (independent of X, ). Note also that
the last summation of (11) has been dropped since it does not
depend on X,,.

Upon closer examination of (12), it can be noticed that the
first term on the right-hand side is a sum of the weighted abso-

.. *ZN, A X .

lute deviations, where I=bi.zn fors =1,2,...M
are the data samples, |A;,|, ="1,2,..., M are the weights
and X,, plays the role of a location parameter. From Theorem
1, the solution to this optimization problem is found by com-

puting a median based estimator

N M
X, = MEDIAN | [4;,] ¢ J‘f” (13)
=1

followed by the hard threshold operator

%, = {Xn if[[rall, = ltn = AnXnll > 70
0 otherwise

where r, = Y — Z;.V:L#n A X; is the nth residual term

that remains after subtracting from the measurement vector the
contribution of all the components but the nth one. In (13), A,
denotes the nth column-vector of the measurement matrix A.

Interestingly, the estimation of the nth component of the
sparse vector reduces to the weighted median operator where
the weights are the entries of the nth column of the measurement
matrix and the observation samples are a shifted-and-scaled
version of the measurement vector. Furthermore, the regular-
ization process induced by the sparsity term leads to a hard
thresholding operation on the estimated value.

More interesting, the nth entry is considered relevant and,
hence, not forced to zero, if it leads to a significant reduction
in the /;-norm of the residual signal along the nth coordinate.
That reduction in the nth residual term has to be larger than the
regularization parameter, 7. Further simplifications of (13) lead
us to an interesting observation. First, note that

70 < lleally, = [Irn — AnXnll,

= ||A'an||ll - ||ATLXTL - Aan”l]
= Anlly (1] = 1X = X
<[ Al |

(14)

9 .
~ Moy =X,
T
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where we have assumed that the entries A; ; of the measure-
ment matrix are random realizations of a zero-mean Gaussian
r.v. with variance o2. Therefore, Aij| follows a half-normal

distribution with mean cr\/g leading to the approximation on
the [;-norm of vector A,,. In deriving (14), we have assumed
that all X;’s, ¢ # n, are known and the measurements are con-
sidered noise-free.

Upon closer examination of (14), it can be seen that the nth
entry of the sparse signal X is considered relevant, hence, a
nonzero-value, if its magnitude is greater than c; 7y, otherwise
it is forced to zero since its contribution to the signal forma-
tion is negligible. Furthermore, (14) tells us that the regulariza-
tion parameter controls whether the nth entry is considered rele-
vant or not based on an estimate of its magnitude value. Clearly,
if a good estimate of the entry is found and with a suitable
choice of the regularization parameter, the thresholding oper-
ation will identify correctly the nonzero values of X. Note that

7o < Moy/2min{|X;|, i = 1,2,..., N} in order to identify
all the nonzero values of X.

Note also that the robustness inherent in the WM operation
and the sparsity induced by the [ term are jointly combined into
a single estimation-basis-selection task. More precisely, the se-
lection of the few significant entries of the sparse vector X and
the estimation of their values are jointly achieved by the WM op-
eration followed by the hard-thresholding operator. The former
operation adds the desired robustness on the estimation of the
nth entry whereas the latter detects if X, is one of the relevant
component of X. Furthermore, the regularization parameter acts
like a tunable parameter that control which component is zeroed
according to its magnitude value.

A. Iterative WM Regression Estimate

In deriving (12)—(13) it was assumed that X, for
7 =1,2,...,N,j # n are known, or have been previously
estimated somehow. Thus, in (12) the term Zf;ld#n A X
can be subtracted from each observation sample removing
partially the contribution of the other nonzero-valued entries of
the sparse vector X from the observation vector. This results
in a new data set recentered around of X,, from which an
estimation of location is carried out by the WM operation.

This suggests a very intuitive way of solving the /y-regular-
ized LAD regression problem given in (10) as follows. First,
hold constant all but one of the entries of X, find the entry
that is allowed to vary by minimizing the weighted LAD, then
alternate the role of the varying entry and repeat this process
until a performance criterion is achieved. Thus, each entry of
the sparse vector is iteratively estimated based on previous esti-
mated value of the other entries. Interestingly, this approach to
solve LAD has been historically referred to as the Edgeworth’s
algorithm and has been recently studied and refined in [52] with
further applications to normalization of CDNA microarray data
in [53], [54]. Most recently, this approach has been applied to
solve l;-regularized LAD regression problem under the frame-
work of coordinate-wise descent [33], [35].

Before introducing the iterative algorithm for sparse signal
reconstruction, the following remark will be used in the formu-
lation of the reconstruction algorithm.
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TABLE 1
ITERATIVE WM REGRESSION ALGORITHM

Observation vector Y
Measurement matrix A

Input

Number of iterations Ko and target residual energy e

Initialization

Iteration counter: k =1

Estimation at k = 1: X™® = On

Initial hard-thresholding value: Th, = Ty, = |ATY s

Iteration
Step A

2 =
0

For the n-th entry of X, n= 1,2,.

X = MEDIAN

.., N, compute

N

Yi= %
j=1j#n
Ain

Ay X9
|A1n| <o

i=1

if lrally = lIrn — XAnlly > T

Otherwise

Step B
Ty = Th, 5"

K1) Z R ()

Update the hard-thresholding parameter and the estimation of X

Step C | Check stopping criterion

Y—Aax®) 2

If (WQ— >¢) and k < Ko then set kK = k + 1 and go to step A; otherwise, end
2

Output Recovered sparse signal X

Remark: To implement the iterative reconstruction algo-
rithm, we need to determine the regularization parameter from
the measurement sample set {Y;|2¥_, }. This step has been shown
to be critical in solving regularized linear regression problems
[91, [17], [19], [35], [36] as this parameter governs the sparsity
of the solution. In our approach, the regularization parameter
also plays a vital role in the solution of the l[p-LAD problem
since it becomes the threshold parameter? of the two-stage
operator (13). Larger values for 7 leads to selecting only those
entries that overcome the threshold value, leaving out nonzero
entries with small values and, thus attaining a sparser solution.
On the other hand, small values for 7y may lead to a wrong
estimate of the support of X leading to spurious noise in the
reconstruction signal.

The commonly used cross-validation [19] and generalized
cross-validation methods [55] may be suitably adapted to deter-
mine the optimal regularization parameter as it was done in [56]
for [1-LS based CS signal reconstruction and in [33] and [35]
for [;-LAD regression. However, since this parameter strongly
influences the accuracy of the reconstruction signal [29], [33],
special attention has to be given to its estimation which may
increase the computational complexity of the proposed algo-
rithm. In our method, we follow a continuation approach, sim-
ilar to that used in [57] to solve a [; -regularized least square op-
timization problem. That is, we treat the regularization param-
eter (threshold of the hard thresholding operation) as a tuning
parameter whose value changes as the iterative algorithm pro-
gresses. More precisely, start with a relative large value of 7},
favoring sparsity during the first iterations, where 7}, denotes
the threshold parameter. Then, as the iterative algorithm pro-
gresses, the hard-thresholding parameter is slowly reduced. By
doing so, it is expected that only those entries in the sparse
vector X that have the most significant values (higher magni-

3Hereafter, the regularization parameter, 7o and the threshold parameter, T},
of the hard thresholding operation are treated indistinctly.

tude values) are identified in the first iterations. Subsequently,
as the hard-thresholding parameter is reduced, those entries that
exceed the new threshold value are identified next. The algo-
rithm continues until the 7}, reaches a final value or until a target
residual energy is reached. The threshold value thus changes
with each iteration as detailed in Table I that describes the it-
erative WM regression algorithm for sparse signal reconstruc-
tion. Appendix B shows a pseudocode of the proposed algorithm
using the notation introduced in [58].

Several interesting observations should be pointed out about
the proposed reconstruction algorithm. First, at the initial
stage, all the entries of the estimated sparse vector are set to
zero as in [59] and [60]. This initialization for the unknown
variables is motivated by the fact that only a few compo-
nents of the sparse vector X are expected to take on nonzero
values. Second, at each iteration a weighted median based
estimate is computed for each entry and the resultant esti-
mated value is passed through a hard-thresholding operation.
Note, in particular in step A, that the most recent estimated
value for each entry is used for the estimation of subsequent
entries in the same iteration step. More precisely, to com-
pute the nth entry of X at the kth iteration, the samples set
(x® XP W RED XED XYY that
contains (n — 1) previous estimated values done at the kth
iteration and N — n estimated values obtained at the (k — 1)th
iteration is used in the computation of X,S’“) It turns out that
replacing the previous estimates by the most recent ones in
a recursive fashion increases the convergence speed of the
reconstruction algorithm.

Third, the updating operation of step B changes the
hard-thresholding parameter for the next iteration. As men-
tioned above, T} is dynamically adjusted as the iterative
algorithm progresses. Hence, starting at the initial value
T},, the hard-thresholding parameter decays slowly as k in-
creases. We set the hard-thresholding parameter to follow an
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Fig. 2. (a) Sparse test signal. (b) Nonzero entries of sparse vector as the iterative algorithm progresses. Dotted lines: true values. Solid lines: estimated values.

exponential decay function, ie., T, = 7 = T}, 3% where
k=1,23,...,Kpand 0 < 8 < 1 is a tuning parameter that
controls the decreasing speed of 7}. This particular setting
allows us to decrease the hard-thesholding parameter rapidly
for the first few iterations, then slowly as k increases and,
ultimately, approaching to zero as k — oco. As will be seen
shortly, this decreasing behavior is helpful in detecting the few
significant nonzero values of the sparse vector X. Furthermore,
the setting of the initial value for the threshold parameter,
Tn, = ||[ATX]|o, ensures that T} covers the all dynamic
range of the sparse signal providing that enough iterations are
allowed.

Finally, much like the stopping rule suggested in [3], [5]-[8],
and [59], our stopping criterion to end the iterations is deter-
mined by the normalized energy of the residual error and a max-
imum number of algorithm iteration, K. Selecting K and € is
a tradeoff among the desired target accuracy, the speed of the
algorithm and the signal-to-noise ratio (SNR). It is worth men-
tioning that any other stopping criterion that adds robustness to
impulsive noise can be readily adapted. For instance, the use
of Geometric signal to noise ratio (G-SNR) [61] of the residual
signal as stopping criterion allow us to use the proposed algo-
rithm with noise following a heavy tail distribution.

Fig. 2 shows an illustrative example depicting how the
nonzero values of the sparse vector are detected and estimated
iteratively by the proposed algorithm. For this example, the
tuning parameter (3 is set to 0.75. Note that it takes less than
10 iterations for the proposed algorithm to detect and estimate
all the nonzero values of the sparse signal. Note also that the
nonzero values are detecting in order of descending magnitude
values, although this does not necessarily always occur.

It should be pointed out that an entry which is considered sig-
nificant in a previous iteration but shown to be wrong at a later
iteration can be removed from the estimated sparse vector. Fur-
thermore, at each iteration several entries may be added to or
removed from the estimated sparse vector as is shown in Fig. 2
where at iterations one and three two nonzero values are simul-
taneously detected for the first time.

The exponential decay behavior of the hard-thresholding pa-
rameter allows us to quickly detect, during the initial iterations,
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Fig.3. Normalized mean square error as a function of the iteration. Dash-dotted
line represents a single realization (SR) of A while solid lines the ensemble
average (EA) of 1000 realizations of A for each value of the tuning parameter

those entries of X that have large magnitude values. Further-
more, their corresponding WM estimated values are refined at
each iteration. Therefore, with just a few iterations a good ap-
proximation to the sparse signal can be achieved by the iterative
algorithm. As the iteration counter increases, the hard-thresh-
olding parameter decreases slower allowing us to detect those
entries in X with small magnitude values since the strongest en-
tries have been partially removed from the observation vector.
Fig. 3 depicts the normalized mean square error (NMSE) in
dB as the iterative algorithm proceeds for the reconstruction of
the noiseless sparse signal shown in Fig. 2(a). As can be seen
in Fig. 3, instead of decaying exponentially with a fixed rate,
the NMSE of the iterative WM regression algorithm decays in
a piecewise lineal fashion way. More precisely, a single real-
ization of the NMSE follows an non-uniform staircase-shaped
curve where abrupt jumps occur at each iteration where a new
nonzero entry is detected. The magnitude of the step depends
on the amplitude of the nonzero entry detected and the re-es-
timated values of the entries previously found. Note also that
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the convergence speed of the proposed algorithm depends on
the selection of the tuning parameter. At first glance, it seems
that as the decaying speed of the hard-thresholding parameter
becomes faster (small values for (3) the proposed reconstruction
algorithm converges much faster. However, small values for the
threshold parameter may drive the algorithm to wrong estimates
of the entries of the sparse signal, leading to spurious compo-
nents (wrong basis selection) and wrong estimated values for
the nonzero entries in the recovered signal. This, in turns, leads
to an error floor in the NMSE as the iteration count becomes
larger.

Selection of 8 and Number of Iterations: In the scenario
where the sparsity level and the noise variance are unknown,
the selection of 3 and the number of iterations which, in turn,
sets the final value for the hard-thresholding parameter is not
an easy task. Suitable values for these two parameters depend
on the noise variance, the desired accuracy and the problem
setup (N, M and K). Therefore, one has to resort to cross
validation (trial and error) in order to find the best values of 3
and K for a desirable performance for the problem at hand.
It has been found that selecting a (3 in the interval [0.75,0.95],
in general, yields good performance while the selection of the
number of iterations is a tradeoff between algorithm speed and
desired reconstruction accuracy. However, one has to be aware
that increasing the number of iteration doesn’t necessarily
leads to improvement in NMSE since it is possible that as f%°
becomes too small, spurious components start to appear in the
reconstructed signal due to additive noise.

If an estimated noise level is available, however, the target

~2

. oM
residual energy, €, can be set t0 5

I where &g is the estimated
value for the noise variance. With this setting, it turns out that
the stopping criterion reduces to comparing the variance of the
residual signal to the noise variance. Furthermore, the selection
of the decaying speed () for the regularization parameter be-
comes less critical since any value in the interval [0.75,0.95]

yields almost the same performance.

B. Comparison Analysis

In order to place the proposed algorithm in the context of pre-
vious related work, it is worth to compare the proposed algo-
rithm to other iterative algorithms used in the literature for CS
signal reconstruction. Specifically, we compare the proposed al-
gorithm to the Matching Pursuit (MP) algorithm [3] and the Lin-
earized Bregman Iterative (LBI) algorithm [59], [60] due to their
similarities to our approach.

In the MP algorithm, the column-vector in A that best
matches the residual signal in the Euclidean distance sense is
selected as a relevant component. In contrast, our approach can
be thought of as an iterative selection of the column-vectors
in A that leads to the largest reductions in the /;-norm of
the residual signal. Furthermore, MP updating rules aims to
minimize the [5-norm of the residual signal, while our approach
applies a hard-thresholding operation on the WM estimated
value that minimizes the weighted [i-norm of the residual
signal. Moreover, since MP relies on the minimization of
lo-norm for basis selection and parameter estimation, its per-
formance deteriorates if the observation vector is contaminated
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with noise with heavier-than-Gaussian tailed distribution. In
contrast, the proposed approach uses a robust estimator for the
estimation of each entry of the sparse vector and an adaptive
hard threshold operator for basis selection.

Comparing WM regression to the LBI algorithm, we see
some resemblance. First, both algorithms rely on threshold
based operators for basis selection. While the LBI algorithm
uses a soft-thresholding operator for model selection, the WM
regression algorithm uses a hard-thresholding operation with
an adaptable threshold value. Secondly, the updating rule of
the LBI algorithm involves a weighted mean operation on the
residual samples while our approach uses a weighted median
operation on the residual samples as a estimation of the cor-
responding entry. Interestingly, it is well-known that the WM
operator is considered as the analogous operator to the weighted
mean operator [42], [44]. This analogy also emerges in the
updating rule of both algorithm. Since weighted mean operators
offer poor robustness to outliers in the data sample [42], the
updated sparse vector in the LBI algorithm is severely affected
by the presence of impulsive noise in the measurements.

C. Computation Complexity Per Iteration

The proposed reconstruction algorithm is simple to imple-
ment and requires minimum memory resources. It involves
just shifting and scaling operations, WM operators and com-
parisons. The per-iteration complexity is as follows. The data
shifting and scaling operations can be efficiently implemented
at a complexity cost of O(M) while the WM operation boils
down to sorting and thus can be efficiently implemented by
quicksort, mergesort or heapsort algorithms [46], [62] at a
complexity cost of O(M log(M)). Since the proposed algo-
rithm performs these operations for each entry in X, the total
per-iteration complexity reduces to O(N(M + M log(M)).
At first glance, it seems that the complexity of the proposed
approach may be considered high compared to the per-iteration
complexity of other CS iterative algorithms. However, this com-
plexity can be notably reduced if an efficient implementation
of the WM operator that avoids the sorting operation is used.
This can be achieved by extending the concepts used in the
QuickSelect algorithm [46], [47], [62] for the median operator
to the weighted median operator leading to a complexity of
order O(M) for the WM computation [45]. Appendix A shows
the pseudocode of such extension. The overall computation
complexity per iteration of the proposed algorithm reduces
thus to O(N M) which is in the same order than MP and LBI
algorithms. As will be shown in the simulations, the number of
iterations required by the proposed algorithm is significantly
fewer compared to those required by other reconstruction
algorithms.

Finally, apart from storage the measurement vector Y and the
projection matrix A, the memory requirement is in the order of
the dimension of the sparse signal to be recovered.

Before ending this section it should be pointed out that
a formal convergence proof of the proposed algorithm is
unavailable at the moment and remains as an open research
problem. The nonlinear nature of the estimation stage makes
a convergence analysis intractable. Furthermore, classical
convergence analysis for coordinate descent algorithms relies
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TABLE II
NUMBER OF ITERATIONS NEEDED TO REACH A NORMALIZED RESIDUAL ENERGY OF 10 ~'°. RESULTANT NORMALIZED MSE AND COMPUTATION TIME

Number of Iterations Normalized MSE in dB Computation time in secs. |
N M K WMR MP LBI WMR | MP LBI WMR MP LBI
300 | 75 6 9.2 27.0 722.7 -106 | -100 -96 0.0800 | 0.0022 0.0490
600 | 150 12 9.7 62.4 302.3 -104 -99 -96 0.2038 | 0.0138 0.0782
900 | 225 18 10.7 91.1 782.7 -105 -99 -97 0.3647 | 0.0457 0.8822
1200 | 300 | 24 10.6 123.1 984.2 -103 -99 -97 0.5518 | 0.2367 2.4936
2500 | 625 | 50 11.1 266.3 | 1007.4 || -104 -99 -97 1.8788 1.9400 10.4298
5000 | 1250 | 100 12.2 528.5 | 4850.4 || -103 -98 -98 5.8918 | 14.8658 | 197.3714
300 | 120 15 14.1 122.5 | 461.1 -102 -68 -94 0.1348 | 0.0115 0.0433
600 | 240 | 30 15.3 1834 | 592.0 -103 -98 -95 0.3528 | 0.0529 0.4381
900 | 360 | 45 15.2 284.6 | 607.0 -102 -98 -95 0.6283 | 0.4848 1.3790
1200 | 480 | 60 15.4 396.9 | 921.3 -102 -98 -95 0.9369 1.0908 3.5379
2500 | 1000 | 125 16.2 816.0 | 2342.7 -103 -98 -96 3.5945 | 9.6535 | 38.8690
5000 | 2000 | 250 16.6 | 1653.9 | 3475.3 -101 -97 -96 11.1431 | 73.0798 | 223.4094

on the assumption that the cost function is continually differ-
entiable [30], [31], in such case the minimum reached by a
coordinate descendent algorithm is guarantied to be the global
minimum of the multidimensional cost function [30, pp. 277].
In our algorithm, however, the cost function for [o-LAD is a
nonconvex and a nondifferentiable function making useless
the classical convergence analysis approach. Nevertheless, the
coordinate descendent framework applied to [;-LAD mini-
mization problem has shown to be a reliable approach [32],
[33] even though the cost function is nondifferentiable.

V. SIMULATIONS

In this section, the performance of the WM regression re-
construction algorithm is tested in several problems commonly
considered in the CS literature. First, the proposed algorithm is
tested in the recovery of a sparse signal from a reduced set of
noise-free projections. Next, we text the robustness of the pro-
posed approach when the measurements are contaminated with
noise obeying statistical models with different distribution tails.
Finally, the proposed algorithm is used in solving a LAD regres-
sion problem with a sparse parameter vector where the sparse
signal as well as the contamination are both modeled by Lapla-
cian distributions [33], [35]. In all the simulations, unless other-
wise stated, the N-sample point sparse signal, X, is generated
by randomly locating the nonzero entries and then by assigning
to the nonzero entries of X random values obeying a specific
distribution. We use a zero-mean, unit-variance Gaussian dis-
tribution, a uniform distribution in the interval (—1,1) and a
Laplacian distribution for the amplitude of the nonzero values
of X. Furthermore, the projection matrix A is created by first
generating an M X N matrix with i.i.d. draws of a Normal dis-
tribution A/(0, 1) and then by normalizing A such that each row
has unit [;-norm as in [9], [11], [16]. For the proposed algorithm,
the initial threshold value is set to ||ATY]|., unless otherwise
stated.

As a performance measure,
mean-square error (MSE) (in dB) of the recon-
structed  signal, defined as Normalized MSE (dB)

T —x|2 ,
= 10logy, {% iy W}, where T is the number
2

we use the normalized

of random trials. X! and X[ are, respectively, the recovered
signal and the targeted signal for the sth realization. For each
random trial, a new projection matrix, a new sparse signal, and
a random realization of the noise (if applied) are generated.

A. Number of Iterations Needed to Achieve a Performance
Residual Energy

In the first simulation, we are interested in finding the number
of iterations needed for the proposed algorithms to achieve a
given residual energy and compared it to those attained by the
MP and LBI algorithms. To this end, two sets of sparse signals
are generated as in [59]. In the first set, the number of nonzero
entries in the sparse signal is set to 0.02 N, whereas in the second
set, it is equal to 0.05 N where N is the dimension on the sparse
signal. Furthermore, the number of random projections, M, is
set to 0.25N and 0.40N for the first and second set, respec-
tively. For both sets of testing signals, the nonzero values of the
sparse signal follow a (—1, 1)-uniform distribution. As a stop-
ping rule for all the iterative algorithms, we use the normalized
energy of the residual signal to end the iterations. Thus, each
iterative algorithm finishes as soon as % < 10710 4
reached. For this simulation, /3 is set to 0.75. Tgble II shows the
results yielded by the various iterative algorithms where each
entry reported is the ensemble average over 20 trials. As can be
noticed in Table II, the proposed algorithm needs just a few iter-
ations to achieve the performance target. Indeed, it took nearly
7 (15) times fewer iterations than the MP algorithm and about
68 (42) times fewer iterations than the LBI algorithm for the
first(second) set of sparse signals. Note that the number of it-
erations required by the WMR algorithm remains practically
constant for the reconstruction of all the sparse signals in the
same set. For this simulation, the parameters of the Linearized
Bregman algorithm are set to one. Note also in Table II that WM
regression algorithm achieves the lowest normalized MSE. Fur-
thermore, the computation times achieved by the proposed algo-
rithm are smaller than those yielded by the MP and LBI for rel-
atively large-scale reconstruction problems (N > 1000) while
for a small-scale problem it yields competitive results compare
to the LBI algorithm being the MP algorithm the fastest one.
The running-time were obtained on a Core 2 Duo CPU, @ 2
GHz and 2 GB of RAM running the XP OS.
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Fig. 4. Performance of the reconstruction algorithms under additive noise obeying: (a) Gaussian distribution; (b) Laplacian distribution; (c) e-contaminated normal
with € = 1%; and (d) e-contaminated normal with e = 3%. N = 512, M = 256, K = 25.

B. Robustness to Impulsive Noise

In order to test the robustness of the proposed algorithm
to noise, a 25-sparse signal of length 512 is generated with
the nonzero entries drawn from a zero-mean, unit-variance
Gaussian distribution. The projected signal with 250 sam-
ples is then contaminated with noise obeying statistical
models with different distribution tails. We used Gaussian,
Laplacian, e-contaminated normal and Cauchy distribu-
tions for the noise model. For the e-contaminated normal,
fe(€) = (1 — eN(0,0%) + eN(0,03), o is set according to
the desired SNR whereas 02 = 1000?. For all these simula-

. . . . _ (AX)TAX
tions, we define the signal-to-noise ratio as SNR = T
We compare the performance of the proposed approach in the
noisy case to those yielded by two greedy based iterative algo-
rithms [compressive sensing MP (CoSaMP) [8] and regularized
orthogonal MP (ROMP) [6]] and two reconstruction algorithms
belonging to the class of convex-relaxation based algorithms.
More specifically, we recover the signal by solving the [, -regu-
larized optimization problems

argrr;énHY — AX|l;, + 7 [|X]l;, for pe{1,2}

where the regularization parameter 7, is found as the one that
yields the smallest normalized MSE for each experimental setup
(N, M, K, SNR, and noise statistics).

The interior-point based method proposed in [9] is used to
solve the [ -regularized least square problem that results if p =
2. While for p = 1 we proceed as follows. First, an approxi-
mate solution, denoted as X, is found by solving the /; -regular-
ized LAD regression problem X = argminx |[Y — AX||;, +
71||X]|1, - Once an approximate solution is obtained, we perform
debaising and denoising steps to reduce the attenuation of signal
magnitude due to the presence of the regularization term [33]
and to eliminate the spurious components in the approximate so-
lution. To this end, the K entries of X with largest magnitude are
re-estimated by solving minx, ||[Y — Ax X x|, + 711X k|1, »
whereas the N — K remaining entries of X are set to zero.
In this later optimization problem, Xy denotes a K-dimen-
sional vector and A g is an M x K matrix that contains the
K column-vectors of A related to the location of the K largest
values of X. Notice that, in this approach, we assume that the
sparsity level is known in advance and that the optimal regular-
ization parameter has been found by intensive simulations for
each experimental setup. We use the Matlab’s fminunc function
to solve these optimization problems. For short notation, the re-
sults obtained with these convex-relaxation based approaches
are denoted as [1-LS and [;-LAD for p = 2 and p = 1, respec-
tively.

Fig. 4 depicts the curves of normalized MSE versus SNR
yielded by the various reconstruction algorithms for different
noise statistics. Each point in the curves is obtained by aver-
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Fig. 5. Reconstruction SNR for the various algorithms under additive noise: (a) Gaussian contamination; (b) Laplacian contamination; (c) e-contaminated normal
with € = 1%; and (d) e-contaminated normal with € = 3%. N = 1024, M = 200, SNR = 12 dB.

aging over 1000 realizations of the linear model. For the pro-
posed algorithm, the hard thresholding parameter 3 was set to
0.95 and the number of iterations is fixed to 40. For the [{-LS
algorithm the relative tolerance is fixed to 0.01 whereas for the
greedy based algorithms ROMP and CoSaMP, the sparsity level
is given as an input parameter [6], [8].

As can be seen in Fig. 4(a), when the underlying contami-
nation is Gaussian noise, the proposed algorithm outperforms
CoSaMP almost everywhere but at high SNR (> 24 dB) and, it
yields better performance than that yielded by the ROMP. Fur-
thermore, comparing the performance of the proposed approach
to those yielded by the convex-relaxation algorithms described
above, it can be seen that WM regression yields better results for
SNR greater than 8 dB. For low SNR, however, the algorithms
based on convex-relaxation outperforms our approach at cost
of having previously optimized the regularization parameter for
each SNR and noise statistics. Furthermore, for the /1-LAD the
sparsity level, K = 25, is also assumed to be known in advance.
Note that this information is more than what we use in our ap-
proach.

It can be noticed in Fig. 4(d) that for a contamination fraction
of 3% and a SNR of 12 dB, the proposed reconstruction algo-
rithm achieves improvements in the Normalized MSE of about
1.8 dB over [1-LAD, 6.6 dB over [;1-LS, 8.4 dB over CoSaMP
and more than 9.5 dB with respect to ROMP. This improvement
is due, in part, to the inherent robustness of the WM operator

in the estimation of the nonzero entries of X and, in part, to
the robust detection of the their locations achieved by the adap-
tive threshold operator. Furthermore, as expected using LAD as
the minimization criterion for data-fitting term leads to a much
better performance under heavy-tail noise compared to those
found by least square based estimator. Moreover, having /y-term
as sparsity-inducing term forces the desired sparsity in the so-
Iution more than that found by convex-relaxation based algo-
rithms, like /;-LAD and [;-LS.

To further illustrate the performance of the proposed recon-
struction algorithm, Fig. 5 depicts the reconstruction SNR in
dB as the sparsity level changes for a 1024-dimensional sparse
signal using 200 measurements contaminated with different
noise distributions at a SNR = 12 dB, where the reconstruction
SNR in dB is just the negative of the normalized MSE in
dB. Thus, the larger the reconstruction SNR is, the better the
algorithm performs. As can be seen in this figure, the WM re-
gression reconstruction algorithm yields a reconstruction error
of the same order of the noise level for a sparsity of around 30
while for the other reconstruction algorithms the sparsity level
is significantly smaller. More precisely, upon closer observation
of Fig. 5(b), for instance, it can be seen that in order to have
a reconstruction SNR greater than the Laplacian noise level
the sparsity for ROMP, [1-LAD, [;-LS and CoSaMP, must be
smaller than 14, 15, 22, and 23, respectively, while for the
proposed algorithm it is around 30.
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Fig. 6. Reconstruction of a 15-sparse, 512-long signal from a set of 150 contaminated measurements. (a) Top: Sparse signal. Bottom: noiseless and noisy projec-
tions. Recovered signals yield by: (b) MP; (c) CoSaMP; (d) I -LS; (e) LBI; and (f) WM regression algorithms. o denotes original signal, ® denotes reconstructed

signal.

To illustrate the robustness of the proposed approach to
the presence of noise with heavier distribution tails, consider
the 15-sparse, 512-long signal shown in Fig. 6(a) (top) that
has been projected and contaminated with impulsive noise
obeying the standard (0,1)-Cauchy distribution. The noise is
scaled by a factor of 1072 and then added to the projected
signal. Fig. 6(a) (bottom) shows both the noiseless and noisy
projections. Note that the noise level is such that the noisy pro-
jections approximate closely the noiseless projections almost

everywhere but at the entries 15 and 75 where two outliers are
present. Fig. 6(b)—(f) show the recovered signals achieved by
the various reconstruction algorithms using 150 measurements.
Note that the MP and /;-LS reconstruction algorithms are very
sensitive to the presence of outliers introducing several spu-
rious components in the reconstructed signal. As can be seen
in Fig. 6(f), our approach is able not only to identify correctly
the most significant nonzero entries of the sparse signal but to
output good estimated values for the nonzero entries as well.
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Fig. 7. Performance of the proposed approach for different values of SNR, number of iterations (K ), threshold parameter (/3) and initial threshold value, T}, .

N = 200, M = 100, K = 20.

C. Solving a Linear Regression Problem With a Sparse
Parameter Vector

As a final simulation, we test the performance of the pro-
posed approach in solving a linear regression problem with a
sparse parameter vector and compare it to the optimum solution
yielded by an oracle estimator. We follow a similar simulation
setup than the one used in [33], [35]. That is, in the linear model
Y = AX + o¢&, the first 20 entries of X are realizations of a
(0,1)-Laplacian distributed r.v. while the other 180 entries are
set to zero. The entries of the predictor matrix, A;;, follow a
standard normal distribution and € obeys the multivariate Lapla-
cian distribution with zero mean and covariance I . The scalar
parameter o is set according to the desired SNR. As in [33], we
are interested in the underdetermined case, hence we use 100
observations to estimate the entries of the sparse vector.

We compare the performance of the proposed approach to
the performance yielded by an oracle estimator that exploits
the a priori information about the location of the nonzero
values of the sparse vector and gives as estimated values of
the nonzero entries of X the solution to the LAD problem
miny |Y — AoXol;, solved using a convex-optimization
algorithm [63], where X is a 20-dimensional vector and
A denotes the first 20 column-vector of A. Furthermore, a
convex-relaxation approach is also used to estimate the sparse
parameter vector. More precisely, the sparse vector is found as
the solution to the [/;-regularized LAD optimization problem
miny ||[Y — AX||;, 4+ 71||X|;, where again the regularization
parameter, 71, is optimally found for each SNR. To solve this
l1-LAD regression problem, we use the following approach.
As in [32] and [35], we reformulate the [;-LAD problem as
an unregularized LAD regression problem by defining the
augmented observation vector Y/ € RM*N where Y/ = V;
fori =1,2,..., M,Y! =0fori=M+1,...N + M and

the expanded predictor matrix A’ = [AT : 7y Tx]7, where Ty
denotes the N x N identity matrix. Thus, the sparse parameter
vector is found by solving minx ||[Y’ — A’X||;, using the
Econometric Toolbox developed in [63].

Fig. 7(a) depicts the performance achieved by the various
estimators. Each point in the curves is the average over 2000
random realizations for the linear model. For short notation the
proposed WM regression algorithm is denoted as CD [y-LAD.
For comparative purposes, we show the performance yielded by
our proposed approach for two different sets of parameters. In
the first one, the threshold parameter is held fixed to 7},, during
the algorithm iterations while, in the second parameter set, it
changes according to 3. As expected, finding the sparse vector
by solving an [y-regularized LAD regression problem leads to a
much better performance than the one found by solving a /; -reg-
ularized LAD. Note that the performance of the proposed ap-
proach is the one closest to the oracle estimator, observing a per-
formance loss of about 5 dB for low SNR and close to 0 dB for
high SNR [see Fig. 7(b)]. Note also that changing the threshold
parameter as the algorithm progresses leads to a performance
gain compared to holding it fix. This performance gain tends
to increase as the SNR becomes higher. Finally, in Fig. 7(b),
we compare the performance of the proposed approach to the
oracle estimator for different sets of parameters. For compara-
tive purposes, the hard-thresholding parameter starts at 77, = 1
and ends approximately at the same value for 3 € {0.75,0.90}.
Interestingly, for high SNR the performance of the proposed al-
gorithm improves notably for a relative large number of itera-
tions. In fact, its performance approaches that of the oracle es-
timator for SNR > 50 dB. Furthermore, if the number of al-
gorithm iterations is low, there is an evident normalized MSE
floor which tends to be higher for low values of (3. Note also
that the decaying speed of the hard-thresholding parameter af-
fects the performance of the proposed approach for SNR greater
than 25 dB, observing an improvement in performance as the
threshold parameter decays slower. While, for lower SNR, the
proposed algorithm performs practically the same for 5 = 0.75
and # = 0.90. Thus, for high SNR, having a low value for
B (8 —0.75) and just a few algorithm iterations lead to a fast
signal estimation at expensive of a relatively high normalized
MSE, while selecting a higher value for 3, the algorithm needs
more iterations but achieves much lower normalized MSE.
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VI. CONCLUSION

In this paper, we present a robust reconstruction algorithm
for CS signal recovery. The proposed approach is able to
mitigate the influence of impulsive noise in the measurement
vector leading to a sparse reconstructed signal without spurious
components. For the noiseless case, the proposed approach
yields a similar reconstructed accuracy compared to those
attained by other CS reconstruction algorithms, while a notable
performance gain is observed as the noise becomes more im-
pulsive. Although we have focused our attention on CS signal
reconstruction, the concepts introduced in this paper can be
extended to other signal and communications applications that
involves solving an inverse problem. Signal representation on
overcomplete dictionaries [15], sparse channel estimation and
equalization [64], [65] and sparse system identification [66]
are just three examples of applications where the proposed
algorithm can be used. Furthermore, if more robustness is
desired a weighted Myriad operator [67], [68] can be used in
place of the WM operator [69].

APPENDIX A
WEIGHTED MEDIAN COMPUTATION
Given a sample set X = {z1,22,...,2)} and a
set of weights W = {wi,ws,...,wn}, w; € R, the

MEDIAN (w; ¢ £1,ws ¢ T2, ..., war ¢ xpr) is the kth signed
sample that satisfies [43], [44]

D

sgn(w; )z; <sgn(wg )k

>

sgn(w; )z ; >sgn(wg )z k

M
where wy = @ Notice that if we resort to a sorting
operation, the computation of the WM operation can be attained
at a running-time of O(M log(M)) [46]. However, since we
just want to find the kth signed sample that satisfied the above
condition sorting is not needed. To find the WM sample, we
proceed as follows:

1) Define the signed sample set by passing the signs of the
weights to the corresponding samples, i.e., Z = {z; =
sgn(w;)z; for i=1,2,...,M}.

2) Redefine the set of weights by taken the magnitude of each
weight, i.e., W = {w; = |w;|,i =1,2,..., M}.

3) Compute the threshold value, wy = 0.5 - EfL w;

4) Run the weighted-median function on {z1, 22, ..., 20}
Next, we present the pseudocode of the weighted-median func-
tion adapted from [46]. For the sake of simplicity we have as-
sumed that the singed samples, z;, are not repeated.

|w;| <wp and

[w;| > wo

Weighted-median (z)

itM > 2

Compute the median of the input sample set:z, =
median(zl, 224wy Z]u)

Compute wy, = . . wiandwg =) . . w;

if wy < wp and wr < wy
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then return z;

elseif wr > wy

then

W = W + WR

7' —{zi:zi < 21}

return Weighted-median (Z')
else

Wi = Wi + Wi,

7' —{z 2z > 2}

return Weighted-median (Z')
elseif M =1

then return z;

else

if wy > wo

then return z;

else

return z»o

Notice that the computation of the sample median can be per-
formed in O(M) time using a Quickselect algorithm like the
one introduced in [47] leading to an overall computation time
of O(M) [45].

APPENDIX B
PSEUDOCODE OF THE WM REGRESSION ALGORITHM

X =0y

Y = 0y

k=

Ty = Ty,

while ((k <= Ko) and (G > o))
forn =1:N

r=Y -Y+A(;,n)x X(n)

r(i)
A(i,n)

Find the weighted median X of the sample set {

M
i=1

with weights { |AG, n)||£i1}

Compute skt = [|r||;, — Hr —A(,n)x X

ly
temp = X(n)

if (skt > Ty,)

then X (n) = X

else

then X(n) = 0
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A,

A,

Y = Y + (X(n) — temp) * A(:,n)

end
Th:[))*Th
k+ +

end

where Oy denotes the N-dimensional all-zero vector and A (:
,n) is the nth column-vector of A.
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