
WS-BPEL Process Compiler for Resource-Constrained Embedded Systems

Hendrik Bohn, Andreas Bobek, Frank Golatowski
University of Rostock

Institute of Applied Microelectronics and Computer Engineering
18051 Rostock, Germany

{hendrik.bohn, andreas.bobek, frank.golatowski}@uni-rostock.de

Abstract

Process management and workflow systems play an im-
portant role in the composition of services in business as
well as automation environments. Processes are designed
using tools and deployed on a process management engine
which control their execution. Unfortunately, the extensive
requirements of process management engines on the under-
lying hard- and software often exceeds the limits of the re-
sources of embedded systems in terms of memory and pro-
cessing power.

This paper proposes an approach of compiling processes
to executable programs with very small footprints which can
also be run on embedded systems with limited resources.
This approach uses the WS-BPEL 2.0 specification for de-
signing the process, XSL transformation and the Apache
Axis2 Java architecture for the code generation being flexi-
ble and adaptable to future extensions and enhancements of
WS-BPEL.

1. Introduction

The demand for flexible applications in industrial au-
tomation leads to the adaptations of approved technologies
from other areas. Business process management systems
are an adequate approach to compose numerous heteroge-
neous components from different vendors to new applica-
tions in an adaptable way. This approach is also suitable for
industrial automation where a large number of hard- and
software components have to be integrated into changing
environments.

Business process management(BPM) [16] takes care of
the planning, modeling, executing and controlling of pro-
cesses and workflows, respectively. It bridges the gap be-
tween business and IT by offering an outside view which
is oriented on the interaction process of components rather
than the performance of participating components. Partic-
ipating components are ”black boxes” for the process de-

signer. BPM reacts on the adaptability requirements of con-
stantly changing environments. BPM requires a standard-
ized communication and standardized interfaces to involved
components which are often very heterogeneous and from
different vendors. Process definitions in the area of IT have
to be machine-readable to enable automation.

The design paradigm ofService-Oriented Architec-
tures (SOA) [10] provide an ideal approach for the mod-
eling of components taking part in a BPM environment.
SOA concentrates on the autonomy and interoperability of
components whose self-described, standardized interfaces
to their functionality are calledservices. The SOA im-
plementation with the highest market penetration today are
Web services.Web services[8] are a set of modular protocol
building blocks which can be composed in varying ways to
suit a certain application. Web service protocols are XML-
based and define the description of services (WSDL), data
types (XML Schema), transport issues as well as the repre-
sentation of meta data about the services and their interac-
tions.

Since 2003 the Organization for the Advancement of
Structured Information Standards (OASIS) governs the
standardWeb Service Business Process Execution Lan-
guage(WS-BPEL) which is currently available as version
2.0. WS-BPEL [3] is an XML format to describe machine-
readable processes which is based on Web services stan-
dards. WS-BPEL processes can be designed using graphi-
cal tools and can be executed on a WS-BPEL engine. Un-
fortunately, available WS-BPEL engines have strong re-
quirements on underlying hard- and software [11]. The op-
eration on embedded systems with constrained resources is
very limited.

This paper proposes a compiler for WS-BPEL processes
generating stand-alone process programs which execute and
control corresponding processes. The process execution can
be started manually or due to a WS-BPEL process service
invocation. The compiler is designed using a DOM parser,
XSLT and the Apache Axis2 architecture.

The paper is organized as follows. Section 2 describes

the basics and related work for this paper. The design of the
compiler is presented in section 3. A prototypical imple-
mentation is discussed in section 4 together with a compar-
ison to the requirements of currently available WS-BPEL
engines. Section 5 briefly presents the application of pro-
posed compiler in the ongoing European ITEA2 research
project LOMS. In section 6 conclusion is drawn and future
work in this area is presented.

2. Preliminaries and related work

2.1. Web Services Business Process Execu-
tion Language (WS-BPEL)

The Web Services Business Process Execution Lan-
guage(WS-BPEL) [3] is an OASIS standard and specifies
an XML-based language based on Web services standards
which is used to describe Web service processes. A WS-
BPEL process is a composed Web service reflecting the in-
teractions (calledactivities) between other Web services. It
is stored in an XML format and also possesses a separate
WSDL description such as any other Web service. The
WSDL document contains all relevant information for the
execution of a process such as the description of the service
interface of the process and relevant interface descriptions
of the Web services participating in the process execution.

WS-BPEL Designer
Process creation

WS-BPEL Process

BPEL process

Process WSDL

WSDL 1

WSDL x

XML
Schema

definitions

WS-BPEL Engine
Process execution

WS-BPEL
Process
Process

instances

������������	
���
Figure 1. Process interpreted by a WS-BPEL
engine.

Figure 1 shows the creation, deployment and execution of
a WS-BPEL process. WS-BPEL process can be designed
using visual tools and thereby allow the ”Programming in
the large” [21] also for non-technical personal. The WSDL
description of participating Web services are used to define
the interaction interfaces and the XML Schema definitions
specify the used data types. At the end of the process cre-
ation the WS-BPEL process as well as the WSDL descrip-
tion for the process are deployed on a WS-BPEL engine.
Every time the process is requested by a Web service invo-
cation a new instance of the corresponding process is started
on the WS-BPEL engine. The WS-BPEL engine takes care

of the execution and control of deployed WS-BPEL pro-
cesses.

A WS-BPEL process supports sequential and parallel
activities, loops, validity scopes, event and fault handling.
WS-BPEL also supports the compensation of all previously
completed activities in case an error occurs.

2.2. Apache Axis2 architecture

Apache Axis2 [24] is an open source project being the
successor of Axis – a Java-based SOAP processor for Web
services. Axis2 is a modularly built SOAP stack in which
additional functionality can be plugged in via modules con-
taining handlers. When SOAP messages arrive and leave
these handlers are called sequentially which in turn may
read and write SOAP headers and inject values in a con-
text object. This object is visible to other handlers which
may adapt their behavior according to the current context
state.

The main idea behind Axis2 extension architecture is to
provide a framework in which other Web services protocol
implementations can be easily integrated. Since we are cur-
rently working on extending BPEL by dynamic discovery
capabilities we chose Axis2 as the underlying platform.

Further Axis2 has a built-in code generation engine (also
available as Eclipse plug-in) which is highly adaptable and
generates either Java code from a WSDL document or vice
versa.

2.3. Model transformation

The presented work is following aModel-Driven En-
gineering(MDE) approach. MDE technologies combine
domain-specific modeling languages (in this case WS-
BPEL) with transformation engines and generators (WS-
BPEL to Java code generator) and is often referred to as
”correct-by-construction” [22]. A variant of MDE proposed
by the Object Management Group (OMG) is theModel
Driven Architecture(MDA) [17]. The aim of MDA is to
bridge the gap between models and source code through
the definition and implementation ofmodel transforma-
tions [6] between Meta Object Facility (MOF) compliant
languages. However, instead of focusing on fully automated
code generation from models to a complete source code as
suggested by CASE tools, MDA targets to automated rea-
sonable parts of it only. Model transformation improves
productivity, portability, interoperability, maintenance and
reusability in software engineering. The OMG has devel-
oped theQueries, Views and Transformations(QVT) stan-
dard [19] to specify transformations between a source and
a target model. QVT is a very complex standard and com-
pliant model transformations are rare. A good example of
a programming language for model transformation isAtlas

Transformation Language(ATL) [4] which is very close to
the QVT standard.

There are several works for transforming BPEL models
into other models. Among those, Reiter has presented an
approach for the transformation of BPEL into UML Activ-
ity Diagrams [20] and Hinz, Schmidt and Stahl have pro-
posed BPEL transformation into Petri Nets for verification
purposes [12].

2.4. XML parser

There are two widely used interface for accessing
and parsing an XML document. TheDocument Object
Model (DOM) builds an internal tree representation of the
XML document [13]. The DOM API offers functionality
to read and manipulate the elements of the tree structure.
TheSimple API for XML(SAX) follows an event based ap-
proach [9]. There are event handlers for each information
set of an XML document. Whenever an information set is
parsed the corresponding event handler is called.

SAX is fast and does not require an internal representa-
tion. However, every information set is only parsed once
whereas DOM can be used to traverse the tree in any di-
rection any time. As specific information in a WS-BPEL
document is interlinked with other in the same document or
associated WSDLs, DOM parsing is preferred in this work.

2.5. XSL Transformation

The Extensible Stylesheet Language Transforma-
tion (XSLT) [15] is a Turing-complete language for the
transformation of XML models/documents into other
(mostly XML) documents according to defined transforma-
tion rules. The transformation is based on the tree-structure
of an XML document. XSLT documents are also XML
conform. XSLT processorsapply the transformation rules
defined in an XSLT document and generate the new
document. XSLT usesXPath[5] to address portions of an
XML document (element, attribute and text nodes) and
offers mechanisms (predicates) to manipulate values based
on the content of an XML document (strings, numbers and
boolean values).

As WS-BPEL processes are XML structures, XSLT and
DOM parsing are better approaches for transforming WS-
BPEL documents into Java programs than QVT or ATL.

2.6. BPEL to Java transformation

The BPEL to Javaproject is a subproject of the SOA
Tools Platform Project for Eclipse (originally a subproject
of the Eclipse Test and Performance Tools Platform) [18].
It generates Java code from WS-BPEL and creates engines
which can be executed locally or in a distributed manner.

The underlying engines can be replaced by different imple-
mentations. BPEL2Java is based on its own Java binding.
Operations, messages, port types etc. of involved Web ser-
vices are bound to Java as defined by BPEL2Java.

Tai et al. have introduced a middleware prototype for
policy-based transactions using BPEL (called T-BPEL) as
part of their research which is also able to execute BPEL
processes [23]. It is based on an earlier version of WS-
BPEL (called BPEL4WS) and Apache Axis (the predeces-
sor of Apache Axis2). The way the BPEL code is trans-
formed into Java is not known to the authors.

2.7. Comparison of BPEL environments

Ruf and Strotbek (2006) [11] have compared numerous
BPEL engines in terms of installation and configuration,
support, portability, hard- and software requirements in a
survey. Figure 2 shows an excerpt of the survey illustrat-
ing the requirements of currently available BPEL engines
on the underlying hardware.

Engine Processor RAM HDD
Oracle,BPEL 300 MHz 256 MB 600 MB
Process Manager
Cape Clear, n/a 512 MB 400 MB
Enterprise Service Bus
JBoss,JBPM 400 MHz 512 MB 20 MB
BPEL Extension
Telelogic, 500 MHz 256 MB 350 MB
System Architect Pentium
IBM, 500 MHz 512 MB 2.8 GB
Web Sphere Pentium 3

Figure 2. Hardware requirements of a subset
of available BPEL engines.

It should be noted that most BPEL engines also rely on spe-
cific underlying software such as Web servers, runtime en-
gines or databases. From the survey can be derived that the
application of BPEL engines on resource-constrained em-
bedded systems is rather limited [7].

3. Design of the WS-BPEL compiler

The way a compiled WS-BPEL process is created is sim-
ilar to the creation of a WS-BPEL process executed on an
engine. The difference starts after the process creation. In-
stead of deploying the process onto the engine a stand-alone
program is created. The compiler can be adjusted to either
create a stand-alone Web service for the process or a pro-
gram executing the process immediately when it is started.

The compilation process involves three stages (shown in
figure 3): Integrating all information about the process into

one intermediate XML process description, compilation of
the BPEL process to Java and the code generation of the
involved stubs and process skeleton for the marshaling and
de-marshaling of corresponding SOAP messages.

Axis2 code
generation

Stub(n)

Stub(1)

BPEL to Java
transformation

Process WSDL

BPEL process

WSDL(n)

XML
process

description

WSDL(1)

Process XSLT Process logic in Java

Process
skeleton Uses

Uses

Uses

Contains
parts of

Contains
links to

Figure 3. Transformation of a BPEL process.

3.1. Generation of the intermediate XML
process description

In this step, an intermediate XML document (XML pro-
cess description) is created which includes all information
required for the process as some information are defined in
associated WSDL documents (e.g. variable definitions and
Web service invocation bindings). A WS-BPEL process has
links (imports) of all WSDL documents it uses for Web ser-
vice invocations. The process WSDL contains information
about invoking the process and replying results when the
process completes.

The structure of the XML process description is ori-
ented on the structure of the WS-BPEL process descrip-
tion. Namespace definitions and all declarations of vari-
ables (used in the process) are added by parsing through the
corresponding WSDL documents and extracting required
information. Variables defined in XML Schema are re-
solved and represented as XML elements describing the in-
dividual variables. The intermediate process descriptionis
formed using a DOM parser. Thereby, the semantic correct-
ness can be validated, namespace definitions and variable
definitions are resolved.

The XML process description can be used to compile
the process into different kind of programming languages
and for different SOAP engines. This work deals with the
compilation for Java based on Axis2 only.

3.2. Compilation of the BPEL process

This step is generating a Java representation of the com-
putation logic of the BPEL process compliant to Apache
Axis2. XSLT is an adequate and simple way to transform

the intermediate XML process document into Java. It is
very flexible, extensible and can be easily adapted to other
programming languages. The Java computation logic im-
plements the Java method which will be called by Apache
Axis2 when the process is invoked.

All transformation rules are defined in theProcess XSLT
document which are applied by the XSLT processor. Com-
pilers for different programming languages and SOAP en-
gines have to adapt the transformation rules accordingly.
Firstly, all global variables for the Java class and method
names are generated from the service, operation and mes-
sage names of the XML process description. The naming
rules follow the syntax defined by the Apache Axis2 code
generator. These names are used by the XSLT processor in
subsequent steps. Secondly, all process variables and their
data types are transformed into corresponding Java vari-
ables and data types. Each process variable is reflected by
local Java variables. Finally, all activities are transformed
into Java methods reflecting the execution rules of the pro-
cess. Web service invocation activities are transformed into
statements calling invocation methods of corresponding ser-
vice stubs.

<bpel:variable element="ns1:Data" name="DataRequest"/>

<xsd:element name="Data">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Id" type="xsd:string"/>
 <xsd:element name="Sensor" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

<namespaces>
 <namespace prefix="ns1" uri="http://ws4d.org/Service/" />
</namespaces>
<variables>
 <variable namespace="ns1" name="Data" varType="element"
 complexType="sequence">
 <variable namespace="ns1" name="Id" varType="element"
 type="string" />
 <variable namespace="ns1" name="Sensor"
 varType="element" type="int" />
 </variable>
</variables>

Data data = new Data();
String id;
Int sensor;

Figure 4. Variable transformation example:
Variable declaration in WS-BPEL, corre-
sponding WSDL, intermediate XML docu-
ment and Java.

Figure 4 shows the transformation of a variable decla-
ration. The variableDataRequest is declared in WS-
BPEL and defined in the corresponding WSDL as an ele-

ment calledData. Data is a XML Schema complex type.
The namespace ofData is added to the intermediate XML
process description as well as the variable declarations for
Data and its embedded elements. Thereby, the XML pro-
cess description include all details which are needed for the
code generation using XSLT. The rules for the XSL trans-
formation are defined by Apache Axis2: The classData is
generated for the complex type,String andint for the
simple types. The Java variable definitions are generated
using XSLT and injected into the skeleton in the next step.

The resulting logic is imported into the corresponding
Java method of the process skeleton.

3.3. Generation of stubs and skeleton

Apache Axis2 deals with the marshaling and de-
marshaling of SOAP messages between the process and
contributing Web services. It generates an empty skele-
ton for the process service from its process WSDL descrip-
tion. This skeleton includes a method (process invocation
method) which is called when the service is invoked. For a
manual startup the process invocation method is explicitly
called by a starting program. The logic behind the process
invocation method is generated as described in the previous
subsection and entered into the process invocation method.
Apache Axis2 also generates the stubs for the Web services
contributing to the process. The desired stub is called from
the process invocation method whenever an invocation ac-
tivity is performed.

4. Prototyping and comparison to previous ap-
proaches

A first prototype was implemented being able to trans-
form processes consisting of the activitiesReceive,
Reply, Assign andInvoke. These four activities are
sufficient to design simple processes. The transformation
rules are based on XSLT 1.0, and Saxon SA 8.9 for Java [14]
was used as XSLT processor. Saxon SA is a commercial
XSLT 2.0 processor. It was selected due to its support of
XML Schema which might be important in future versions
of the prototype.

The implementation of a all four activities reached a size
of about 20 MB (HDD and RAM) only requiring a Java
runtime environment. It is important to note that almost
the entire size is used by the Axis2 SOAP engine for the
marshaling and de-marshaling of SOAP messages. The size
marginally grows with the number of activities in a BPEL
process. Whenever a new instance of the process is created
a new thread is started by the Axis2 SOAP engine which
handles the process instance. This increases the required
RAM by a few KB for each additional process instance de-
pending on the called activities. Invocations also compile

the require stubs of invoked Web services into the same
skeleton (at design-time) and thereby use the same engine.
Each invocation increases the required RAM and HDD by
a few KB depending on the functionality.

In comparison to currently available WS-BPEL engines
this is very small footprint. Although a large number of pro-
cess instances are possible, only a small number of differ-
ent executed processes are possible on an embedded system.
This is due to the fact that every Web service – and thereby
also processes – based on Axis2 needs its own SOAP en-
gine. Long living transaction are also supported by Axis2
and thus also by the BPEL compiler.

Furthermore, the transformation rules in the XSLT doc-
ument can be easily adapted to other SOAP environments
which might be even smaller than Apache Axis2.

5. Demonstration of the prototype

In the European ITEA2 project LOMS presented pro-
cess compilation is used for a maintenance scenario [1]. A
robot in a factory reports its failure to the factory control
center which relays it to the responsible robot maintenance
provider. The Customer Relationship Management (CRM)
of the maintenance provider creates a service case and calls
a service technician. The service technician retrieves allrel-
evant information about the service case such as manuals,
location of the robot and forms. Also routing information
can be provided to the service technician in order to repair
the faulty robot.

Processes in LOMS have been designed using the Ac-
tiveBPEL Designer – a graphical tools for the creation
and simulation of processes based on WS-BPEL [2]. Ac-
tiveBPEL generates the process WSDL and the WS-BPEL
code for the process which is injected into presented BPEL
code compiler.

Without process management the interactions between
participating components (e.g. CRM, factory control cen-
ter, service technician) have to be implemented for each
component separately, although Web service interfaces pro-
vide a common basis for interactions between them. Avail-
able process management engines can be used to easily de-
sign interactions and processes but they are often expensive
(especially for small and medium enterprises) and require
additional hard- and software. The presented approach of-
fers the most functionality of dedicated engines, can also
be used for process management in industrial automation
where size matters and can be easily adapted to suit other
(existing) hard- and software environments. Furthermore,
the BPEL code can be extended in such a way that other
Web service specifications are supported. This is facilitated
by the code generator as new transformation rules can be
added easily.

6. Conclusion and future work

The paper presented an ongoing research work on a com-
piler based on WS-BPEL. A simple, flexible and extensible
approach of using XSL transformation for the compiling
process was described and an early prototype of the com-
piler was presented. BPEL processes can be started by a
Web service invocation such as supported by any WS-BPEL
engine but also manually which offers new application areas
for WS-BPEL in automation environments. The presented
compiler will be extended to support the Devices Profile for
Web Services (DPWS) in order to address the needs of Web
service enabled embedded systems. Currently, further activ-
ities are designed and implemented for XSL transformation
in order to develop a prototype being fully compliant with
WS-BPEL 2.0. The implementation of presented work will
be published on the website http://www.ws4d.org.

The simplicity of presented approach is very useful for
testing and demonstration purposes of extensions applied
to WS-BPEL. Additionally, there is great potential that this
approach will replace WS-BPEL engines in smaller process
environments.

Future research will deal with extensions to WS-BPEL
and their implementations using the BPEL compiler.

7. Acknowledgment

This work has been funded by German Federal Ministry
of Education and Research (BMBF) under reference num-
ber 01SF11H as part of the ITEA2 project LOMS.

References

[1] LOMS: Local Mobile Services. http://www.loms-itea.org/,
2007.

[2] Active Endpoints. ActiveBPEL Designer 4.1.
http://www.active-endpoints.com/active-bpel-designer.htm,
2007.

[3] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland, A. Guı́zar, N. Kartha, C. K.
Liu, R. Khalaf, D. König, M. Marin, V. Mehta, S. Thatte,
D. van der Rijn, P. Yendluri, and A. Yiu.Web Services Busi-
ness Process Execution Language Version 2.0. OASIS Stan-
dard, 2007.

[4] ATLAS group–LINA & INRIA. ATL: Atlas Transformation
Language – ATL Starter’s Guide – version 0.1, 2007.

[5] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández,
M. Kay, J. Robie, and J. Siméon.XML Path Language
(XPath) 2.0. W3C Recommendation, 2007.

[6] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, and
A. Lindow. Model Transformations? Transformation Mod-
els! In Model Driven Engineering Languages and Systems,
9th International Conference, MoDELS 2006, Genova, Italy,
2006.

[7] H. Bohn, F. Golatowski, and D. Timmermann. Sind
Prozessmanagement-Systeme auch auf eingebetteten Syste-
men einsetzbar?12. Symposium Maritime Elektrotechnik,
Elektronik und Informationstechnik, Rostock, Germany, Oc-
tober 2007.

[8] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Cham-
pion, C. Ferris, and D. Orchard.Web Services Architecture.
W3C, 2004.

[9] D. Brownell. SAX2. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 2002.

[10] T. Erl. Service Oriented Architecture: Concepts, Technol-
ogy, and Design. Pearson Education Inc., Upper Saddle
River, New Jersey, USA, 2005.

[11] R. Hantschel, F. Ruf, and H. Strotbek. Vergleich von BPEL
Laufzeitumgebungen.Fachstudie Nr. 54, Institut für Ar-
chitektur von Anwendungssystemen, Universität Stuttgart,
January 2006.

[12] S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to
Petri Nets. InThird International Conference on Business
Process Management (BPM 2005), Nancy, France, 2005.

[13] A. L. Hors, P. L. Hégaret, L. Wood, G. Nicol, J. Robie,
M. Champion, and S. Byrne. Document Object Model
(DOM) Level 3 Core Specification. W3C Recommendation,
2004.

[14] M. Kay. Saxon-SA 8.9.0.4 for Java.
http://saxon.sourceforge.net/, 2007.

[15] M. Kay. XSL Transformations (XSLT) Version 2.0. W3C
Recommendation, 2007.

[16] M. Keen, G. Ackerman, I. Azaz, M. Haas, R. Johnson,
J. Kim, and P. Robertson.Patterns: SOA Foundation –
Business Process Management Scenario. IBM International
Technical Support Organization, Armonk, New York, USA,
2006.

[17] A. Kleppe, J. Warmer, and W. Bast.MDA Explained: The
Model Driven Architecture–Practice and Promise. Addison-
Wesley Professional, Boston, MA, USA, 2003.

[18] A. Miguel. Developer Tutorial (How to build on B2J), 2006.
[19] OMG. MOF QVT Final Adopted Specification, 2005.
[20] T. J. Reiter. Transformation of Web Service Specification

Languages into UML Activity Diagrams. Master’s thesis,
Johannes Kepler University of Linz, Linz, Austria, 2005.

[21] F. Ryan, D. König, and C. Barreto. WS-BPEL Techni-
cal Overview for Developers and Architects, Presentation,
2007.

[22] D. C. Schmidt. Guest Editor’s Introduction: Model-Driven
Engineering.IEEE Computer, 2006.

[23] S. Tai, T. Mikalsen, E. Wohlstadter, N. Desai, and I. Rou-
vellou. Transaction policies for service-oriented computing.
Data & Knowledge Engineering 51, Elsevier B.V., 2004.

[24] The Apache Software Foundation. Apache Axis2.
http://ws.apache.org/axis2/, 2007.

