Software Architecture for Dynamic Thermal
Management in Datacenters

Tridib Mukherjee, Qinghui Tang, Corbett Ziesman, Sandeep K. S. Gupta

Arizona State University

Tempe, AZ 85287

Abstract— Minimizing the energy cost and improving ther-
mal performance of power-limited datacenters, deploying large
computing clusters, are the key issues towards optimizing their
computing resources and maximally exploiting the computation
capabilities. In this paper, we develop a unique merger between
the physical infrastructure and resource management functions
of a cluster management system to take a holistic view of
datacenter management, and make global (at the level of a
datacenter) thermal-aware job scheduling decisions. A software
architecture is presented in this regard and implemented in a
fully operational computational cluster in the ASU datacenter.
The proposed architecture develops a feedback-control loop, by
combining information from ambient and on-board sensors with
the node allocation and job scheduling mechanisms, for managing
the system load depending on the thermal distribution in the
datacenter.

I. INTRODUCTION

Computing clusters are increasingly deployed in current
datacenters limited by power and thermal capacity. To achieve
higher computation capability these datacenters are densely
populated with computing servers. This results in high heat
density in the datacenters producing potential hotspots. As a
result the reliability and longevity of the computing servers
is affected due to overheating, increasing possible downtime
of the system. The current trend in datacenters to address
this problem is to increase the cooling capacity of the dat-
acenters taking into account the worst case scenarios. This,
although solves the problem, gives rise to higher cooling cost
which produces almost half of the total operational cost of
the datacenter. Therefore, a dynamic thermal-aware control
architecture is necessary for online thermal evaluation that
can achieve a trade-off between these extremes. One of the
major goals in this respect therefore is to answer the following
question: “Given limited power and cooling capacities in a
datacenter, how can a combination of ambient and on-board
sensors and job scheduling manage the system load in such a
way as to maximize throughput?”

To this effect, we present a software architecture which
combines information from ambient and on-board sensors
with resource management functions of a cluster management
system to take a holistic view of datacenter management,
and make global (at the level of a datacenter) thermal-
aware job scheduling decisions. We implemented this thermal
aware scheduling architecture in a fully operational computing
cluster in the ASU datacenter [1] with a total of 4 racks,
5 chassis in each rack, and 10 Dell PowerEdge 1855 blade

Phil Cayton
Intel Corporation
Hillsboro, Oregon

servers containing Intel 64-bit dual-processor Xeon EM64T
CPUs in each chassis.

A typical datacenter is laid out with a hot-aisle and cold-
aisle arrangement by installing the racks and perforated floor
tiles in the raised floor. The air conditioners, normally referred
to as Computer Room Air Conditioner (CRAC) or HVAC
(Heating Ventilation Air Conditioner), deliver cold air under
the elevated floor. In the sequel, this is referred to as cooling
air. The cooling air enters the racks from their front side,
pick up heat while flowing through these racks, and exits
from the rear of the racks. The heated exit air forms hot
aisles behind the racks, and is extracted back to the air
conditioner intakes, which, in most cases, are positioned above
the hot aisles. Each rack consists of several chassis, and each
chassis accommodates several computational devices (servers
or networking equipment).

Sensors are deployed in the front and back of the chassis
to measure the inlet and outlet temperature of the chassis.
This information is then collected by a central entity and
incorporated in the resource management functions deployed.
Specifically, the Dell PowerEdge 1855 blade used in our study
is equipped with inlet temperature sensors, in-house sensors,
and outlet sensors. These temperature sensors are a part of
the chassis and the data is retrieved from them via SNMP. By
measuring the temperature difference of the air inlet and the air
outlets, we can determine how much heat is being generated.

We have used the Moab [2] cluster management software
for this purpose and improved its operation by including
thermal awareness. We chose Moab as it is widely used in
managing computing clusters across the datacenters and has a
detailed graphical interface for controlling the cluster. It further
detaches the node-allocation and job scheduling decisions
from the actual resource management software such as LSF,
TORQUE/PBS, making it ideal to include thermal awareness
due to reduced complexity.

The proposed software architecture

« Enables dynamic on-line thermal management during

datacenter operations.

e Provides visualization of thermal distribution inside the

datacenter.

« Aggregates environmental information which can be used

by resource management and thermal-aware scheduling.

« Facilitates on-line upgradation of the scheduler with no

requirement for system shutdown.

The rest of the paper is organized as follows. Section II

Incoming task

Schematic View of Thermal Management

Control Policy

Scheduling Policy

History Sensor Data

Moab
Scheduler

Process
Migration

Datacenter

Onsite survey

Collecting environmental data and
load information from sensors

| Current Sensor Data

Sensor Data
Database

Policy .
Controller Cost Analysis
CFD simulation || Abstract Heat Correlation of |
software Model load & power
A

-

Map load to power
consumption

A A

Fig. 1.

Schematic view of thermal management of datacenter. The abstract heat model is based on CFD simulation and onsite sensor data measurements.

The fast analysis will be provided to policy controller to generate high level thermal management based on cost analysis, thermal distribution and other

requirements. The gray parts are modules accomplished by this paper.

provides the essential background information required for
developing a thermal aware feedback-control loop for the dat-
acenter along with its required components. Different thermal
aware scheduling techniques are discussed in section III along
with their comparative study. Section IV presents the details on
the ASU datacenter on which we implemented thermal aware-
ness followed by section V which puts everything together to
present the software architecture being implemented. Section
VI presents the key results followed by the related work and
conclusions in sections VII and VIII respectively.

II. BACKGROUND

A typical cost of operating a datacenter includes energy cost
of cooling systems and computing devices, hardware cost for
replacing old and dysfunctional computing devices, operation
cost for infrastructure investment and labors. The specifica-
tions of computers (including networking devices) and cooling
systems decide the energy cost for the normal operation of
datacenter. The hardware failure model of equipment decides
the operation cost such as the cost for replacing hardware,
labor cost. Facility cost is one-time cost of purchasing and
installing new devices, building infrastructures. In this work,
however, we concentrate on the energy cost of cooling systems

and computing devices, since other costs primarily depend on
business management and policy scope.

The energy cost of computing devices and air conditioners is
the source of heat dissipation. The assignment of computation
task, the power consumption of different devices, the thermo-
mechanic properties of various devices, the cooling capacity
and performance of air conditioner, etc., will all directly or
indirectly impact the thermal distribution inside a datacenter.
The thermal distribution implicitly correlates with the oper-
ation cost of the datacenter. Thus, it is very challenging to
observe, or understand how the three different properties of
datacenter, namely, operation cost, thermal performance and
capacity are interrelated with each other.

An integrated thermal-aware scheduling control for datacen-
ters can optimize the total utility cost of running a datacenter.
In our previous work [3], we formalized the total energy cost
of a typical datacenter and showed that thermal-aware task
scheduling at server level can be utilized to achieve better
energy efficiency. In this paper we intend to develop the
scheduling control architecture and validate it in an actual dat-
acenter. This would involve the streaming of sensor data into
a dynamic planning module which would, in realtime, use a
thermal modeling framework to determine ”good” scheduling

and cooling policies.

Figure 1 shows a schematic view of thermal management
of a datacenter and the requirement for a feedback-control
loop for this purpose . In this paper, we intend to develop
the highlighted portion (in gray color) of the schematic view!'.
For this purpose, we try to answer the following question:
”Given an environmental sensor data gathering framework
in a datacenter, how can we integrate it with the resource
management functions and develop a software architecture
for enabling on-line thermal-aware job scheduling without
affecting the normal operations of a datacenter?”.

A. Task Scheduling in Datacenters

Apparently, a different utilization rate of a server leads to
a different amount of power consumption. From a whole dat-
acenter point-of-view, different scheduling algorithms would
result in different task assignments and utilization rates;
consequently resulting in different power consumption dis-
tributions inside a datacenter. Moreover, the change in the
power consumption distribution directly causes the change
of temperature distribution. And, finally, different temperature
distributions demand different cooling capacity and generate
different total energy costs.

This can be better illustrated by Figure 2. Assume that we
have to assign a computing task among a group of server
nodes. Scheduling Algorithm A and B lead to different temper-
ature distributions. Without cooling system, some of the inlet
temperatures are above redline temperature. Cooling system
is then introduced to drive the maximal inlet temperature
below the redline temperature to reduce hardware fault rate.
Obviously, the two algorithms require different efforts; more
technically, different cooling capability to achieve this goal.
Actually, even with the same total power dissipation for all the
server nodes, different scheduling algorithms lead to different
temperature distributions, and consequently, result in different
total energy cost.

Note that thermal-aware task scheduling of datacenters will
not have any impact on an application’s performance; the
only difference will be which subset of equally capable server
nodes are used to perform the computing task. The computing
task itself is not aware of such changes. Therefore, we can
manipulate task scheduling to achieve the best temperature
distribution, and consequently, minimize the total energy cost.

III. THERMAL AWARE SCHEDULING

The incorporation of thermal awareness in task scheduling
depends on the thorough understanding of the correlation
between task assignment and resulting thermal distribution in
the datacenters.

A. Task Scheduling and Thermal Distribution Co-relation

A datacenter is composed of a set of computing nodes from
1 to n. Those physically separated nodes work individually or
cooperatively to accomplish assigned tasks. These nodes are

'We have developed the other parts in our previous work [3] and is therefore
excluded from this paper due to space constraints.

Inlet temperature
distribution
without Cooling

AC lowering inlet
temperature blow
redline threshold

A
Scheduling
A I Demand for
o I cooling load
25°C H /energy
Scheduling .
B I Demand for
o =] cooling
25°C m load/energy
Fig. 2. This illustrates the reaction chain from scheduling algorithm to

energy cost: different task assignments result in different power consumption
distributions; different power consumption distributions results in different
temperature distributions; different temperature distribution results in different
total energy cost.

either heterogeneous or homogeneous. There is a scheduler to
dispatch incoming tasks C'rtq; (@ group of tasks) to individual
distributed nodes depending on various scheduling policies,
criteria and strategies. Each distributed node ¢ consumes
energy at the rate F; during the execution of task set Cj; (a
subset of Crotq1), and the power consumption rate depends on
the hardware characteristics of distributed nodes and the task
profiles (compute intensive, memory intensive or IO intensive):

P; = G;i(Cy), (D

where G;is a thermo-mechanic function which depends on
the hardware specifications of distributed nodes. G; can be
obtained through experimental measurement or CFD simula-
tion. We characterized the correlation between task and power
consumption in our previous work [3].

According to the law of energy conservation and the fact
that almost all power drawn by a computing device is dissi-
pated as heat, the relationship between power consumption of
a node and its inlet/outlet temperature can be presented as

P, = pfiCy (Th — Tiy) » 2

where (), is the specific heat of air and p is the air density.
In other words, the power consumption of node ¢ will change
the air temperature from the inlet air temperature Tiin to the
outlet temperature 7%,,,. The generated hot air will also spread
to other nodes. The temperature rise can be identified as self-
interference (heating up air flowing through itself) and cross
interference (heating up other nodes through recirculation).

B. Basic Thermal Awareness in Task Scheduling

We briefly review three naive thermal-aware scheduling
algorithms presented in our previous work [3]. They are
“naive” in the sense that they are based on observations
and intuitions, and they did not take into account the heat
recirculation phenomenon.

Uniform Outlet Profile (UOP): This scheme is similar to
the OnePassAnalog algorithm presented in [4]. Based on the
inlet temperature of each computing node, this algorithm will
assign more tasks to nodes with low inlet temperatures, and
fewer tasks to nodes with high inlet temperature. The objective
is to achieve a uniform outlet temperature distribution.

Minimal Computing Energy (MCE): MCE minimizes the
number of powered-on chassis and processors to concentrate
computing energy costs on those active servers and processors
and turn-offs all other idle processors or blades. Consequently,
the resulting outlet temperatures of all computing nodes will
not necessarily be equal. To reduce the thermal risk, the
computing nodes with the lowest inlet temperature will be
assigned tasks first.

Uniform Task (UT): With this scheme, all nodes are
assigned the same amount of tasks.

Once we obtain a workload assignment, we map it into
the power consumption, then we can use the sensor based
temperature measurement from the servers/chassis to evaluate
the thermal distribution for the given power consumption
vector.

C. Characterizing Recirculation

Due to the complex nature of airflow inside a datacenter,
some of the hot exhaust air from outlets of servers will
recirculate into the inlet of other servers. Within a room
environment, if the dimensions and locations of all major
physical objects are fixed, no moving objects inside the room,
the air flow pattern should be relatively stable and predictable.
Our hypothesis is that the amount of air and heat recirculated
from the outlet of one server to the inlet of another server
is relatively stable. If we can characterize such heat flow then
we can use it to accurately predict the temperature distribution
given another different power consumption distribution.

The air recirculation inside a datacenter can be charac-
terized as cross interference among server nodes. Figure 3
demonstrates our abstract heat flow model and the correlation
between distributed nodes. Node N1 has inlet temperature
T}, which is a mixture of supplied cold air with temperature
Tsup and recirculated exhaust warm air from other nodes.
The outlet warm air of node N1 will partially return to the
air conditioner, and partially recirculate into other nodes with
constant rate. It also draws in exhaust hot air from the outlet
of other nodes due to recirculation. The rate, or the percentage
amount, of recirculated heat c;; is defined as cross interference
coefficients.

We assume the amount of recirculated heat from node ¢
to node j is @;;Q¢,;, where Q% is the energy of exhaust
air from node 4. The coefficient a;; is the percentage of
heat flow from node ¢ to node j. Assuming cross-interference
coefficients are constant, the matrix

A =[ay],n 3)

defines the cross-interference among all the server nodes.

%11
TSU
P Tin Tout Thci
— = N1 5 AC
A2 03
Recirculation
21
3
N2 N3
Fig. 3. This figure demonstrates the cross interference among distributed

server nodes. Exhaust hot air from node 1 will partially return to AC and
partially recirculate into other nodes’ inlets. Meanwhile it ’inhales’ exhaust
hot air from other nodes. Those coefficients show the percentage amount of
recirculated heat.

For a given node ¢, the total amount of heat exhausted in
the out air flow, %, is given by:

fyut = Q:n + P = pfiCpTguh (4)

where T, is the outlet air temperature and %, is the input
heat given by

L= pfiC T Q)

where T}, is the inlet air temperature. We assume the air den-
sity does not change (in practice, it changes from 1.205kg/m?
at 20°C to 1.067kg/m? at 60°C).

From the practical perspective, at the beginning we need
to have a reference power distribution, measure the reference
temperature distribution, then try another n different power
distribution scenarios, and record all the outlet temperature
distribution of these m scenarios. With these data, we can
calculate the cross coefficients.

Once we obtained cross interference coefficients A, we can
calculate or predict temperature distribution without running
CFD. The advantage of such an approach is that we can
implement online fast temperature evaluation to optimize
datacenter operation in real-time. Given a power distribution
vector ?, the outlet temperature distribution can be calculated
using:

?out = ?sup + (K - A,K)_l ?; (6)

where K is the substitution of pf;C), (in equations 4 and 5),
and inlet temperature can be calculated through

T = Top+ (K- AK)'B-K'B. (1)

Please refer to our previous work [5] for simulation results
of profiling cross interference and fast temperature evaluation.
In short, we confirmed our hypothesis that heat recirculation
could be characterized as cross interference quantitatively.
In addition, we showed in [5] that cross interference based

fast thermal evaluation could be used in online thermal man-
agement to predict temperature distribution accurately and
effectively.

D. Cross Interference Based Scheduling

To minimize the cooling energy cost of a datacenter, we
need to minimize the heat recirculation, or reduce the maximal
inlet temperature of all the server nodes. In this regard, we
have developed XInt, Cross Interference based, recirculation
minimized scheduling algorithm for minimizing maximum
inlet temperature.

Based on the power consumption characterization of blade
servers in [3], we assume that the correlation between power
consumption and task assignment is linear: P; = a + bC},
where a and b are some constants obtained through power
consumption characterization. We can rewrite Eq. 7 as:

T, = M+NC. ®)

where
M=Tqup + [(K —AK) - K—l] a)

N=b [(K—A'-K)‘1 —K—l]. (10)
Note that ﬁ and N are constants once we characterized
recirculation as cross interference matrix A. The optimization
problem can be written as

Y

minimize(max ?:n)
K]
n
st : Zj—lcj - CTotal =0

:?in=M+N8

:C; 20,5 =1...n,

which can be transformed to a typical linear program after
introducing a new variable v:

min(v) (12)

st:v 2> ¥2n =M;+ Zn lNz'jCj, i1=1...n
J:

n
: Zj:lcj — Crota =0
:C;20,5=1...n.

The physical meaning of the optimization problem is how
to divide the total task Crose into a task vector =
{C1,C4,...CN} to achieve the minimal maximum inlet tem-
perature. For analog energy model discussed in [3], the prob-
lem is just a typical Linear Program; and, it is straightforward
to find the best task assignments. For discrete server energy
models, such as DNO and DO, all C; have to be integers,
the problem changes to an Integer Linear Programming (ILP)
problem and is relatively difficult to solve if the number of
variables is large. However, we still could be able to find
a near optimal solution through some heuristic optimization
solution.

E. Comparative Analysis

Before presenting the software architecture for thermal
aware scheduling, we compare different aspects of the afore-
mentioned techniques. For this purpose, we simulated a small
scale datacenter with physical dimensions 9.6m x 8.4m x 3.6m
(see Figure 4) using Flovent [6], a CFD simulation software.
The simulated datacenter has two rows of industry standard
42U racks arranged in a typical cold aisle and hot aisle layout.
The cold air is supplied by one computer room air conditioner,
with the flow rate 8m?/s. The cold air rises from raised floor
plenum through vent tiles, and exhausted hot air returns to the
air conditioner through ceiling vent tiles. There are 10 racks
and each rack is equipped with 5 chassis (marked from bottom
to top as A, B, C, D and E). The maximum computing capacity
in the unit of number of processor is 1000. The total power
consumption of the whole datacenter would be 232K Watts at
full utilization rate. The total power consumption when all the
processors are idle would be 86KWatts for DNO mode and
0KWatts for DO mode.

Figure 5 shows the inlet temperature distribution when all
the servers are idle. Obviously, the chassis located at the lower
part of the rack (A and B) obtain plenty of cold air from the
floor vents and have a lower inlet temperature, where chassis
located at the upper part (E) of the rack experience a highest
inlet temperature due to the insufficient supply of cold air.

F. Comparing Cooling Cost

Since the computing energy cost of different scheduling
algorithms are almost the same when the total datacenter
utilization rate is above 20%, we only focus on cooling energy
cost comparison

Figure 6 and Figure 7 show cooling cost comparison for
the four aforementioned algorithms with Ignoreldle policy.
With Ignoreldle policy, the naive algorithm MCE’s total energy
consumption has a very close performance to XlInt, which
could save 30% energy cost compared with UOP and UT
when utilization rate is around 50%, and may save from 5% to
20% energy cost at other utilization rates. Figure 6 also shows
the theoretical optimal lower bound for the cooling cost. The
optimal scenario assumes no existence of heat recirculation,
and the supplied cold air and all inlet temperatures are redline
temperature 25°C'. The energy efficiency of MCE and XInt are
very close to optimal performance at low datacenter utilization
rates.

G. Comparing Task Assignment and Temperature

In this work, we only consider Discrete energy model since
it is the practical way that servers are operated. First we would
like to observe whether different algorithm have any impact on
temperature distribution. As we discussed earlier, temperature
distribution is an outcome of power consumption distribution.

Figure 8 and 9 show resulting temperature distributions
with Ignoreldle policy. Obviously, XInt has a very similar
temperature distribution as MCE, but the peak inlet tempera-
tures for XInt and MCE are 18.5°C' and 20.5°C, respectively.
Therefore, even the total power consumption are the same as

E
D

E
C

D
B

C
1 A

2 B O
Column A >© Row2
4
N

Row1

Fig. 4. Two Row datacenter used in our simulation study, each rack has 5
blade server chassis, marked from bottom to top as A, B, C, D and E.

DiscreteNonOptimal : Cooling Energy Cost

500 T T T T
—&— UOP
450H MCE 4
-- uT
|| = Xint i
400 o Theoretical Optimal
S 3501 |
<
S 300+
g
é 2501
o
© 200F
[
8
2 150+
100
50
0 Il Il Il Il
0 20 40 60 80 100
Utilization Rate (%)
Fig. 6. XlInt and MCE possess minimal cooling energy cost, the energy

efficiency of MCE and Xlnt are very close to optimal performance at low
datacenter utilization rate.

159.15KWatts for XInt and MCE, different task and power
distributions could lead to different peak inlet temperature.

IV. SYSTEM MODEL AND CLUSTER SET-UP

In the previous sections, we have discussed various tech-
niques for thermal aware scheduling along with their relative
comparison in terms of their thermal performance and energy-
efficiency. This section provides the system model for imple-
menting the thermal aware node allocation and job-scheduling
in the datacenters. We used the central cluster set-up of the
ASU datacenter for the implementation. The basic idea is to
examine allocation of new jobs based on the temperature of
the nodes in the cluster, change in thermal environment after

30
204 i

104

Temperature °C

wi
Column A RO

Fig. 5. Inlet temperature distribution: chassis locate at the lower part of
the rack obtain plenty of cold air from floor vent and have a low inlet
temperatures

DiscreteOptimal : Cooling Energy Cost
500 T T T
—— UOP
450 —+ MCE
-- uT

400/ L== Xint i

W
w
I3}
=)
T
i

300

Power Consumption (KW)

= L L
0 20 40 60 80 100
Utilization Rate (%)

Fig. 7. XlInt and MCE possess the minimal cooling energy cost with
Ignoreldle policy.

the submission of these jobs, and migration of jobs when
unacceptable thermal environment is reached.

Figure 10 presents the ASU datacenter set-up. There are
three main components for implementing and visualizing the
thermal aware cluster management in the datacenters:

1) Remote Client: This is a laptop or any remote machine
which presents the results (in graphical form) of the thermal
aware scheduling in the cluster.

2) Central Server: The central server controls the nodes in
the cluster grid using Moab scheduler provided by Cluster
Resources, Inc. [2].

3) Cluster grid: The cluster we used for our implementation
is the centerpiece of the ASU Campus Grid, a 200 node,

Temperature °C

Column

Fig. 8. Inlet temperature distribution of MCE, peak temperature
is 18.5°C.

Remote Central Server

Client

Cluster Grid at
ASU Datacenter

v Y
[[

Intel 64-bit
Xeon EM64T
Dual-processor
Servers

Rack.

| |
Chassls4/||||||||||\Chasgl\/llllllllll

Rack 0

A}

Rack 3

Fig. 10. Cluster Set-up at ASU datacenter.

400 processor system comprised of Intel 64-bit dual-processor
Xeon EM64T CPUs manufactured by Dell, and interconnected
via an Infiniband high speed interconnect. There are a total of 4
racks with 5 chassis in each rack. Each chassis has 10 nodes
(and each node has 2 processors). Although we can check
the status of the entire cluster, we have control over chassis
0 and 4 of the cluster (total of 20 nodes i.e.40 processors).
This is because it is a fully operational cluster and there are
always a large number of jobs running for different research
projects spanning over various departments in ASU. Further,
this restriction does not hinder our testing as chassis 0, at the
bottom of the rack with low inlet temperature, and chassis 4,
at the top of the rack with higher inlet temperature, provide
discernible temperature differential. This is because the cold
air flows from the bottom of the perforated floor making the
inlet of the bottom chassis lower compared to that of the top
chassis where it reaches after mixing with the ambient air in
the room. Thus the effects of the thermal awareness in the

Temperature °C

o o

A Aot

Column

Fig. 9. Inlet temperature distribution of XInt, peak temperature
is 20.5°C.

Moab Cluster
Management GUI

'

r > Moab Server
2721
]
o O
0 |
% é | Resource Management
=g (Torque)
E Q |
g
=p [

L | Data Center Cluster |

Fig. 11. Software structure of Moab. Developing the feedback-control loop
is the goal of this paper.

scheduling can be easily verified with our set-up.

There are two basic aspects in implementing the ther-
mal aware scheduling using the aforementioned components.
Firstly to get the feedback from the on-board sensors about
the thermal environment, we extract the temperature data from
ASU data center log file. This file is generated by a SNMP
query script which queries the on board sensors and logs their
readings. Secondly, we integrated thermal awareness in the
Moab scheduler for controlling the thermal environment. In
the following sections we provide more details on these issues.

A. Cluster Management using Moab

We used the Moab scheduler to configure thermal awareness
into it. There are two components of the Moab scheduler: 1)
Moab server, and 2) Moab Cluster Manager (MCM). Moab
Server runs in central server running Linux Fedora Core
Operating System, and MCM acts as a client that can be
run on any laptop/desktop. The MCM connects to the server
and shows the status of the jobs and the nodes of the cluster
controlled by the Moab server. For resource management

Moab server makes use of an underlying resource management
software such as LSF, TORQUE/PBS. Figure 11 depicts the
schematic view of the Moab software structure along with the
feedback-control connection required for thermal-awareness in
the node allocation and job scheduling mechanisms.

The cluster set-up we used uses the TORQUE resource
manager. It is a freely available software which has two
main components: 1) a central controller that maintains all
the resource information along with submitting jobs to the
servers, and 2) distributed agents executing at each individual
servers that report to the central controller. Moab makes
use of the resource information maintained by the central
controller of TORQUE and schedules jobs accordingly. The
resource and job information can be checked from command
line on the machine where Moab server is installed or from
remote laptop/desktop using the MCM software (as mentioned
previously). Moab.cfg file is the configuration file (in the Moab
server) that specifies the underlying resource manager type and
the path where it is located. Moab also allows the use of a
native resource manager which can report any generic metrics
(not managed by the underlying resource manager) such as
temperature information. A generic metrics file (in any format
such as .html, .txt, .perl), containing the required information,
is required to be maintained and updated in this regard. The
path of this file is required to be specified in the moab.cfg file
in order to enable it to be the native resource manager. This
provision in the Moab cluster manager makes it ideal for the
implementation of any thermal awareness into it.

The scheduling technique can also be configured using the
moab.cfg file. This file (moab.cfg) is stored in the directory
/opt/Moab on the host where Moab server is installed. In
the next section we discuss the thermal aware scheduling
techniques to be implemented using the Moab cluster manager
discussed in this section.

V. SOFTWARE ARCHITECTURE

Figure 12 presents the overall software architecture putting
together all the components described in section IV. The
visualization tool extracts raw sensor data from the sensor
history as updated by the SNMP query script in the central
server and shows it in graphical form. Further, it updates the
gemetric file for the Moab server in appropriate format so
that Moab can be configured for thermal awareness. This tool
can be executed in any local desktop? provided its location is
properly fed into the Moab configuration.

A. Visualization and Aggregation of the sensor data

Figure 13 expands the visualization tool (of Figure 12)
for monitoring the thermal distribution in the datacenter. It
primarily consists of a component for Data Retrieval, Pars-
ing, and File Generation that executes in an iteration. This
component connects to the Central Server securely through
SSH and extracts the most recent temperature readings for
each sensor in each chassis from the Moab data log. The

2In our implementation we used the server 129.219.33.232. This can be
replaced by any IP address where the visualization tool is located.

Central Server

Temperature CPU Moab
Data Extracted Load S ho: I
via SNMP Data cneauier
] A
]

Local Desktop

Visualization Tool

Y

Moab
Program for GMETRIC
Data Retrieval, Parsing, Data

and Data File Generation

' '

Data for Web Page
MySQL Database PHP Scripts

Inlet Outlet
Temp. Temp.
Inside CPU
Temp. Loads

PHP Web Pages

Current Statistics

Historical Data |

Remote Client

Visualization tool for monitoring thermal distribution in the

Fig. 13.
datacenter

temperature data is then stored in the MySQL database along
with the time when the sensor measured the temperature. The
program also executes a shell script on the Central Server
which gathers the CPU performance data, and this data along
with the current time is then also stored in the database. The
database is a convenient way to store and retrieve the most
recently collected sensor data when the last data collection
attempt fails.

The program is also responsible for generating data for
Moab and for the PHP Web Pages. The most recent tempera-
ture and CPU load data is retrieved from the MySQL database
and a Moab generic metric file is made which can then be
used by the Moab scheduler on the Central Server. Four files
representing inlet temperatures, outlet temperatures, inside
temperatures, and CPU loads are created for the PHP web
pages that parse and display this information graphically when
requested by a Remote Client. The PHP web pages are served
by an Apache Web Server and display graphs that represent
the current conditions of the servers in the datacenter, as well
as historical trends for inlet temperature, outlet temperature,
CPU loads, and estimated power consumption.

B. Implementation of the scheduling Algorithms in Moab

In this section we provide the basic changes to be performed
in the Moab cluster manager. For simplicity we provide sample
changes for the MCE algorithm (which assigns jobs to servers
with lowest inlet temperature) discussed in section III. Overall,
MCE performs close to the best as XInt does (Sections III-G
and III-F). The implementation of the other algorithms includ-

Remote Client

MCM

Temperature (°C)

Server history in webpage

Utilization Rate

[Chassis0

M Chassis4 [Chassis0 M Chassis4

+
|
|

Central Server

Fig. 12.

ing XlInt follows the same format with different configuration
variables.

There are three main steps, presented below, in incorporat-
ing thermal awareness to the Moab cluster manager.
1) Integrating temperature data in the Moab: Temperature
information of the nodes (in chassis 0 and 4) are stored as the
generic metric in the following file

After this change, when the Moab is restarted, the command
checknode < nodeid > shows the three generic metrics
for the nodes in chassis 0 and 4. This command is a native
script that abstracts out the underlying resource management
command. In our set up this script calls the TORQUE for
checking the node status. The temperature information can
now be used to define a function to be used as the priority of
the individual nodes in the cluster.
2) Setting the Priority of the nodes: First we have to add
the following configuration command in the moab.cfg file.

NODEALLOCATIONPOLICY PRIORITY

This configures the node allocation policy for the cluster to
be driven by the priority of the nodes. The priority can be now
defined as follows:

Moab GMETRIC Data
Moab Scheduler [@— -
History of ?
Readi
A Sensor Reading _I——P Visualization Tool
A 4 Local Desktop
TORQUE Resource < SNMP Seri
cript
Manager Server P e——» TORQUE Resource
- Manager Client

Intel 64-bit Xeon EM64T
Dual-processor Servers

Software Architecture for implementing thermal-aware scheduling.

NODECFG[< nodeid >] PRIOF =
PRIORITY - 10 * GMETRIC[inlet]

where PRIOF specifies the function to be used to determine
the priority of the individual nodes, and PRIORITY is any
constant value big enough to ensure that PRIOF' always has
a positive value.

In the above example the priority of the node is only
dependent on the inlet temperature (maintained in the Moab
generic metric file). Therefore, when the inlet temperature
increases the priority decreases. After these changes to the
moab.cfg, when we restart Moab, any newly submitted job
would be allocated to the node based on its priority i.e. jobs
would get submitted to the nodes with low inlet temperature.
3) Setting object triggers if temperature crosses a thresh-
old: This is required to make sure that already running jobs
are preempted when the temperature of the node (where it
is currently allocated) goes beyond a specific value. The
following configuration command ensures that jobs would get
check-pointed during preemption so that it resumes execution
from the same place where it got preempted.

PREEMPTPOLICY CHECKPOINT

Job Submission and Scheduling

Moab Scheduler Configuration

Sensor data collection
and visualization

New Incoming

@ Set Priority Driven Node Allocation

1N Moab Configuration
® Settemperature data as generic metrics

Collect and aggregate
Sensor Data

Job?

v

Manager

Check Moab Scheduling
configuration to decide for any

thresholds

@ Set the generic metrics file as the Native Resource

@ Set Node priority as a function of generic metrics
@ Set job pre-emption triggers based on thermal

A 4

eUpdate Moab generic
metrics
eUpdate Visualization

pre-emption and which node to
allocate jobs

v

Use TORQUE to submit
job to appropriate node

o Moab Scheduling :__
<

Is threshold

Fig. 14.
and vice versa.

The configuration variable PREEMPTPOLICY can also be
set as REQUEUE to restart the job from the beginning after
preemption. To set job-preemption as the desired action when
the inlet temperature goes beyond 25 degrees centigrade we
use the following configuration command in our moab.cfg file,

NODECFGI[< nodeid >] TRIGGER =
atype = jobprempt, etype = threshold,
threshold = GMETRIC[inlet] > 25

where atype defines the type of action when trigger occurs,
and etype specifies the type of event that causes the trigger. In
this case, we specify etype as threshold to set the trigger when
the inlet temperature goes beyond the threshold of 25 degrees
centigrade. This ensures that jobs in node < nodeid > are
pre-empted and checkpointed for further execution in other
nodes.

Any changes made in the moab.cfg file would take their
effects after the execution of the script recycle from the
command line. It has to be noted that the priority and triggers
are only set for the nodes in chassis O and 4 of the saguaro
cluster.

To summarize the software architecture we identify three
basic modules for the thermal aware scheduler as depicted
in Figure 14. The Job Submission and Scheduling Module is
responsible for assigning newly submitted jobs to the appro-
priate nodes depending on the Moab scheduling configuration.
It also pre-empts any jobs in nodes when certain thermal
threshold is reached which activates triggers configured in
the Moab scheduling decisions. The Moab Scheduler Con-
figuration module is an one-time process that configures the
Moab scheduling as described in section V-B. Finally, Sensor
data collection and visualization module is responsible for on-
line collection and aggregation of sensor data as described in

Yes reached? No

Three principal modules for the thermal aware scheduler. The thick arrows are used to depict how different modules affect the Moab scheduling

section V-A.

VI. RESULTS

The software architecture presented in the previous section
was verified with actual prototype implementation and con-
forms to the results of our predictions. Our results show that
the MCE algorithm (along with the XlInt algorithm), in most
cases, results in a minimal total energy costs - a conclusion
that differs from the findings of previous research [4]. UOP
performs better than UT at low datacenter utilization rates,
whereas UT outperforms UOP at high utilization rates.

We also observed that the computing energy cost increases
linearly with the increase of utilization rate, where cooling cost
increases exponentially due to the nonlinearity of Coefficient
of Performance of the cooling systems[3]. Normally, when the
utilization is less than 60%, the dominant part of total energy
costs is contributed by computing energy. Once the utilization
rate exceeds 60%, the cooling cost replaces the computing
cost as the most significant part. The results confirmed that
thermal-aware scheduling based on thermal performance eval-
uation improves energy efficiency of datacenter operation, and
consequently increases the utilization rate and computation
capability of datacenters.

Even though MCE (and XlInt) is the most energy efficient
algorithm, it has some practical limitations. This is because
under the MCE algorithm, the chassis at the lower part of
the rack will be used excessively and will experience higher
hardware failure rate due to unremitting long time operation.
Our future work will consider hardware reliability models and
hardware cost models to address this issue, we will balance
the trade-off between energy cost, hardware failure cost, and
resulting labor cost of replacing or repairing hardware.

VII. RELATED WORK

Researchers at HP Labs and Duke University have published
work [7] [8] on smart cooling techniques for datacenters. They
have developed online measurement and control techniques to
improve energy-efficiency of datacenters. They defined Supply
Heat Index (SHI) and Return Heat Index (RHI) to characterize
the energy efficiency of datacenter cooling systems.

Our work is similar to Splice, a datacenter measurement and
monitoring infrastructure, proposed in [9]. But we integrated
our proposed framework with available cluster management
platform to makes as an extra plug-in module, thus make it
more flexible and portable, easy to be deployed with datacenter
environment.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a unique software ar-
chitecture to develop thermal aware job scheduling for the
datacenters. The proposed architecture enables dynamic on-
line thermal management during datacenter operations, pro-
vides visualization for thermal distribution inside the data-
center, aggregates sensor data for feedback to the resource
management functions, and facilitates on-line upgradation of
the scheduler with no requirement for system shutdown. It is
further implemented in a fully operational ASU datacenter and
the results validate the theoretical foundations of the on-line
thermal aware scheduling techniques.

ACKNOWLEDGMENT

This work is supported in part by a grant from Intel
Corporation, and NSF grant #CNS-0649868. The authors are
thankful to Dan Stanzione and Karl Lindekugel of Fulton
High Performance Computing Initiative for providing ASU
datacenter access and assisting in ASU cluster set-up for
thermal aware scheduling. Further, the authors thank Cluster
Resources Inc. for assistance in setting up Moab cluster
management software.

REFERENCES

[1] “Fulton high performance computing initiative.” [Online]. Available:
http://hpc.fulton.asu.edu/

[2] “Moab grid suite of cluster resources inc.” [Online].
http://www.clusterresources.com/

[3] Q. Tang, S. K. S. Gupta, D. Stanzione, and P. Cayton, “Thermal-aware
task scheduling to minimize energy usage of blade server based datacen-
ters,” in IEEE International Symposium on Dependable, Autonomic and
Secure Computing (DASCO06), October 2006.

[4] J. Moore, J. Chase, P. Ranganathan, and R. Sharma, “Making scheduling
“cool”: Temperature-aware resource assignment in data centers,” in 2005
Usenix Annual Technical Conference, April 2005.

[S] Q. Tang, T. Mukherjee, S. K. S. Gupta, and P. Cayton, “Sensor-
based fast thermal evaluation model for energy efcient high-performance
datacenters,” in International Conf. on Intelligent Sensing Info. Proc.
(ICISIP2006), December 2006.

[6] “Flovent CFD simulation
http://www.flomerics.com/

[7] C. D. Patel, R. Sharma, C. E. Bash, and A. Beitelmal, “Thermal
considerations in cooling large scale high compute density data centers,”
in Proceedings of the Eight Inter-Society Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems (ITherm), San
Diego, CA, June 2002, p. 767C776.

Available:

software.” [Online]. Available:

[8] M. H. Beitelmal and C. D. Patel, “Thermo-fluids provisioning of a high
performance high density data center,” Hewlett Packard Laboratories,
Tech. Rep. HPL-2004-146, September 2004. [Online]. Available:
http://www.hpl.hp.com/techreports/2004/HPL-2004-146.html

[9] J. Moore, J. Chase, K. Farkas, and P. Ranganathan, “Data center workload
monitoring, analysis, and emulation,” in Eighth Workshop on Computer
Architecture Evaluation using Commercial Workloads, February 2005.

