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We analyze the asymptotic security of the family of Gaussian modulated quantum key distribution
protocols for continuous-variables systems. We prove that the Gaussian unitary attack is optimal for all the
considered bounds on the key rate when the first and second momenta of the canonical variables involved
are known by the honest parties.
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In 1984, Bennett and Brassard introduced the concept of
quantum cryptography and presented the first quantum key
distribution (QKD) protocol: BB84 [1]. The original idea
was that in quantum mechanics, contrary to classical phys-
ics, the observation of a system invariably perturbs the
system under observation. Therefore, if two honest parties,
Alice and Bob, establish a quantum channel and use it to
send information, an eavesdropper’s presence could be
detected by analyzing how the noise-free channel has
changed. It was then shown that QKD protocols are com-
pletely secure against any eavesdropping attacks as long as
the bit error rates do not exceed a certain value (see, for
instance, [2] and references therein). In the meantime, new
applications of quantum mechanics to certain information
tasks started to develop: coin tossing, dense coding, tele-
portation, etc.

All these results first appeared in the context of discrete
systems, but many of them were later translated into the
language of continuous-variables (CV) systems. This is
per se an interesting theoretical problem. However, the
main motivation for dealing with these systems comes
from a practical point of view: although the set of feasible
operations is reduced, the so-called Gaussian operations
are easy to implement and amazingly precise. Quantum
cryptography with continuous-variables systems [3–8]
was the most immediate result: the transmission of coher-
ent or squeezed pulses of light, together with homodyne
measurements, allows one to perform QKD with very high
key rates [9].

The security analysis of these new protocols is not
straightforward. First, the commonly used reconciliation
and privacy amplification protocols are designed to correct
and distill secret bits from binary random variables,
although some have been adapted to continuous variables
[10,11]. Second, the dimension of the Hilbert space on
which the CV systems are defined is infinite in theory,
which makes a complete tomography impossible in prin-
ciple, thus preventing Alice and Bob to know precisely the
state they are actually sharing. Therefore, security proofs
for CV protocols have to consider the optimal attack by

Eve when Alice and Bob know their state is in some set,
usually defined by the momenta of the quadratures up to
second order [12]. In her search for information, Eve’s
possible attacks can be classified in three different types
[13]: individual attacks, where Eve interacts individually
with the sent states and measures them individually before
public reconciliation; collective attacks, where Eve applies
the same unitary individual attack over the sent states but
performs her (possibly collective) measurements at any
time during Alice and Bob’s reconciliation protocol; co-
herent attacks, where Eve is allowed to perform any unitary
collective interaction over the sent states and any measure-
ment strategy at any time she wants. The latter is the most
general attack Eve can use. Most of the present security
proofs give necessary and sufficient conditions for key
distillation when Eve is restricted to perform an individual
[4,5] or finite-size coherent attack [12]. General proofs of
security are given in [3] for a squeezed-state protocol and
in [14,15] for coherent states.

Recently, bounds on extractable key rates have been
derived for the case of collective [16,17] and general
attacks [18]. These bounds are easy to adapt to a wide
class of protocols since they correspond to the difference of
smooth entropies, which tend to von Neumann or Shannon
entropies in the asymptotic case. In this work we analyze a
family of CV protocols based on Gaussian modulation.
This family includes most of the protocols in the field of
CV systems, such as those of Ref. [5] using squeezed light,
or those of Refs. [6,8] that employ coherent states. We
prove that for all of them, the Gaussian attack is the unitary
attack by Eve that minimizes the bounds on the key rate of
[16,17], when Alice and Bob know the quadrature mo-
menta of their state up to the second order. Therefore,
Gaussian attacks turns out to be optimal for these proto-
cols. We consider quantum systems of n canonical de-
grees of freedom, called modes, belonging to B�H �Rn��.

These are characterized by the set of operators ~� �
��1; . . . ;�2n� � �Q1; P1; . . . ; Qn; Pn� satisfying the ca-
nonical commutation relations ��j;�k� � i��n�jk, where
�n is the n-mode symplectic matrix,
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A state is said to be Gaussian iff its density matrix, ~�, is the
exponential of a quadratic function f on the canonical
operators of the system, i.e.,

 ~� � exp��f� ~���: (2)

Because of their simple structure, any Gaussian state can
be completely described in terms of its displacement vec-
tor, d, and its covariance matrix, �, both defined as
 

dk � h�ki � tr���k�;

�kl � tr��f�k � dk;�l � dlg��;
(3)

where f� � �g� denotes the anticommutator. Therefore,
Gaussian states are characterized just by the first and

second order momenta of the canonical variables ~�.
Gaussian operations are completely positive maps that
map Gaussian states into Gaussian states.

The considered CV QKD protocols are based on random
Gaussian modulation of squeezed or coherent states of
light [5,6,8]. They are prepare and measure (PM) proto-
cols, suitable to realistic implementation with today’s tech-
nology. However, for any PM protocol there exists a
completely equivalent entanglement-based scheme [19].
This description simplifies the theoretical analysis, even
if it would be more difficult to implement experimentally.
The entanglement-based scheme consists of the following
five steps (see also [20]): (1) Alice prepares a two-mode
squeezed state. (2) She performs a measurement over the
first mode. This measurement projects the second mode
into a randomly displaced (possibly squeezed) state. If
Alice performs a heterodyne measurement, she effectively
prepares a coherent state on the second mode. If she
randomly chooses to perform a homodyne measurement
on Q or P, she is effectively preparing a randomly dis-
placed squeezed state. (3) She sends the second mode to
Bob via a noisy quantum channel. (4) Bob receives the
state sent by Alice. He performs either a homodyne mea-
surement in Q or P, or a heterodyne measurement, his
result being y. (5) Alice and Bob apply one-way error
correction and privacy amplification codes to distill a
perfect secret key. If the classical communication flows
from Alice to Bob, we speak about direct reconciliation.
On the contrary, if it is Bob who sends the classical
information to Alice during the reconciliation process,
we say they are using a reverse reconciliation protocol
[21].

Recently, general bounds on the extractable key rate
under collective attacks have been published [16,17]. All
of them exploit the entanglement-based picture, but of
course they also apply to the corresponding PM scheme.
They are expressed in terms of entropy quantities.
Throughout this work, the same notation H is used for
the (classical) Shannon entropy and the (quantum)

von Neumann entropy. Let X�Y� be the random variable
associated with Alice’s (Bob’s) measured quantity and by
x�y� its value. According to [16,17], the key rate K ob-
tained using direct reconciliation is bounded by

 K 	 I�X:Y� � ��X:E� 
 Kcoll: (4)

Here I�X:Y� denotes the classical mutual information,
I�X:Y� � H�Y� �H�YjX�, while � refers to the Holevo
bound [22],

 ��X:B� � H�B� �H�BjX�; (5)

where H�BjX� �
P
xp�x�H�BjX � x�. Formally, I and �

look identical, but they refer to different types of variables.
While the mutual information deals only with classical
random variables, the Holevo bound quantifies the acces-
sible classical information on quantum states. This justifies
the different notation.

Suppose now that Bob is allowed to use a collective
arbitrary measurement on many copies of the received
states. Of course, this is a rather unrealistic scenario, but
it provides an upper bound to the maximum one-way
secret-key rate when Bob is free to perform any individual
measurement. If, again, Eve is restricted to apply collective
attacks, the key rate, upon Bob optimizing his measure-
ment, is given by [16]

 K 	 ��X:B� � ��X:E� 
 K0coll: (6)

In these two bounds, namely, Eqs. (4) and (6), the first term
specifies the correlation between the honest parties. It
quantifies the amount of classical information Alice and
Bob should exchange to correct their errors. The second
term estimates Eve’s knowledge on Alice’s (or Bob’s)
variable. It is thus related to the amount of privacy ampli-
fication required to make Eve’s information vanishing.

Eve’s attack has to be defined in order to compute the
secret-key rate and therefore needs to be optimized.
Indeed, after the estimation strategy, Alice and Bob have
some knowledge about their state, this information being
denoted by g. In the calculation of key rates, as for any
other interesting function, Alice and Bob should minimize
(4) or (6) over the set G, consisting of all states � compat-
ible with g (see also [23]).

In the CV scenario, it is natural to take g, i.e., Alice and
Bob’s information on their state, as the first and second
moments on the measured quadratures. The first order
correlations do not play any role in the discussion, as
they can be changed arbitrarily by the use of local unitaries.
As shown in the next lines, for fixed second (and first)
moments, the corresponding Gaussian state optimizes the
bounds on the key rates given above. Interestingly, the
Gaussian attack turns out to maximize Eve’s information
as well, ��X:E�. Before proceeding with the proof of these
results, we spend some lines clarifying the notation used
from now on.

Let � 2 B�H 2� be a density matrix in any Hilbert space
H . Then ~� denotes the corresponding density matrix of a
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Gaussian state characterized by the same covariance ma-
trix and displacement vector as �. Analogously, if p� ~x� is a
probability distribution, then ~p� ~x� (or ~p for short) denotes
the Gaussian probability distribution with the same first
and second momenta as p� ~x�. Moreover, if F� ~x� represents
any quantity concerning a variable ~x, described by a certain
distribution p� ~x�, then ~F has to be understood as the same
functional F calculated from the distribution ~p. ~�F will be
a shorthand notation for the difference of these two quan-
tities, ~�F � ~F� F.

Three results are used in what follows. First, let � 2
B�H 2� be any physical state of a system A and �� the one
into which � is transformed after the measurement of the
classical variable X. The measurement is defined by a set of
positive operators fMxgx obeying

P
xdxMxM

y
x � I. Note

that X can refer just to one real variable, as in the case of a
homodyne measurement, or to a pair of real variables, as in
the case of a heterodyne measurement, with x � �q; p�,
dx � dqdp. One has

 �� �
X
x

jxihxjdxMx�M
y
x �

X
x

p�x�dxjxihxjdx � �jx; (7)

where �jx is the normalized state of � knowing X � x,

 �jx �
Mx�M

y
x

p�x�
; (8)

and p�x� � tr�Mx�M
y
x �. It is straightforward to check that

 H�AjX� � H� �A� �H�X�; (9)

whereH denotes the Shannon entropy for the measurement
outcomes, i.e., H�X� � �

P
xp�x�dx log�p�x�dx�, H� �A� �

�tr �� log �� is the von Neumann entropy of the measured
quantum state �� and the conditional entropy H�AjX� isP
xp�x�dxS��jx�. In the case of continuous variables, this

expression is not bounded in the limit dx! 0. Therefore,
we will only take such limit (if necessary) for the compu-
tation of the final mutual (or Holevo) information quanti-
ties, which stay finite.

Second, for any state �, one has [24]

 

~�H�A� � H�� k ~�� 	 0; (10)

where H�� k ~�� denotes the relative entropy

 H�� k ~�� � tr�� log�� � tr�� log~��: (11)

Note that since the relative entropy is never negative, the
state of maximal entropy for fixed first and second mo-
ments is Gaussian [24]. In particular, if Alice and Bob
share a state �AB, they can bound its entropy from its
covariance matrix, that is, H��AB� � H�~�AB�. Using simi-
lar arguments, it can be seen that the same property is
fulfilled by probability distributions, i.e.,

 

~�H�X� � H�X k ~X�; (12)

where

 H�X k ~X� �
X
x

p�x�dx log
�
p�x�
~p�x�

�
: (13)

Third, the relative entropy (11) never increases after the
application of a trace-preserving map (or a stochastic map
in the classical case). That is, for any of those maps,
denoted by T , and any two states, �1 and �2,

 H��1 k �2� 	 H�T ��1� k T ��2��: (14)

This obviously implies

 

~�H�A� 	 ~�H�T �A��; (15)

for any Gaussian trace-preserving channel T , and for any
quantum state or classical random variable A.

To prove the optimality of Gaussian attacks, we first
show that for fixed first and second moments, the Gaussian
attack maximizes Eve’s information, ��X:E�. In order to
give the maximal allowed information to Eve, one has to
consider that the global state shared by Alice, Bob, and Eve
is pure. However, it must be noted that Alice and Bob’s
state refers to any canonical degree of freedom belonging
to their local Hilbert spaces, including those not subject to
measurement (if any). This observation allows, for ex-
ample, one to treat the problem of errors in the measuring
process. Indeed, suppose the errors on Bob’s measurement
can be modeled by an n-mode system where only a fraction
of the modes are measured. For the calculation of ��X:E�,
all the nmodes should be considered. Otherwise, we would
be giving Eve more power than what she actually has.
Then,

 

~���X:E� � ~�H�E� � ~�H�EjX�

� ~�H�AB� � ~�H�ABjX�

� ~�H�AB� � ~�H�AB� � ~�H�X�; (16)

where we first use the fact that the global state is pure and
then (9). Now, since the channel AB! AB defined by the
X measurement is Gaussian, ~�H�AB� � ~�H�AB� is not
negative. This, together with (10), implies that

 

~���X:E� � ~��X:E� � ��X:E� 	 0; (17)

so the Gaussian attack maximizes Eve’s information for
fixed first and second moments.

Furthermore, the mutual information between Alice and
Bob is minimized if Eve’s attack is Gaussian: one has

 

~�I�X:Y� � ~�H�X� � ~�H�Y� � ~�H�XY� � 0: (18)

The first term is null since Alice’s modulation is Gaussian,
and the difference of the last two terms is negative, follow-
ing from (15), for the map XY ! Y. The optimality of
Gaussian attacks is therefore proved. A very similar argu-
ment can be used to prove the optimality of these attacks
with respect to Eq. (6).

It is important to stress here that most of the known
bounds on the secret-key rate, including Eqs. (4) and (6),
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were introduced for finite-dimensional systems, so in prin-
ciple they should be carefully applied to the continuous
case. However, in Ref. [15], it is shown that the sliced-
reconciliation CV protocol of [10] achieves the rate (4) for
the case of collective attacks. This result has to be com-
bined with the fact that, for discrete variable systems as
well as for continuous-variable systems, collective attacks
are the most powerful general attacks [18]. This means that
the bounds considered in this Letter actually provide gen-
eral security bounds for CV systems. The explicit compu-
tation of these bounds for the Gaussian case, now proven to
be optimal, can be found in [25].

Before concluding, we would like to comment on the
recent related results of [23]. There, it was shown that, for a
given covariance matrix, the state with minimal distillable
secret-key rate is Gaussian, assuming the distillable secret-
key rate is a continuous functional. This implies that, up to
the continuity assumption, Alice and Bob, for fixed first
and second moments, can safely assume their state to be
Gaussian, whenever they are able to apply any protocol.
This result is very interesting and satisfactory from a
theoretical point of view. However, one should be careful
when applying it to a practical scenario. Indeed, the dis-
tillable secret-key rate is defined with respect to the opti-
mal protocol. However, the optimal protocol can be very
challenging from a practical point of view. For instance, it
may include local coherent and non-Gaussian operations
among several copies of the state. In particular, it may be
quite different from the realistic protocol considered here,
where the techniques (measurements) used for the corre-
lation distribution are fixed and experimentally feasible.
Thus, one cannot directly apply the results of [23] to the
considered protocols and conclude that the optimal collec-
tive attack is Gaussian.

We have studied the security limits for the CV QKD
protocols proposed in [6,8], using the recently obtained
lower bounds on the secret-key rate under collective and
general attacks, and we have proven the optimality of
Gaussian attacks for these bounds.

In order to improve the derived security conditions, note
that we have always studied the situation in which Alice
and Bob use one-way reconciliation protocols. Two-way
communication protocols should be analyzed as well, to
completely solve the problem of secret-key extraction.
Such protocols (e.g., CASCADE [26]) have already been
used in key distribution experiments [9] or in the scheme
proposed in [7], even if the security analysis for these cases
is only preliminary yet.
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Note added.—The optimality of Gaussian attacks has
been also proven using different techniques in [27].
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