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Abstract—The increasing number of stealthy and coordinated
attacks on the Internet pose a significant threat to network
security. Collaborative intrusion detection systems (CIDSs) have
therefore been proposed to address this coordinated defense
challenge by correlating patterns of suspicious activity based on
the source addresses of the suspicious incoming traffic. However,
during worm outbreaks, there can be a rapid growth in suspicious
evidence that is reported about individual sources of the worm
outbreak. In CIDSs that correlate suspicious activity by source
address, the evidence relating to these worm spread sources can
cause a load “hot-spot”, which severely degrades the overall per-
formance of the detection system. In this paper, we propose a load
balancing scheme for a CIDS to evenly distribute the workload to
avoid hot-spots during worm outbreaks. Rather than correlating
suspicious evidence based on source addresses, we distribute the
load in the CIDS using a scheme that enables different possible
patterns of suspicious evidence to be automatically mapped onto
different processing nodes in the CIDS. Simulation results show
that our scheme can achieve significant improvements in load
balancing without sacrificing detection accuracy.

I. INTRODUCTION

When coordinated attacks such as distributed denial of
service (DDoS), worms and coordinated scans occur simulta-
neously across multiple networks, these attack activities may
initially appear innocent at each local network, as the evidence
for an attack may be distributed across a large number of
networks. In response to this problem, collaborative intrusion
detection systems (CIDSs) have been proposed to address
this coordinated defense challenge [1], [2], [3]. In a CIDS,
participating IDSs exchange evidence on suspicious incoming
traffic that has been collected locally, from which a global
decision can be made. The CIDS is hence able to obtain
a global view of the intrusion activity, without all IDSs
conforming to a single scheme. In addition, by correlating
information from multiple networks, potentially suspicious
activities can be detected faster than if each participating IDS
operates in isolation. However, the design of a robust CIDS
raises several research challenges, which can be summarized
as follows: (1) How to remove the need for a central controller
in the CIDS; (2) How to balance the trade-off between the
detection rate and false alarm rate in the CIDS; (3) How
to improve the scalability of alert correlation; (4) How to
achieve local balancing across the CIDS, so that no individual

participating IDS becomes overloaded.
In our previous work, we have proposed a peer-to-peer

(P2P) based decentralized collaborative intrusion detection
system to address the scalability problem of a CIDS [3].
We presented an optimization scheme to balance the trade-
off between the detection rate and false alarm rate based on
an analysis of a large, real-world intrusion dataset [4]. We
also proposed a “correlate-and-filter” algorithm to analyze
multi-dimensional alerts in a CIDS, based on a lattice of
possible patterns that correspond to specific categories of
attacks [5]. In our approach, we introduced a hierarchical two-
stage scheme to distribute the computation in the CIDS, by
analyzing raw alerts locally at each IDS before forwarding
pattern instances to a central server for global analysis. We
also presented a fully decentralized CIDS architecture, based
on a P2P publish/subscribe protocol, to support our two-
stage scheme. The proposed decentralized CIDS architecture
eliminates the need for a centralized server. However, it can
generate load hot spots among participant IDSs, when all the
suspicious traffic comes from the same source during a very
short time span, e.g., during a worm outbreak. This occurs
when an infected victim machine starts to infect others by
massively scanning the whole network to look for a specific
software vulnerability. In this scenario, the alert information
reported by all participant IDSs will involve the same traffic
source. As a result, all these alerts will be assigned to the
same participating node that is responsible for this source
address in the CIDS. This node will become a load “hot
spot” in the CIDS, which may cause delays in correlation or
even information loss. Moreover, an attacker can exploit this
vulnerability by launching massive scans to multiple networks
from a single source in order to overload the responsible
participating IDS, and ultimately disrupt the CIDS.

In this paper, we propose a load balancing scheme for
CIDSs, which evenly distributes work load during worm
outbreaks, hence addressing the last challenge stated above.
Maximizing the detection rate (i.e., detection coverage) and
minimizing the false positive rate are the common goals of
IDS research. However, it is essential to note that an IDS
also needs to be resistant to attack in order to be effective.
Our focus on this paper is to relieve the load “hot spot” in the
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CIDS to improve the performance and robustness of the whole
CIDS without significantly sacrificing its detection accuracy.

The remainder of this paper is structured as follows. In
Section II, we present the load hot spot problem. By analyzing
real world intrusion data from a worm outbreak as well as a
normal stealthy scan scenario, we demonstrate how a load hot
spot is created in a CIDS. In Section III, we propose a pattern
mapping approach to balance the work load in a CIDS during
worm outbreaks, and then describe the underlying algorithm
behind this scheme. In Section IV, we evaluate our load
balancing scheme in terms of load distribution and detection
accuracy using a simulated worm outbreak dataset and a real
word scan dataset. We discuss the related work in Section V.
Finally, we outline future work and conclude in Section VI.

II. PROBLEM STATEMENT

Fully distributed CIDS architectures have been proposed to
address the scalability problem that arises in a centralized
CIDS. In a fully distributed CIDS, each participant IDS
has two functional units: a data unit that is responsible for
collecting data locally, and a correlation unit that is a part
of the distributed correlation scheme. The participant IDSs
communicate with each other using a distributed protocol, such
as P2P [1], [2], [3], [4], [5], [6], gossiping [7], multicast or
publish/subscribe protocols [8], [9].

Most CIDSs correlate suspicious evidence based on the
source addresses of the suspicious traffic sources [2], [3], [4],
[5], [8]. These systems consider the source address as the
key attribute for correlation because most coordinated attacks
such as worms or coordinated scans share the same source IP
address, and many attack signatures include this source address
as a field. However, these CIDSs that are based on source
address correlation are prone to generate a highly skewed load
distribution among participating IDSs during worm outbreaks
when most of the suspicious traffic comes from the same
source. This results in a single IDS being severely overloaded,
which we call a load “hot spot”.

In this section, we present the load balancing problem of
hot spots in a decentralized CIDS [5]. We then investigate
the behavior of suspicious source addresses in traffic traces of
an actual worm outbreak and a stealthy scan, to demonstrate
the type of traffic load that can create a hot spot in a CIDS.
Although we use a specific example of a CIDS to explain the
problem of load hot spots, this problem can occur in any CIDS
that uses source addresses as the basis for correlation [3], [4],
[5], [8].

A. Cause of Load Hot Spots in a Decentralized CIDS

We consider the problem of correlating multi-dimensional
alert patterns, based on the raw alerts that are reported by a set
of IDSs. In [5], we proposed a “correlate-and-filter” algorithm
to address the problem of improving the scalability of alert
correlation in a CIDS. In this approach, we constrain the search
space for multi-dimensional alert patterns by using knowledge
of the types of attack categories of interest to limit the search to
certain predefined combinations of dimensions or features. In

IDS1

First-stage 
correlation :

Second-stage 
correlation :

Threshold support ( ) = 0.15
Threshold count  =  x correlation count

local count = 100

{srcIP1+dstPrt1, 40}

local count = 100

{srcIP1, 50}

{srcIP1+dstPrt1, 60}

{srcIP1, 50}

{srcIP1+srcPrt1, 15}

correlation count = 600

{srcIP1+srcPrt1, 35}

final alerts: 
{srcIP1}
{srcIP1+dstPrt1}

250
{srcIP1}

100
{srcIP1+dstPrt1}

50
{srcIP1+srcPrt1}

Process inside IDS3

load hot spot !

IDS4IDS3IDS2IDS1

IDS2

IDS5 IDS6

IDS6IDS5IDS4IDS3

local count = 100
local count = 100

local count = 100
local count = 100

Fig. 1. Decentralized CIDS architecture based on source address correlation

particular, redundant alerts are avoided by suppressing a more
general alert pattern instance P1 if there is a more specific
pattern instance P2 that accounts for significant proportion
of the evidence for the general pattern instance P1. Our
“correlate-and-filter” algorithm uses a hierarchical two-stage
scheme to distribute the computation in the CIDS. The raw
alerts are analyzed locally at each IDS before being forwarding
to a central server for global analysis. A P2P based CIDS
architecture was proposed to support this two-stage scheme,
where the alert correlation is performed in a publish/subscribe
manner. The proposed decentralized CIDS architecture elim-
inates the need for a centralized server. However, a load hot
spot can be created when a small number of source addresses
generate a significant proportion of the suspicious activities.

As shown in Figure 1, consider the example where six IDSs
are participating in the CIDS, which uses the “correlate-and-
filter” algorithm for alert correlation. At the end of monitoring
time interval Δ, each IDSi collects suspicious incoming
evidence from its local subnetwork. This evidence is in the
form of a raw alert, where an alert is the standard 5-tuple
<srcIP,srcPrt,dstIP,dstPrt,prot>, and srcIP is the source IP
address of the connection, srcPrt is the source port, dstIP is
the destination IP address, dstPrt is the destination port, and
the prot is the protocol used. A pattern is a subset of these five
features. The raw alerts are processed locally by running the
“correlate-and-filter” algorithm to find instances of suspicious
patterns of evidence with high support, where the support of
a pattern P is defined as the number of raw alert records that
match pattern P, as a proportion of the total number of raw
alerts received 1.

Consider an example where each participating IDS receives
100 raw alerts, given the support threshold σ = 0.15, i.e., the
local threshold count is 15 alerts. Figure 1 also shows all
significant pattern instances generated by each IDS. For exam-
ple, since the count of pattern instance {srcIP1 + dstPrt1}
(40) exceeds the local threshold (15), this instance is consid-
ered as a locally significant pattern by IDS1. This pattern
is then reported to the CIDS to be correlated with locally
significant patterns from other participants in order to make
a consensus decision. In more detail, IDS1 subscribes to the
pattern instance {srcIP1 + dstPrt1} in the CIDS, which is
implemented by mapping the instance along with its count to

1Please refer to [5] for detail of the algorithm.
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a participating IDS using consistent hashing [10], based on
the source address of the pattern instance, i.e., srcIP1. In this
example, IDS3 is responsible for hosting all the subscriptions
related to source address srcIP1. In order to estimate the
correlation count at the global level, the total count of raw
alerts on IDS1 (100) will also be sent to IDS3. Likewise,
after performing the “correlate-and-filter” algorithm locally,
IDS2 reports pattern instance {srcIP1} along with its count
(50) and local total count (100) to IDS3 for correlation; IDS3

reports pattern instance {srcIP1 + dstPrt1} along with its
local count (60) and local total count (100) on itself, and so on
for each IDS. After IDS3 receives all the suspicious evidence
regarding srcIP1, the correlation count comes to 600 since all
six participants have reported evidence relating to srcIP1 to
IDS3. Hence the threshold count for the second correlation
stage on IDS3 is 90. Then IDS3 applies the “correlate-and-
filter” algorithm over all srcIP1 related suspicious evidence
reported by participating IDSs. Since the total count of pattern
instance {srcIP1 + srcPrt1} does not exceed the threshold
count of 90, this pattern instance is pruned. However, since the
total count of pattern instance {srcIP1 + dstPrt1} exceeds
the threshold count, this pattern instance is considered as
significant. Therefore, the final alerts are pattern instances
{srcIP1} and {srcIP1 + dstPrt1} 2.

This example demonstrates how source address based cor-
relation is able to correlate suspicious evidence by source
address. Consequently, the second stage “correlate-and-filter”
algorithm can be performed in a fully decentralized manner,
i.e., each participating IDS at the second stage is able to
make its decision independently, since all the alerts related
to a certain source address will be reported to the same
node. However, if a source address generates traffic that is
reported by a large number of participating IDSs, that source
address can create a load hot spot on the participating node
that is responsible for correlating evidence pertaining to this
source address. In this example, since all the participants
report evidence related to the same source address srcIP1, the
participant that is responsible for correlating evidence about
this particular source address will become a load hot spot.

B. Example of Load Hot Spots Arising in Real World Intrusion
Datasets

We demonstrate how load hot spots can occur in practice
based on actual intrusion traces for a real worm outbreak and
a stealthy scan scenario.

1) Intrusion Trace Data: We use two intrusion datasets
obtained from DShield.org [11] - a global repository of
firewall/NIDS (Network Intrusion Detection System) logs for
research purposes, which is a part of the Internet Storm Center
project of the SANS Institute. The first dataset – the SQL-
Slammer Dataset – is a dataset collected by DShield during

2According to the “correlate-and-filter” algorithm, {srcIP1} is considered
as globally significant since its significant children pattern instances (i.e.,
{srcIP1 + dstPrt1}) are not sufficient to explain all the alerts covered
by {srcIP1}, i.e., the difference between the count for pattern instance
{srcIP1} and the count for reported pattern instance {srcIP1 + dstPrt1}
exceeds the threshold count (250− 100 > 90).
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the SQL-Slammer worm outbreak from January 15 2003 to
January 27 2003 (port 1434/udp intrusion logs). We use this
dataset to analyze suspicious source behavior during a worm
attack. The second dataset – DShield Dataset – that is used
in our test comprises a large set of firewall and NIDS logs
collected from 1682 firewall/NIDS platforms all over the world
for the period from 1-15 January 2005. There is no specific
worm outbreak included in this time period. Therefore, we
use this dataset as a source of stealthy scans and coordinated
scans, to analyze the corresponding source behavior. There are
501,488,037 records in these logs, and the size of the whole
dataset is more than 38.8 GB.

2) Source Behavior during Worm Outbreak: Assuming
there is an IDS monitoring the incoming traffic of each /24
subnetwork, we plot in Figure 2 the number of /24 subnet-
works that were accessed by the most active source address
every minute during the peak period of the sql-slammer worm
outbreak from 5:30am to 6:00am on January 25, 2003. As
shown in Figure 2, one source address consistently scanned
more than 50% of all monitored /24 sub-networks in every
minute during the worm outbreak. Suppose the CIDS is
operated during that time period, and one minute is set as the
monitoring time interval Δ, then 50% of all the alerts reported
during that time interval will be sent to a single node. As a
result, a hot spot will be created on the participating node that
is hosting the top source address within that time interval.

3) Source Behavior during Stealthy Scans: In order to
investigate the source behavior during a normal scan scenario
where there is no specific worm present, we plot the total
number of accesses generated by the top source address in
every twenty minute period across twelve hours from 00:00am
to 12:00pm on January 2, 2005, which was selected at random
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from the DShield dataset. As shown in Figure 3, the top
source does not account for a significant proportion of all the
accesses on average. However, during particular time periods,
as shown in Figure 3, the top source address was responsible
for around 17% of all accesses within the time period of 2:00
- 2:20am (intervals 6-7) and 6:20 - 6:40am (intervals 19-20)
on 02/01/2005. If a CIDS based on source address mapping
is used in this scan scenario, there will be a load surge on the
node that is hosting the suspicious evidence for the top source
address in the 2:00 - 2:20am or 6:20 - 6:40am intervals on the
2 January 2005.

III. BALANCE THE WORKLOAD USING PATTERN BASED

CORRELATION

In this section, we propose a load balancing scheme for a
CIDS to evenly distribute the workload onto different process-
ing nodes during worm outbreaks. We first use an example to
describe our scheme, then present the algorithm underlying
this scheme in the context of a decentralized CIDS.

A. Load Balancing Scheme

In order to relieve the workload on the hot spot node in
the CIDS, we propose to distribute suspicious evidence by
indexing according to each possible alert pattern instance. We
use an example in Figure 4 to explain our approach. The first
stage of this example is the same as the example in Figure 1,
i.e., there are six IDSs participating in the CIDS that are
using the “correlate-and-filter” algorithm for alert correlation.
At the end of the monitoring time interval Δ, each IDSi

collects suspicious evidence from its local subnetwork, then
runs the “correlate-and-filter” algorithm locally to generate
the alert pattern instances for correlation. The same threshold
parameters are used as in the previous example. As shown in
Figure 4, after the first stage correlation, local alert pattern
instances are generated, e.g., {srcIP1 + dstPrt1, 40} on
IDS1, {srcIP1, 50} on IDS2, etc. Instead of using the
source address as the key for routing suspicious evidence
to the appropriate peer node in the second stage, as was
done in previous example, we map the evidence based on the
specific pattern instance. For example, as shown in Figure 4,
based on the consistent hashing scheme used in the routing
decision for each pattern instance, IDS2 is responsible for
hosting pattern instance {srcIP1 +dstPrt1} from IDS1 and
IDS3, IDS3 is responsible for pattern instance {srcIP1}

from IDS1 and IDS3, and IDS5 is responsible for hosting
pattern instance {srcIP1 + dstPrt1} from IDS1 and IDS3.
Therefore, compared to the correlation scheme based on source
addresses in the previous example, all the workload related
to the same source address srcIP1 is now distributed over
three participants IDS2, IDS3 and IDS5, rather than flooding
one single node. The load hot-spot is hence removed in this
example.

After applying the routing scheme based on pattern in-
stances, the second stage correlation in Figure 4 is as fol-
lows. IDS2, IDS3 and IDS5 receive alert reports from
two participants respectively, hence their correlation count
is 200 as shown in Figure 4. Consequently, the threshold
count for second stage correlation is 30 in this example.
Instead of applying the “correlate-and-filter” algorithm at the
second stage, each IDS makes its decision based on the
count of the pattern instances received, which eliminates
the need to group all pattern instances that are related to
the same source address together. Therefore, IDS2 reports
pattern instance {srcIP1 + dstPrt1} as an alert, since its
count exceeds the threshold count 30. Likewise, IDS3 reports
pattern instance {srcIP1} and IDS5 reports pattern instance
{srcIP1 + srcPrt1} as alerts.

One concern of using this routing scheme based on pattern
instances is the possible degradation in detection accuracy
which is caused by the different correlation counts at each
node in the second stage. As shown in Figure 4, the final re-
ports of the CIDS contains {srcIP1+dstPrt1}, {srcIP1} and
{srcIP1+srcPrt1}. Compared to the previous source address
based correlation scheme, the instance {srcIP1 +srcPrt1} is
a false alarm. This false positive is created by the difference
in threshold counts on each of the second stage correlation
nodes, since the suspicious evidence is distributed among
different nodes in the CIDS. Consequently, each node only
has a partial view in terms of the correlation count, i.e., the
correlation count on IDS2, IDS3 and IDS5 is 200 rather
than 600. In reality, however, the number of pattern instances
reported to the second stage are far greater than the number
of participant IDSs, and since we report each pattern instance
along with the total count of its source IDS, there is a high
probability that the correlation nodes on the second stage can
receive a reasonable estimate of the global correlation count.
In Section IV, we demonstate the detection accuracy of our
modified scheme using both simulated worm outbreak data
and real world stealthy scan data.

B. Load Balancing Algorithm

We now describe the algorithm of our proposed load bal-
ancing scheme in the context of a decentralized CIDS which
was initially proposed in [5].

As described in [5], each participating IDS di plays two
roles: (1) a detection unit to be responsible for maintaining
the suspicious evidence for its protected subnetwork, and (2)
an alert correlation unit to be responsible for correlating sub-
scription messages and generating notification messages about
the suspicious evidence that are mapped to that participant. In
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Algorithm 1 CIDS Load Balancing Algorithm
1: In detection system di:
2: // local process (first stage correlation)
3: for each time interval Δ do
4: collect raw alerts ri locally
5: // support threshold σ is a system parameter
6: // LAi: local alert report on di

7: LAi ⇐ correlate-and-filter(ri, σ)
8: for each pij ∈ LAi do
9: // look up the destination node for pij

10: dt = lookup(pij )
11: // cij is the count of pattern pij

12: subscribe(pij , cij , |ri|, di) on dt

13: end for
14: end for
15: // Subscription and Notification Process on dt (second stage correlation)
16: while message received do
17: if message == subscribe(pij , cij , |ri|, di) then
18: // Subt: subscription pattern list on dt

19: Subt ⇐ < pij , cij , di >
20: // NodeLstt: source node list on dt

21: NodeLstt ⇐ < di, |ri| >
22: if last subscription within this time interval then
23: Ct: correlation count on dt

24: Ct ⇐ get-count(NodeLstt)
25: for each pij ∈ Subt do
26: if pij ≥ σ × Ct then
27: for each dk who subscribed to pij do
28: notify(dk, pij )
29: end for
30: end if
31: end for
32: end if
33: else if message == notify(dt, pij ) then
34: pij is confirmed as an attack pattern instance
35: end if
36: end while

the first role, each participant generates subscribe messages,
and receives notify messages; while in the second role, each
participant receives subscribe messages and generates notify
messages.

As shown in Algorithm 1, The first stage correlation is
almost identical to the algorithm described in [5], except for
the message routing scheme. In brief, at the end of each
monitoring time interval, the participating IDS di collects
alerts ri based on the incoming traffic to its local subnetwork.
Then the local alert report LAi is generated by running the
“correlate-and-filter” algorithm over ri using the threshold
support σ. After that, each pattern instance pij in LAi is
subscribed to its destination node dt using the pattern instance
mapping scheme.

In the second stage correlation, when the subscribe message
is received by dt, the pattern instance pij , its count cij and its
source IDS are stored in the subscription list Subt to prepare
for correlation. In order to calculate the correlation count later,
the source IDS di and its total count ri are added to the
source node list NodeLstt. After all the subscription messages
generated in the current time interval Δ and assigned to dt

have been received, the correlation count Ct is calculated using
the information in NodeLstt. Then the count of each pattern
instance pij in the subscription list Subt is compared to the
threshold count (σ × Ct), and each subscriber of pij will be

notified if the total count of pij exceeds the threshold count.
If a notification message of pattern instance pij is received by
dt, then pij is confirmed as an attack pattern instance.

IV. EVALUATION

In order to evaluate the effectiveness of the proposed
load balancing scheme during a worm outbreak, we simulate
the CIDS with our load balancing scheme as described in
Section III. We use a simulated worm outbreak dataset in
the simulation, since the sql-slammer dataset as described in
Section II only consists of the attack traffic (i.e., it contains no
other types of alerts), which is insufficient for this evaluation.
We measure the load distribution on the participating nodes
as well as the detection accuracy compared to the original
source address based correlation scheme. We also evaluate
the detection accuracy of the CIDS using our pattern instance
correlation scheme based on data from real world stealthy
scans where there is no specific worm outbreak.

A. Test Datasets

There are two datasets used in this simulation.

1) Simulated worm outbreak dataset: This dataset is
generated using the DShield stealthy scan dataset as
described in Section II by modifying the srcIP field of
alert entries to create a specific source IP address that
is responsible for 50 percent of the scan traffic over the
monitoring time interval Δ. There are two advantages of
our simulated dataset. First, the source behavior in this
simulated dataset is statistically similar to the behavior
of the scanning source during the sql slammer worm
outbreak as shown in Figure 2. Furthermore, other fields
in each alert entry such as prot, srcPrt and dstPrt, come
from the real world intrusion dataset.

2) Real world stealthy scan dataset: We select an intru-
sion log for a randomly selected day from the DShield
stealthy scan dataset as described in Section II.

B. Evaluation Metrics

We use the following metrics to measure the effectiveness
of our proposed load balancing scheme.

1) Load distribution: We record the number of subscrip-
tion messages on each participant.

2) Detection accuracy: We compare our proposed pattern
instance correlation scheme to the decisions made by the
previous source address based scheme.

a) Detection rate, i.e.,

DR =
#True Positive

#True Positive + #False Negative
.

The detection rate may be affected by incorrect
generalizations since the “correlate-and-filter” al-
gorithm is not performed on the second stage
correlation in our load balancing scheme.

b) False positive rate, i.e.,

FPR =
#False Positive

#False Positive + #True Negative
.
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Fig. 5. Evaluation of the load-balancing scheme by simulation

A false positive may occur as a result of the
different correlation count in second stage corre-
lation as described in Section III, or as a result
of a pattern instance having the incorrect level of
generalization.

C. Simulation Results during Worm Outbreaks

In this simulation, we applied our proposed approach to
the simulated worm outbreak dataset, by varying the num-
ber of participating nodes from 16 to 128. Figure 5 plots
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Fig. 6. Evaluation of detection accuracy of the pattern correlation scheme
during worm outbreak

the distribution of the subscription messages among all the
participants. The pattern correlation scheme in each case is
able to distribute the subscription messages evenly among
participants. In contrast, there is an uneven load distribution
in the source address based correlation scheme, where a
single node is responsible for most of the worm alerts. As
shown in Figure 5, as the number of participants increase, the
total number of subscription messages increases as well. For
example, in the case of 128 participating IDSs (Figure 5(d)),
the load on the most heavily loaded participant using the
source correlation scheme is reduced by a factor of around
10 when our proposed load balancing scheme is used, i.e., a
90% reduction in peak load. In the source correlation scheme,
the increased number of subscription messages containing
the worm outbreak source (i.e., the simulated srcIP in the
simulation) are all mapped to the same participant. Therefore,
the load hot spot becomes worse when we increase the number
of participants. In contrast, the pattern instance correlation
scheme is able to divide the increased load of alerts containing
the worm outbreak source into different patterns, then map
them to different participants in the CIDS. Furthermore, with
the increase in the number of participants and different pattern
instances, the underlying consistent hashing function that is
used to route alerts is able to achieve better load balanc-
ing [10]. Therefore, the pattern correlation scheme is able
to distribute the subscription messages more evenly among
participants when we increase the number of participants.

Figure 6 plots the evaluation results in terms of detection
accuracy. Figure 6(a) shows the detection rate of the proposed
load balancing scheme compared to the previous source ad-
dress correlation scheme. In general, the detection rate of our
new pattern instance based correlation scheme is more than
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Fig. 7. Evaluation of our load-balancing scheme on the real world stealthy
scan dataset

90%. There is a slight decrease in the detection rate from
100% to 90% when we increase the number of participants
from 16 to 128, which is possibly caused by false negatives
being generated by an incorrect level of generalization. In gen-
eral, the increasing number of participants brings more alert
messages to the CIDS, consequently more false negatives are
created. As a result, the detection rate decreases. Figure 6(b)
shows the false positive rate of the proposed load balancing
scheme compared to the previous source address correlation
scheme. In general, our proposed load balancing scheme can
achieve a false positive rate of less than 0.12% as shown in
Figure 6(b). There is a slight increase in the detection rate from
0.03% to 0.12% when we increase the number of participants
from 16 to 128, which may be caused by false positives being
generated by an incorrect level of generalization. The increase
in the number of participants results in more alert messages to
the CIDS, consequently more false positives are created. As a
result, the false positive rate increases.

In this evaluation, we test for an exact match when we
calculate the detection accuracy. We can observe fewer false
positives and false negatives if we conduct a prefix match,
such as considering two pattern instances as belonging to the
same instance if they come from the same source. However,
even using this strict measurement of detection accuracy, our
load balancing scheme still achieves more than 90% detection
accuracy and a false positive rate of less than 0.12%.

D. Simulation Results in the Real World Scan Scenario

In the second experiment, we first run our proposed ap-
proach over the 2:00-2:20am 2 January 2005 DShield dataset
to measure the load distribution of our proposed scheme during
the load surge observed in the normal scan scenario. Figure 7
plots the number of subscription messages on the top ten
most heavily loaded participants among all the 810 partici-
pants. The pattern correlation scheme outperforms the source
correlation scheme in terms of distributing the subscription
messages among all participants. As shown in Figure 7, the
number of subscription messages on the most heavily loaded
participant using the pattern correlation scheme is half the
number of messages on the counterpart participant using the
source correlation scheme. The advantages of using our pattern
correlation scheme is not as significant as the one shown in
the simulation. This is because the top source accounts for
fewer accesses (17% of the total accesses) than the top source
in the simulation (50% of the total accesses).
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Fig. 8. Evaluation of detection accuracy of the pattern correlation scheme
in the normal scan scenario

In order to measure the detection accuracy of our proposed
load balancing scheme in the normal scan scenario, we applied
our proposed approach to a randomly selected date in the
DShield dataset. We varied the number of participants from
16 to 128, and in each case, averaged the results over six
different 30 minute time intervals. Figure 8 plots the evaluation
results of detection accuracy. Figure 8(a) shows the detection
rate of the proposed load balancing scheme compared to the
previous source address correlation scheme, which exhibits
the same trend as in Figure 6. In general, the detection rate
of our pattern instance based correlation scheme achieves a
detection rate of more than 92%. There is a slight decrease
in the detection rate from 100% to 92% when we increase
the number of participants from 16 to 128. This is caused by
false negatives arising from alerts with the incorrect level of
generalization. In general, the increasing number of partici-
pants brings more alert messages to the CIDS. Consequently
more false negatives are created. As a result, the detection
rate decreases. Figure 8(b) shows the false positive rate of
the proposed load balancing scheme compared to the previous
source address correlation scheme. In general, the proposed
load balancing scheme can achieve a false positive rates of
less than 0.11% as shown in Figure 8(b). There is a slight
increase in the false positive rate from 0.01% to 0.11% when
we increase the number of participants from 16 to 128, which
is caused by the false positives generated at an incorrect
level of generalization. The increasing number of participants
brings more alert messages to the CIDS, consequently more
false positives are created. As a result, the false positive rate
increases.

In summary, the proposed load balancing scheme is able
to evenly distribute the workload among participating nodes
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while achieving a high detection rate (more than 90%) and
negligible false positive rate (less than 0.12%) during worm
outbreaks compared with the source address based correlation
scheme. During the stealthy scan scenario, the proposed ap-
proach achieves more than 90% detection rate and less than
0.11% false positive rate compared with the source address
based correlation scheme.

V. RELATED WORK

In this section, we briefly review the related work in
the field of decentralized collaborative intrusion detection.
In order to address the detection challenge posed by large
scale coordinated intrusions such as worms, DDoS attacks
and coordinated scans, many collaborative systems have been
proposed. Although load balancing is a crucial issue for any
decentralized CIDS, this issue has been given a much lower
priority than other design considerations, such as alert data
sharing [7], [9] and alert data analysis [12].

The DOMINO project [8] is a CIDS that aims to mon-
itor Internet-scale outbreaks. DOMINO uses three types of
participants: axis overlay, satellite communities and terrestrial
contributors, which monitor the Internet from different per-
spectives. The Lambda language [13] is used to aggregate the
“raw alerts” from each firewall/NIDS locally. Then sampled
alerts are correlated by creating an explicit mapping from the
source address of the alert data to particular correlation nodes
by using a hash function. Simple addition or averaging across
each dimension of the data is used as a strategy for global
aggregation. We propose a large scale intrusion detection sys-
tem based on a P2P architecture in [3], [4]. Each participating
IDS monitors the incoming traffic of its own subnetwork,
and at each monitoring time interval Δ, it subscribes the
suspicious information to the system using the source address
as a key. The subscribers will then be notified if the suspicious
evidence they subscribed to has been confirmed as an alert.
The shortcoming of this type of source address based CIDS
correlation scheme is that particular nodes become load hot-
spots during worm outbreaks, when increasing amounts of
suspicious information are assigned to the same node.

Locasto et al [2] propose a P2P based CIDS, which uses
Bloom filters [14] for preserving information privacy, and
a dynamic overlay network for distributed correlation. This
work addresses the load balancing issue by using a distributed
correlation scheduling algorithm. This scheduling strategy
improves the system performance in terms of bandwidth usage,
but the trade-off between bandwidth usage and the level of
false negatives introduced is not clear. I4 [6] is a P2P based
inter-domain CIDS to reduce the amount of illegal traffic such
as DDoS packets by sharing knowledge across different ISPs.
However, the load balancing issue is not addressed in the above
CIDSs.

VI. CONCLUSION

While CIDSs can help improve the accuracy and scalability
of intrusion detection for many types of attacks, these dis-
tributed systems are potentially vulnerable to a severe load

imbalance under certain common attack conditions, which
can disrupt the performance of the CIDS. We propose a
pattern instance based correlation scheme to automatically
distribute the workload in a CIDS during worm outbreaks. Our
simulation results show that our proposed approach is able to
evenly distribute the workload among participant nodes while
achieving a high detection rate and negligible false positive
rate during worm outbreaks, compared with an earlier source
address based correlation scheme.
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