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’ INTRODUCTION

The SCISSORS method is a technique for accelerating a
chemical similarity search by transforming Tanimoto similarity
scores to inner products, computing a metric embedding for a
small “basis set” of molecules that optimally reconstructs the
given inner products and then projecting remaining nonbasis
“library” molecules into this vector space.1 SCISSORS simila-
rities are then computed as Tanimotos on these embedded
vectors. Significant speedups can be achieved for certain similar-
ity measures (those which are expensive to compute and have
highly concentrated eigenvalue spectra) for repeated queries into
a static database. The work done to compute vector projections
for each database molecule can be amortized easily across a large
number of queries. In the original SCISSORS paper, Haque and
Pande report that for a database of approximately 57 000molecules,
a basis set of 1000 molecules and an embedding dimension of
100 was sufficient to accurately reproduce the shape similarity
over the whole database.

The embedding used in SCISSORS is computed by first
calculating the pairwise inner product matrix G between all pairs
of basis molecules. G is then decomposed into eigenvectors V
and eigenvalues along the diagonal of a matrix D; the vector
embedding for the basis molecules lies along the rows of matrix B
in the following equation:

G ¼ BBT ¼ VDVT ¼ VD1=2D1=2VT \ B ¼ VD1=2 ð1Þ
The rank of the approximation can be controlled by ordering

the eigenvalues in order of decreasing value, setting all eigenva-
lues below a certain desired count to zero, and truncating these
zero dimensions in the resulting vectors.

Figure 1 shows an example of SCISSORS applied to a molecular
similarity kernel. In this example, SCISSORS is used to approx-
imate the intersection size (SMILES overlap), as used for the
LINGO similarity measure,2 between two molecules from the

Maybridge Screening Collection: (S)-mandelate (molecule 1)
and (2R)-3-(4-chlorophenoxy)propane-1,2-diol (molecule 2).
The true intersection sizes, as computed by the SIML imple-
mentationof LINGO,3 are shown in thefirst row: betweenmolecule
1 and itself, molecule 2 and itself, and the two molecules against
each other. We then constructed a basis set of molecules from
3072 isomeric SMILES strings drawn at random from the
Maybridge Screening Collection and embedded molecules 1
and 2 into SCISSORS vector spaces of varying dimensional-
ities: 64, 256, and 1024. The three SCISSORS data rows in the
table show the approximated values of each intersection, as a
function of embedding dimension. As the dimension grows,
the approximation error (difference between LINGO true and
SCISSORS approximated values) decreases. Our objective in
this paper is to derive theoretical bounds on the magnitude of
this error.

A number of methods used in chemical informatics are
mathematically similar to SCISSORS. In particular, the “molec-
ular basis set” approach taken by Raghavendra and Maggiora4

(RM) is very similar. The RM method skips Tanimoto-to-inner
product conversion (treatingTanimotos as inner products directly),
does not restrict the dimensionality of the vector expansion, and
is derived using a different justification but otherwise is very
similar. In particular, both this method and SCISSORS are variants
of kernel principal components analysis.

While the RM method and SCISSORS in particular seem to
have good empirical performance, they lack theoretically rigor-
ous guarantees on their approximations. In this paper, we derive
theoretical guarantees on the SCISSORS approximation error by
reducing SCISSORS to previously described kernel methods
from machine learning.
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ABSTRACT: The SCISSORS method for approximating chemi-
cal similarities has shown excellent empirical performance on a
number of real-world chemical data sets but lacks theoretically
proven bounds on its worst-case error performance. This paper
first proves reductions showing SCISSORS to be equivalent to
two previous kernel methods: kernel principal components analysis and the rank-kNystr€om approximation of a Grammatrix. These
reductions allow the use of generalization bounds on these techniques to show that the expected error in SCISSORS approximations
of molecular similarity kernels is bounded in expected pairwise inner product error, in matrix 2-norm and Frobenius norm for full
kernel matrix approximations and in root-mean-square deviation for approximated matrices. Finally, we show that the actual
performance of SCISSORS is significantly better than these worst-case bounds, indicating that chemical space is well-structured for
chemical sampling algorithms.
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’PRELIMINARIES

SCISSORS as a Kernel Method. The key insight of the
SCISSORS technique is that molecular similarity measures, after
appropriate transformation, can be treated as “kernel functions”
taking pairs of molecules to scalar values that can be interpreted
as inner products. Kernels are mathematical objects widely used
in machine learning which can be used to adapt linear machine
learning models (e.g., support vector machines) to nonlinear
spaces. Informally, a kernel function is one taking two “objects”
(often vectors, but in the chemical context molecules, strings, or
fingerprints) and returning a non-negative real scalar satisfying
particular properties of the real dot product (including symmetry
and positive semidefiniteness). While molecular similarity scores
such as Tanimotos are not in themselves inner products or the
result of kernel functions, they are often constructed from
intermediate quantities which are. For example, the set intersec-
tion in LINGO2 is a kernel function, and the shape overlap
volume from Gaussian shape overlay5 is approximately a kernel
(non-negative and symmetric but not positive definite).
The advantage of interpreting SCISSORS as working on kernel

functions or inner products is that it allows leveraging the body of
machine learning literature on kernel methods. The SCISSORS
pipeline can be roughly segmented into the following operations:
(1) Convert Tanimotos to inner products (basis vs basis or

library vs basis).
(2) Compute a vector embedding on the inner products (by

eigendecomposition or least-squares).
(3) Compute vector-space inner products (standard dot

product in RN).
(4) Convert vector-space inner products to Tanimotos using

a standard vector Tanimoto equation.
Steps 1 and 4 in this pipeline involve ratios of inner products

(or kernel values) and, as such, introduce nonlinearities into the
analysis. However, if one assumes that exact kernel values are
given or easily obtained (as demonstrated for the shape overlap
volume in ref 1) and that the goal is to directly approximate these
kernel values rather than the Tanimoto, then SCISSORS
directly resembles a typical kernel method. Therefore, in this
paper, we will consider only the error in these inner product
space stages, rather than error introduced at the Tanimoto
stages. Accordingly, we replace the notion of a “molecular
similarity function” with that of a “molecular similarity kernel”,
which can be thought of as the composition of a similarity

function with the Tanimoto-to-inner-product operation from
SCISSORS.
The following lemma will be useful in demonstrating the

equivalence of SCISSORS to various other kernel methods.
Proof is provided in the Supporting Information.
Lemma 1 (SCISSORS library vectors are projections onto

eigenvectors of the basis inner product matrix). Given an N� N
SCISSORS basis inner product matrix (that is, a similarity matrix
post-Tanimoto-to-inner-product conversion) K. Let the eigen-
values (respectively eigenvectors) ofK be denoted λi and Vi, with
eigenvalues sorted in descending order of value. Let the matrix of
all eigenvectors be named V = [V1V2 3 3 3VN]. The SCISSORS
vector w for a new molecule with library vs basis inner product
vector L, in d dimensions, is defined by the expression:

w ¼

λ�1=2
1 ÆV1, Læ

λ�1=2
2 ÆV2, Læ

l
λ�1=2
d ÆVd , Læ

2
66664

3
77775 ð2Þ

Note that lemma 1 suggests a method to compute SCISSORS
vectors that is distinct from, but equivalent to, the least-squares
calculation specified by Haque and Pande.1 Given a vector L of
basis vs library inner products and a matrix M = VD1/2 of basis
SCISSORS vectors, the original SCISSORS calculation sug-
gested solving the least-squares equation Mx = L for the
SCISSORS vector x of the new molecule. This lemma shows
that the same problem is solved by the matrix multiplication
D�1/2VTL. This provides a computational shortcut for the
projection of large numbers of library molecules: the projection
matrixD�1/2VT can be computed once for a basis set; after library
vs basis Tanimotos have been computed and converted to inner
products, the SCISSORS vector can be computed by a simple
matrix multiplication rather than least-squares.
Assumptions.The analysis in this paper rests on the following

assumptions:
(1) SCISSORS is given molecular similarity kernel values,

not Tanimotos, to analyze. While the conversion from
Tanimoto to inner product will introduce distortion
(particularly if different molecules x and y have very
different values of k(x,x) and k(y,y) for similarity kernel
k, we will not consider this distortion here.

(2) It is assumed that the similarity kernel k is symmetric
positive semidefinite (SPSD). Similarity kernels that are
not SPSD are not Mercer kernels, and some proofs will
fail in the presence of negative kernel eigenvalues.However,
given non-SPSD k, the results of this paper can still be
applied to a modified kernel k0, the nearest SPSD approx-
imation to k. If k is symmetric but indefinite, then certain
divergence terms can be easily calculated between the
kernel matrices K and K0 induced by k and k0:
• )K� K0 )2 = absolute value of the negative eigenvalue

with largest magnitude.
• )K � K0 )F = ∑ λ<0

2 , where λ<0 are the negative
eigenvalues.

(3) It is assumed that kernel values are exactly computable. In
particular, the case in which kernel values themselves are
subject to noise or inexactitude is not considered here.

Under these assumptions, it is possible to bound the additional
error made by SCISSORS in choosing a small random basis
rather than using the eigendecomposition of the full kernel

Figure 1. Example of SCISSORS applied to a molecular similarity
kernel (LINGO intersection size). Table indicates LINGO true kernel
and SCISSORS approximated kernel values for various dimensionalities.
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matrix over the entire library. Two different types of bounds will
be shown in this paper, arising from reductions to two different
kernel methods: kernel principal components analysis (PCA)
and the rank-k Nystr€om approximation.

’REDUCTION OF SCISSORS TO KERNEL PCA

Overview of Kernel PCA.Kernel PCA6,7 is a generalization of
traditional principal components analysis from the data space to a
feature space defined by a Mercer kernel function k. Given a
sample ofN data points, kernel PCA computes up toN directions
of maximum variance of the data, in the kernel’s feature space.
Points can then be projected into thisN-dimensional subspace by
a projection of their kernel values against the original (training)
data points; thus, kernel PCA can be considered to perform a
metric embedding of data points into a subspace of the feature
space defined by a given kernel.
Similar to traditional (linear) PCA, kernel PCA can be preceded

by a centering step, in which the data are centered in feature
space; this ensures that the data mean is not reflected in the
recovered coordinates. However, the uncentered case has rele-
vance to SCISSORS, so we now proceed to derive the kernel
PCA algorithm without data centering (following the approach
of Sch€olkopf).6

Derivation of kernel PCA. Given a set of data points xi, i ∈
[1, ..., l ], and a Mercer kernel k(x,y), defined by k(x,y) =
ÆΦ(x),Φ(y)æ for some feature-space projectionΦ. Consider the
feature covariance matrix C:

C̅ ¼ 1
l ∑

l

j¼ 1
ΦðxjÞΦðxjÞT

Let the eigenvalues and eigenvectors of C be named λk and Vk,
respectively, such that "k λV = CV. All such Vi must lie in the
span of Φ(x1) 3 3 3Φ(xl ). Thus the following system is equiva-
lent:

λðΦðxkÞ 3VÞ ¼ ðΦðxkÞ 3 C̅VÞ " k

and there exist a1 3 3 3 al such that

V ¼ ∑
l

i¼ 1
aiΦðxiÞ

DefiningmatrixKij =ÆΦ(xi),Φ(xj)æ and vectorα = [a1 3 3 3 an]
T

we get l λKα = K2α, so we solve the eigenvalue problem l λα =
Kα. Solutions λk andα

k correspond to eigenvalues/vectors of the
kernel matrix.
We normalize the resulting solutions by requiring that the

feature-space eigenvectors (Vk) be unit magnitude. This implies

∑
l

i¼ 1
∑
l

j¼ 1
aki a

k
j ÆΦðxiÞ,ΦðxjÞæ ¼ Æαk,Kαkæ ¼ λkÆαk,αkæ ¼ 1

We can compute the projection of a new data point x onto the
feature-space correlation matrix eigenvectors Vk by

ÆVk,ΦðxÞæ ¼ ∑
l

i¼ 1
aki ÆΦðxiÞ,ΦðxÞæ

So for d eigenvectors, the projected KPCA coordinate vectorw is

w ¼ KPCAfxg ¼

∑
i
a1i ÆΦðxiÞ,ΦðxÞæ

∑
i
a2i ÆΦðxiÞ,ΦðxÞæ

l

∑
i
adi ÆΦðxiÞ,ΦðxÞæ

2
66666664

3
77777775

Equivalently

L ¼ ½ÆΦðx1Þ,ΦðxÞæ , ..., ÆΦðxl Þ,ΦðxÞæ�T
w ¼ KPCAfxg ¼ ½Æα1, Læ , ..., Æαd , Læ�T

Reduction Proof. We now demonstrate that SCISSORS is
equivalent to kernel PCA performed without data centering.
As proven in lemma 1, the SCISSORS vector w corresponding

to a library molecule is defined by weighted inner products
between the eigenvectors of the kernel matrix and the library vs
basis inner product vector L. Define new vectors V0

i = λi
�1/2Vi.

Recall that the kernel matrix and vector L are already identical
between methods, and both V0

i and αi are defined to be
eigenvectors of the kernel matrix. To prove equivalence, all that
is left to prove is that the SCISSORS projection vectors V0

i have
the same normalization as the KPCA αi; KPCA requires λk
Æαk,αkæ= 1.
Proof: We hypothesize that V0

k = αk, then

λkÆV 0
k,V

0
kæ ¼ λkÆλ

�1=2
k Vk, λ

�1=2
k Vkæ ¼ λkλ

�1
k ÆVk,Vkæ ¼ 1

’REDUCTION OF SCISSORS TO THE NYSTR€oM RANK-
K APPROXIMATION

Overview of the Nystr€om Method. In many large-scale
machine learning methods, the computation and eigendecom-
position of very-large scale kernel matrices are bottlenecks as the
time complexity of eigendecomposition scales as O(N3). Wil-
liams and Seeger introduced a method, based on the Nystr€om
approximation from integral equation theory, to compute a low-
rank approximation to a large kernel matrix, based on computing
approximate eigenvectors for the entire matrix from a random
sample of a small number of points.8 Precisely, using notation
fromDrineas et al.,9 given an n� n kernel matrixK, a desired rank
k, and a number of basis elements l , the Nystr€om approximation
computes ~Kk, a rank-k approximation to K by the following
procedure:
Algorithm sketch 1 (Nystr€om approximation): Given a kernel

matrixK∈Rn�n, choose l columns (equivalently, l basis/landmark
input points) b1, b2 , ..., bl½ � to obtain matrices C andW:

C ¼

K1b1 K1b2 3 3 3 K1bl

K2b1 K2b2 3 3 3 K2bl

l l 3 3 3
l

Knb1 Knb2 3 3 3 Knbl

2
66664

3
77775

W ¼

Kb1b1 Kb1b2 3 3 3 Kb1bl

Kb2b1 Kb2b2 3 3 3 Kb2bl

l l 3 3 3
l

Kbl b1 Kbl b2 3 3 3 Kbl bl

2
66664

3
77775
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LetWk be the best rank-k approximation to matrixW andWk
+

be the Moore�Penrose pseudoinverse of Wk. Then the rank-k
Nystr€om approximation to matrix K is defined by ~Kk = CWk

+CT.
Preliminaries. Consider a SCISSORS computation of full

pairwise similarity over some large set of moleculesM . Partition
this set, by random selection without replacement, into a basis set
B and a library set L . Then, the matrix W in algorithm 1
corresponds to the SCISSORS basis inner-product matrix onB ;
similarly, C is an aggregation of transposed library vs basis inner-
product vectors. To prove the equivalence of SCISSORS and the
Nystr€om method, we will demonstrate that the inner-product
matrix computed by the SCISSORS-approximated vectors is
identical to that computed by the Nystr€om method. It is
sufficient to show (by lemma 1 that CWk

+CT, the Nystr€om-
approximated Gram matrix, factorizes as SkSk

T where

STk ¼ D1=2
k

VT
1

VT
2

l
VT
k

2
66664

3
77775CT ð3Þ

Sk is the matrix with library (and basis) vectors along the rows, so
SkSk

T is the SCISSORS-approximated Gram matrix. The follow-
ing lemma is helpful for the proof. Proof of the lemma is provided
in the Supporting Information.
Lemma 2 (pseudoinverse ofWk):Wk

+ = VDk
�1VT, where V =

[V1V2 3 3 3Vk], the matrix formed from the first k columns of the
basis matrix eigenvectors, and Dk

�1 = diag[λ1
�1, λ2

�1, ..., λk
�1],

the diagonal matrix of the reciprocals of the first k eigenvalues of
the basis matrix.
Final Reduction.Wemust show that CWk

+CT is equal to SkSk
T,

where Sk
T = Dk

�1/2 VTCT.
Proof:

SkSTk ¼ CV̅D�1=2
k D�1=2

k V̅TCT by definition of STk
¼ CðV̅D�1

k V̅TÞCT

¼ CWþ
k C

T by lemma 2

’EXPECTED ERROR IN INDIVIDUAL SCISSORS INNER
PRODUCTS IS BOUNDED WITH HIGH PROBABILITY

Statement of the Theorem. Theorem 1 (Bounded Expected
Inner Product Error).Given a chemical similarity kernel k defined
over pairs of molecules from some distribution D, such that k(x,
x) <R2 for some positive real constantR for all x∈D. Construct a
SCISSORS basis set from a random sample S of l molecules
drawn uniformly at random from D. Denote by kk

S the SCIS-
SORS-approximated kernel of k dimensions from basis set S.
Then, with probability at least (1 � δ)2, the expected error in
SCISSORS approximation, over pairs of independently chosen
molecules x,y ∈ D, is bounded:

0 e E½kðx, yÞ � kSkðx, yÞ�

e min
1 e d e k

1
l
λ̂>dðSÞ þ 1 þ ffiffiffi

d
pffiffiffi
l

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
l ∑

l

i¼ 1
kðsi, siÞ2

s0
@

1
A

2
4

þR2 1
4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18
l
ln

2l
δ

� �s0
@

1
A
3
5 ð4Þ

Where si are the basis molecules and λ̂>d(S) is the sum of the
eigenvalues of the basis matrix not used in SCISSORS:

λ̂>dðSÞ ¼ ∑
l

i¼ k þ 1
λi

Proof Overview.The proof of theorem 1 relies on a bound on
the generalization error of kernel PCA projections due to Shawe-
Taylor.10 This theorem bounds the expected residual from
projecting new data onto a sampled kernel PCA basis; we extend
this proof to bound the expected error in inner products from
projecting two points onto a kernel PCA basis. Then, the
translation to SCISSORS follows trivially from the reduction of
SCISSORS to kernel PCA. Because the full proof is lengthy, it has
been included in the Supporting Information; this section
presents a sketch.
The proof sketch relies on the following definitions from the

Shawe-Taylor work:10

• V̂k is the space spanned by the first k eigenvectors of the
sample correlation matrix of a sample of vectors S; V̂k

T is the
orthogonal complement to this space.

• λk is the kth true eigenvalue of the kernel operator k,
computed over the entire distribution generating our data.

• λ̂k is the kth empirical eigenvalue (i.e., the kth eigenvalue, in
descending order of value, of the kernel matrix on S).

• λ>k is the sum ∑i>kλk and similarly for λ̂>k.
• The residual PV̂k

T (x) is the projection of x onto the space
V̂ k
T.

We make use of the following theorem:
Theorem 2 [Theorem 1 from ref 10). If we perform PCA in the

feature space defined by kernel k, then over random samples of
points S s.t. |S| = l (l -samples), for all 1 e k e l , if we project
new data onto the space V̂ k, the expected squared residual is
bounded by the following, with probability greater than 1 � δ:

λ>k e E½��PTV̂k
ðΦðxÞÞ��2�

e min
1 e d e k

1
l
λ̂>dðSÞ þ 1 þ ffiffiffi

d
pffiffiffi
l

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
l ∑

l

i¼ 1
kðxi, xiÞ2

s2
4

3
5

þ R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18
l
ln

2l
δ

� �s
ð5Þ

where the support of the distribution is in a ball of radius R in
feature space.
Using theorem 2, it is possible to compute a bound on the

projection error for each of the two points. The proof then
bounds the variance of the resulting inner product error and uses
this to bound the overall error.

’ERROR IN SCISSORS-APPROXIMATED GRAM
MATRICES IS BOUNDED IN 2-NORM, FROBENIUS
NORM, AND RMS DEVIATION

Statement of Theorems.Given a chemical similarity kernel
k and a set of n input molecules drawn from some probability
distribution such that the k(x,x) < R2 for all molecules x.
Let the true kernel matrix be denoted K, and the best possi-
ble rank-k approximation to K be denoted Kk. Compute a
SCISSORS-approximated kernel matrix ~K based on a size-l
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uniform random sample of these vectors and a k-dimensional
vector expansion. Then the following three theorems hold:
Theorem 3 (Bounded Error 2-Norm).With probability at least

1� δ, the error in the SCISSORS kernel matrix is worse than the
lowest possible error from a rank k-approximated kernel matrix
by at most a bounded amount in 2-norm:��K � ~K

��
2
e

��K � Kk

��
2

þ 2nffiffiffi
l

p R2 1 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� l Þ2

ðn� 1=2Þðn� l � 1=2Þ log
1
δ

s2
4

3
5

Theorem 4 (Bounded Error Frobenius Norm).With probabil-
ity at least 1 � δ, the error in the SCISSORS kernel matrix is
worse than the lowest possible error from a rank k-approximated
kernel matrix by at most a bounded amount in Frobenius norm:

jjK � ~KjjF e jjK � KkjjF

þ 64k
l

� �1=4
nR2 1 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� l Þ2

ðn� 1=2Þðn� l � 1=2Þ log
1
δ

s2
4

3
5
1=2

Theorem 5 (Bounded RMS Error).With probability at least 1�
δ, the elementwise root-mean-square (RMS) error in the SCIS-
SORS kernel matrix is worse than the lowest possible RMS error
from a rank k-approximated kernel matrix by at most a bounded
amount:

RMSfK � ~Kg e RMSfK � Kkg

þ 64k
l

� �1=4
R2 1 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� l Þ2

ðn� 1=2Þðn� l � 1=2Þ log
1
δ

s2
4

3
5
1=2

Proof Overview. The proofs of theorems 3, 4, and 5 rely on
the following theorem, due to Talwalkar11 bounding the error of
the rank-k Nystr€om approximation of a Gram matrix:
Theorem 6 (Theorem 5.2 from ref 11). Let ~K denote the rank-k

Nystr€om approximation of an n � n Gram matrix K based on l
columns sampled uniformly at random without replacement
from K, and Kk the best rank-k approximation of K. Then, with
probability at least 1 - δ, the following inequalities hold for any
sample of size l :��K � ~K

��
2
e

��K � Kk

��
2

þ 2nffiffiffi
l

p Kmax 1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� l
n� 1=2

1
βðl , nÞ log

1
δ

s
dKmax

K1=2
max

2
4

3
5

��K � ~K
��
F
e

��K � Kk

��
F

þ 64k
l

� �1=4
nKmax 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� l
n� 1=2

1
βðl , nÞ log

1
δ

s
dKmax
K1=2
max

2
4

3
5
1=2

where:
• Kmax = maxiKii

• dmax
K is the maximum distance implied in K = maxi,j
(Kii+Kjj�Kij)

1/2

• β(l ,n) = 1 � (2max{l ,n � l })�1.

For SCISSORS, we are particularly interested in the case
in which l , n, so β(l ,n) = 1 � 1/(2n � 2l ) and 1/β(l ,n) =
(n � l )/(n � l � 1/2).
Proof of Theorems 3, 4, and 5. Given a kernel k and a

distribution of input vectors such that their distribution in the
feature space implied by k is D and that the support of D is
contained within a ball of radius R in feature space. Then, Kmax in
the above equations is bounded above byR2 and dmax

K e 2R. Note
that this boundedness assumption holds for any finite sample
of vectors from D, as we can construct an empirical distribution
of vectors from the sample, which will be guaranteed to be of
bounded radius.
Theorems 3 and 4 immediately follow from theorem 6 by

applying the reduction of SCISSORS to the Nystr€om method,
the definitions of Kmax and dmax

K , and the assumption above that
l , n. Theorem 5 requires one additional step:
Lemma 3: Given an n � n matrix M, the root-mean-square

value of each element of M, RMS{M} is related to the Frobenius
norm of M, )M )F by the relationship:

RMSfMg ¼ 1
n

��M��
F

Proof:��M��
F
¼

ffiffiffiffiffiffiffiffiffiffiffi
∑
i, j
Mij

r

RMSfMg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n2∑i, j

Mij

s
¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffi
∑
i, j
Mij

r
¼ 1

n

��M��
F

Then theorem 5 follows by multiplying each term of theorem
4 by 1/n.

’DISCUSSION

Reduction to existing kernel methods makes it possible to
prove rigorous probabilistic bounds on the approxima-
tion error made by SCISSORS under fairly mild restrictions
on the input molecule distribution. However, because very
few assumptions are made about the input distribution, the
resulting bounds end up being very loose. For example, con-
sider the added RMS error from basis-sampling (Theorem 5
under conditions similar to those in Figure 1, if we were to
approximate 50 000 molecules in Maybridge rather than just
two. Specifically, consider 256 dimensions, 3000 basis mol-
ecules, and a desired confidence of 1 � e�3 ≈ 95%:
n = 50 000, k = 256, l = 3000, δ = e�3:

64 3 256
3000

� �1=4
Kmax 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð50 000�3000Þ2

ð50 000�1=2Þð50 000�3000�1=2Þ log e
�3

s2
4

3
5
1=2

≈1:8Kmax

So with 95% confidence, the RMS kernel error will be less than
1.8 times the maximum value of the kernel. Looking back at
Figure 1 shows that this is clearly a very loose result: 1.8 times
the largest kernel value in the source data is an RMS error of
50.4 (1.8� 28), whereas we achieve much smaller errors on the
(randomly chosen) molecules given. However, it is notable that
this result holds with no assumptions about the distribution of
input molecules, except boundedness in the kernel values. The
performance of SCISSORS on real-world data sets is significantly
better than this worst-case estimate (see for example, the
statistics on the full Maybridge data set in the original SCISSORS
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paper),1 indicating that the distribution of molecules in the
similarity space considered is somehow friendly to sampling-based
algorithms.

’CONCLUSION

Sampling algorithms, both kernel PCA-based like SCISSORS
and the Raghavendra/Maggiora method4 and non-PCA based
diversity selection and clustering methods, are widespread in
chemical informatics. In this paper we have provided theoretical
performance guarantees on the approximation error arising from
data set sampling and rank reduction of chemical kernels. Our
results relate chemical dimensionality reduction algorithms to
well-known methods in machine learning. In particular, the fact
that the worst-case bounds are significantly looser than the real-
world performance of sampling algorithms suggests that, in
practice, many chemical kernels are representable in few dimensions
and that chemical space is well-structured, such that sampling is a
viable strategy.
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bS Supporting Information. Detailed proofs for Lemmas 1
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