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Abstract. Exact and heuristic methods for solving difficult optimiza-
tion problems have been usually considered as two completely different
approaches, with each of them being extensively studied by a different
research community and used in different fields of application. In this
work we propose a scheme for the integration and cooperation of an ex-
act method, based on mixed-integer linear programming (MILP), and a
bio-inspired metaheuristic, a genetic algorithm (GA), for the solution of
a relay node placement problem in wireless sensor networks.
The integration aspect relates to the use of a MILP solver inside GA’s op-
erators. The cooperation aspect is implemented through a shared incum-
bent environment in which a MILP solver and the GA work in parallel
and exchange relevant information in order to overcome their individual
weaknesses and provide better solutions within a shorter time.
Experimental results show a significant increase of performance when
integration and cooperation take place, in comparison to the performance
of the MILP and the GA when used independently from each other.
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1 Introduction

In this work we implement a novel synergistic search scheme for solving complex
optimization problems. Our approach is based on a social metaphor: a com-
munity of problem solvers, of possibly different nature and featuring different
skills, communicate and cooperate with each other in order to find the best so-
lution to a common problem. The solvers actively and concurrently exploit their
mutual differences in order to produce community-level synergies and overcome
individual weaknesses. More specifically, we consider the combination of exact
and heuristic methods, considering a mixed-integer linear programming (MILP)
approach and a genetic algorithm (GA), a bio-inspired metaheuristic.

MILP and metaheuristics are two different paradigms for solving optimiza-
tion problems. The former is characterized by the definition of a mathematical
program including linear equations and both continuous and integer variables.



A solution is determined according to methods that intelligently explore the
search space and provide a guarantee on the optimality of the solution found.
Metaheuristics, on the other hand, aim to exploit problem-specific knowledge
and to find good (possibly optimal) solutions within short time, but not provid-
ing any guarantees on the quality of the solution found. Given their structural
differences, both approaches exhibit complementary properties, such that the
strengths of one can help to overcome the weaknesses of the other, and vice
versa. For example, the utter exploration of the solution space performed by a
MILP solver can be exploited by the metaheuristic search in order to avoid fast
convergence to or get trapped in local optima. Also, the MILP solver may use the
local optima identified by the metaheuristic search to improve its search bounds
and therefore be able to identify areas of the solution space which can be safely
excluded from the search. These potential synergies suggest the combination of
both approaches to get the best of two worlds. The relatively new domain of
research in matheuristics [19] precisely addresses the study of the integration of
exact and heuristic methods.

The specific optimization problem that we tackle in this paper is the relay
node placement for performance enhancement problem (RNP-PE in short), a
complex combinatorial optimization problem with several applications in Wire-
less Sensor Networks (WSNs). In general terms, the relay node placement op-
timization problem can be defined as selecting, from a given set of possible
locations, a limited number of positions where some additional nodes (called
relay nodes) can be deployed. The objective of the deployment is to improve
the network performance metrics of interest. In the case of our RNP-PE, we de-
fine these metrics as the end-to-end communication delays and the overall data
throughput obtained at the sink nodes of the WSN.

Realistically large instances of the RNP-PE problem present an exponen-
tial number of possible deployments. Moreover, for each single deployment, an
optimal routing problem must be solved in order to evaluate its quality. Unfortu-
nately, the optimal routing problem belongs to the family of NP-hard network
design problems [13,25]. For this reason, standard approaches fail to find optimal
solutions to the RNP-PE, even for small size instances, in reasonably short time.
To overcome these limitations and find good solutions to the RNP-PE within
short time and with quality guarantees, we employ a social approach for problem
solving which is based on cooperation and integration. The cooperation aspects
involve the use of different strategies, namely a MILP solver and a GA heuris-
tic, working in parallel and continuously exchanging relevant search information.
The exchanged information is used by each side to improve its performance. The
integration lies in the decomposition of the problem, and the inclusion of another
MILP solver inside the GA. The decomposition approach enables the heuristic
to obtain valuable information which is exploited by the genetic operators.

2 Related work

Bio-inspired approaches, and more specifically GAs, have been used to tackle
the complexity of many optimization problems in wireless networks, including



clustering [2], optimal design [12], routing and link scheduling [4], network plan-
ning [23] and node placement [7, 22, 26, 31, 32]. Despite the success of GAs and
other metaheuristics in solving complex optimization problems, there is a grow-
ing feeling that pure metaheuristics are reaching their limits [5]. As technology
advances, new and increasingly complex optimization problems arise. These ob-
servations, together with the exhaustion of new design ideas for pure metaheuris-
tics, is leading the researchers to explore the combination of different techniques
and the proposal of hybrid methods [19].

The main motivation behind the hybridization of different algorithms is to
exploit their potential synergies. Not until recently, hybrid approaches began to
appear in networking optimization problems. In [3], a tabu search is embedded
in the genetic operators of a conventional GA to solve a frequency assignment
problem, while in [17], tabu search is combined with simulated evolution to tackle
a network routing problem. In [26], local search heuristics are used to evaluate
GA’s individuals to solve a switch location problem in cellular networks.

Within the vast possibilities of hybrid methods for combinatorial and discrete
optimization, there is a promising direction of research in combining exact math-
ematical programming techniques and meta-heuristic approaches. According to
the structure of these different solution approaches, two main categories have
been identified: integrative and collaborative combinations. In integrative com-
binations, one technique is usually embedded inside another technique, hence
the latter is seen as a functional component of the former. On the other hand,
collaborative combinations feature two or more methods running sequentially,
intertwined or in parallel, which are not part of each other [24].

A shared incumbent environment is a general methodology to realize col-
laborative combinations of mathematical programming and metaheuristic ap-
proaches. The main idea of the shared environment is to allow both components
(i.e., a MILP solver and a metaheuristic algorithm) to exchange information
about their current best known solutions. This information is used by the MILP
solver to improve its current incumbent and prune the branch and bound tree,
and by the meta-heuristic to guide the search to more promising regions of the
solution space and to prevent getting stuck in local minima [28].

Compared to previous approaches, our work exploits the synergies between
different methods in two dimensions both in integration and cooperation. We
consider a heterogeneous group of solvers, composed of standard mathematical
solvers and a well-known bio-inspired metaheuristic.

3 The problem

A wireless sensor network (WSN) consists of a set nodes that are equipped with
sensing and limited processing capabilities, and that can locally communicate
with each other through a wireless medium [1]. The sensor nodes (SNs) com-
posing a WSN are usually inexpensive and low-powered, such as they can be
deployed in large numbers to provide monitoring and sensing services for long
time periods. In typical applications, the data generated by the sensor nodes



need to be transmitted to and aggregated and processed at base stations (BSs).
The general model for the forwarding of the data from SNs to BSs is based on
the definition and the use of multi-hop routing paths.

Since a WSN can operate for relatively long times and/or it can be embed-
ded in dynamic or hostile environments, a core issue in WSNs is the definition
of effective strategies to maintain the network aoperational for long time period
and/or for its adaptation to external or internal changes. In this direction, a
wealth of research has considered the use of special nodes, referred to as relay
nodes (RNs), that can be deployed and added to the WSN after the network has
been put in place. RNs can be positioned by hand, or can be part of a mobile
robotic unit, such that they can be deployed autonomously or on-demand. Pos-
sible roles of RNs include the provisioning of connectivity [6,9,18,20,27], extend
the network lifetime [15, 30], energy-efficient or balanced data gathering [10, 21],
and to provide survivability and fault tolerance [14, 16,20,27,33].

The relay node placement for performance enhancement problem is defined
as follows: given a set of possible locations where to deploy a restricted number of
available RNs, we aim to select from this set the locations in which the additional
nodes can be positioned to improve throughput and end-to-end packet delays
for the data gathered at BSs. Although the primary objective is determining
the physical locations where RNs should be placed to, the solution also specifies
the way these RNs should be used. This specification comes in the form of
optimal routing paths from SNs to BSs to forward the data flows. We assume
that the initial WSN is connected, therefore the use of RNs is entirely devoted
to improve the performance of the network. We present the RNP-PE as a linear,
mixed integer mathematical program (MILP). The formulation includes a number
of constraints and penalty components, aimed at closely modeling the specific
characteristics of the wireless environment.

3.1 MILP Model

We model the WSN as a set of SNs and BSs located in a set of known positions S
and B, respectively. SNs both generate and forward data packets towards one of
the BSs in multi-hop fashion (a data flow can be split over multiple paths). We
assume that the characteristics of data generation characteristics for each SN are
known. All nodes communicate with each other within the communication range
r. A set of K RNs is also available, their role is to forward data received from
other nodes. The placement of node relays is restricted to a numerable set of
candidate locations denoted as R. We formalize the RNP-PE by a MILP model
based on a minimum cost flow formulation as follows.

Let G = (V,E) be a connected digraph representing a WSN, where V = N is
the set of nodes, and E is the set of communication links. γ : E 7→ < is a link cost
function, and τ : S 7→ < is a data generation (traffic load) function, expressed in
the data per second generated by an SN. In the following, we measure τ in terms
of flow units, funit, expressed as bytes/sec. Data flows and relay positions define
the two sets of decision variables. The flow variable fij denotes the amount of
flow through link (i, j), that is, the data traffic to be sent from node ni to node nj



located at positions i, j ∈ N respectively. fij values are expressed in flow units.
The binary positional variable yi indicates whether location i ∈ R is used to
circulate flow or not. When yi is set to 1 in a solution, an RN is to be positioned
at the corresponding relay location. A full solution specifies both flows and relay
positions. The SN-to-BS routes are defined in the routing-tree induced by the
set {(i, j) ∈ E | fij > 0}. The complete MILP model is presented in Figure (1).

min RNP-PE =
∑

(i, j)∈E

γijfij + R̂
∑
i∈R

yi + α
∑
i∈S

piF̂ . (1)

subject to:
∑

(i, j)∈E

fij −
∑

(j, i)∈E

fji =

τi if i ∈ S,

0 if i ∈ R
(2)

∑
i∈B

∑
(j, i)∈E

fji =
∑
k∈S

τk (3)

yi = 1 ⇐⇒
∑
j∈N

fji > 0 ∀i ∈ R (4)

∑
i∈R

yi ≤ K (5)

∑
(i, j)∈E

fij +
∑

(j, i)∈E

fji ≤ Lcap, ∀i ∈ N (6)

bij = 1 ⇐⇒ fij > 0 ∀i, j ∈ N (7)∑
(j, i)∈E

bji ≤ D ∀i ∈ S (8)

pi = 1 ⇐⇒
∑

(i, j)∈E

∑
(j, k)∈E

fjk ≥ F̄max (9)

Fig. 1: MILP formulation of the RNP-PE problem.

Constraints (2-3) correspond to the flow definition. The number of available
RNs is limited to K constraints (4-5). Given that the optimal solution can corre-
spond to a number of RNs k < K , we define a penalty factor in the objective (1)
to favor the use of a minimal amount of RNs: any optimal solution using n relays
needs to provide a minimal gain R̂ with respect to the solution obtained using
n − 1 relays. Parameter R̂ can be adjusted according to the problem instance
(e.g., relay node availability, economic cost).

Shared wireless channels in WSNs are necessarily bandwidth-limited. This
condition is reflected by link capacity parameter Lcap, which is the nominal
amount of data (bytes/sec) that can be transmitted by a wireless link in the
network (assuming the same capacity for all links), and constraint (6).

For a node n, the routing in-degree is the number of n’s neighbors using n
to relay data. Because of shared medium and contention access, this number
strongly impacts on the effective node capacity and network load balancing.
Hence, node degree in the routing trees are limited by constraints (7 - 8).

To minimize wireless interference and produce balanced routing trees, which
allow balanced energy depletion, we need to setup minimally interfering flow



paths. We enforce this by including in the objective function a penalty component
based on the maximum local flow, F̄max, defined as the maximum amount of flow
that can circulate within a disk of radius r centered on an SN. The calculation of
the flow circulating within the r-disk of an SN i, requires to sum up the outgoing
flows from all i’s neighbors. This notion is included in constraints (9), where pi
is a binary penalty variable that takes value 1 when the flow through the i’s
r-disk violates the maximum allowed amount. In order to use p for inclusion
in the objective function as penalty, we derive a rough estimation, F̂ , of the
optimal solution value of problem, without penalties, and we use it as a penalty
score for the violation of the circulating flow limit. Using F̂ and p, the penalty
for the violation in maximum local flow is therefore included in the objective
function. The parameter α weighs the penalty in the objective function. In the
experiments we set α = 0.1. We refer the interested reader to [8, 11] for a full
description of the parameters and an extensive evaluation of the RNP-PE model.

4 Integration: A hybrid genetic algorithm

In the RNP-PE formulation, it is primarily the number of possible assignments
of relay positions which affects the size of the problem. In instances where |R|
is in terms of thousands (which is a typical scenario), even for small number of
relays to select, the solution space is exponentially large.

Considering that the RNP-PE jointly solves two problems, namely the node
placement and data routing, we decompose the problem in two hierarchical lev-
els. At the top level, the GA is used to explore possible relay placements, which
involves iterating over assignments of the variables yi of the full MILP model.
At the bottom level, a simplified MILP is used to compute the optimal routing
of each one of these placements. This means that, for a certain assignment of yi
(i.e., positioning of relays), a MILP solver computes the best possible flow rout-
ing scheme achievable (based on the RNP-PE formulation). The optimization
problem obtained by fixing the variables yi is much smaller and simpler than
the original one, therefore its computation time is much reduced, a property
which is effectively exploited by the decomposition method.

4.1 Solution encoding

The encoding of individuals (also known as chromosome encoding) is fundamen-
tal to the implementation of GAs in order to efficiently transmit the genetic
information from parents to offsprings. In our case, an individual of the popu-
lation represents a deployment of relay nodes. Since RNs can be placed at one
of the set of candidate locations R, the location of each RN can be conveniently
specified as the index of the element in R to which it corresponds to. Accord-
ingly, a population member is encoded as an array of indexes values. The array
size is variable, given that the problem can admit solutions with k ≤ K relays.

Apart from the encoding, another fundamental aspect of a GA is the design
of its genetic operators. We propose a set of application-specific genetic operators
designed to achieve a good trade-off between exploration and exploitation.



4.2 Evaluation of individuals

Let R∗ ⊆ R, be an individual of the genetic population, with |R∗| ≤ K. In
order to evaluate the quality of R∗, we compute the optimal routing scheme
based on the relays located at the positions in R∗. A simple way to perform
this computation consists in constructing and solving a MILP problem, using
the RNP-PE formulation and replacing R with R∗. However, in practice, this
approach involves an additional overhead in terms of computation time, since a
complete mathematical model (which needs to be constructing and initialized)
must be built each time. The overhead is more evident after the evaluation of
hundreds (or even thousands) of individuals, as usually performed by a GA.

To overcome this issue, we propose to initially build a complete model, using
the whole set R, and add and remove constraints to the original formulation
every time an individual need to be be evaluated. This way turns out to be
both efficient and time-saving. To evaluate R∗ using the original formulation
presented in section (3.1), the following constraints must be included:

yi = 1 ∀i ∈ R∗ (10)

yi = 0 ∀i ∈ R \R∗. (11)

Additionally, since the best data routing schemes may be achieved using less than
|R∗| relays, the model need to be enabled to obtain solutions in which not all
of the positions in R∗ are used for data flows. However, the original formulation
enforces the generation of routing solutions such that, if yi is equal to 1, some flow
variable in the set {fji, j ∈ N}, must be positive. This implies that by adding
constraints (10), we are forcing the model to produce routing path that require
to use all the positions specified in R∗. To avoid this undesirable behavior, we
relax the constraints (4) by replacing them with:

yi = 1⇐
∑
j∈N

fji > 0 ∀i ∈ R. (12)

After solving the now simplified MILP, the obtained solution is checked for
unused relays, that is, for positions i ∈ R∗ such that

∑
j∈N fji = 0. For these

positions, the objective function value is recomputed assuming yi = 0, hence
obtaining an accurate assessment of the optimal routing paths.

4.3 Routing-aware placement (RAP) crossover

We propose an application-specific crossover operator, referred to as Routing-
aware placement (RAP) crossover, aimed to boost the performance of the GA
search. The main ideas behind our operator are the design of a multi-parent
crossover operation and the inclusion of the extracted information from the rout-
ing trees obtained by the evaluation of previous individuals.

During the progress of the GA, the routing trees obtained after the evalua-
tion of each solution are examined and analyzed to extract useful information
about the shape of the generated sub-optimal solutions. In these routing trees,



some relay nodes (and hence their corresponding positions) are more important
than others, in the sense that they are used to carry more data. Therefore, we
measure the degree of importance of relay positions by looking at the amount
of flow circulating through the positioned relay nodes each time we evaluate an
individual. The most important relay positions form a set which we refer to as
preferential relay set , hereafter denoted as PS ⊆ R.

Since close-by relay positions are likely to be used in a similar manner, the set
PS might become a group of clustered relay positions. To promote diversity in
PS, we propose a strategy which consists on partitioning the area into a number
of regions, where to each region is assigned a quota in PS, corresponding to the
maximum number of relay positions located in that region. The maximum size
of PS is limited by a user-defined parameter (set to 2K in this paper).

Another structural property that we observe in the routing trees, is the pres-
ence of relay chains. That is, the combined use of relays forming chains to
link different regions of the network. A pair of chained relay positions appears
in a solution whenever RNs located at these positions are linked to each other,
meaning that data flows directly from one relay to the other. After every solu-
tion evaluation, we extract all pairs of chained relay positions and store them
inside a map structure, CR : R 7→ 2R, where the set CR(i) ⊆ R contains all the
positions that have formed a chain with i.

Finally, we also identify possible conflicts between relay positions. A con-
flict is identified whenever a relay position is included as an individual but is not
used to carry data in the routing solution. This situation suggests that the po-
tential benefits of using the ignored relay position have been achieved by other
RNs, placed in different positions. Hence, we say that the ignored relay posi-
tions are in conflict with the currently utilized ones, and vice versa. To this end,
we keep a conflict map CM : R 7→ 2R that associates to each RN position a
set of positions that appear to be in conflict with any of the routing tree solu-
tions. Figure (2) illustrates the analysis of the routing solutions performed after
the evaluation of an individual. In the example, one pair of chained relays, one
preferential relay position (carrying data from four static nodes), and one con-
flict (unused position) are detected in the routing tree. The description of the
algorithmic procedure of the RAP crossover is presented in Figure 1. The pa-
rameter pChainedRelay regulates the use of chained relay positions. We denoted
as Mom and Dad the genetic parents. The size of the new child individual is
taken randomly in the interval defined by the size of both parents involved in the
operation. The operator first tries to construct a conflict-free set of RN positions
by randomly taking genes from both parents. Each time a gene g is selected, it
also takes a chained relay from CR(g) with probability pChainedRelay. After
this attempt to construct a child, the number of selected genes might not be
enough to achieve the target child size. Therefore, a second step is performed in
which the remaining RN positions are randomly selected from the preferential
set, and in case there are not enough preferential relays, the remaining genes
are selected taken randomly from R. In this way, the operator produces a new
chromosome which shares genetic material from both parents and from the set



Chain

Candidate

Conflict

Fig. 2: Elements extracted from MILP solution

PS. Moreover, the RAP crossover operator reinforces the generation of better
individuals by excluding conflicts previously seen, replacing those conflicts by
potentially useful relays (i.e., from PS), and by introducing chained relays posi-
tions, which are usually very beneficial, but not likely to appear frequently when
using a completely random procedure.

4.4 Mutation

The proposed mutation operator allows a controlled exploration of new regions
of the solution space by inducing small perturbations to existing individuals.
Mutation is implemented by displacing the relay positions within a circular area
of size 2r. Apart from changing the positions of the relays, the mutation may
also modify the size of the solution, that is, the number of positions of relays.
With a given probability pSizeChange, the operator varies the size, removing
existing positions or adding new ones.

5 Cooperation: A shared incumbent environment

At this point, we are able to obtain solutions to the RNP-PE in two different
ways: (a) using a standard mathematical solver to solve the MILP model pre-
sented in Section (3.1), and/or (b) using the metaheuristic procedure introduced
in Section (4). Both approaches offer different advantages and disadvantages.
Approach (a) offers the possibility (if we are lucky enough) to find an optimal
solution. However, depending on the problem instance, we might run out of
computational resources before obtaining a good (or even at least any) feasible
solution. Approach (b) offers solutions whose quality depends on the amount
of time we provide to the GA procedure. In some cases, the evolution process
can get stuck and no improvements can be made to the current solution. More-
over, even though we can get optimality bounds for the provided solutions, these



Input: Parents: Mom,Dad ⊆ R, |Dad| ≤ |Mom| ≤ K
Input: Preferential relay set: PS ⊆ R, |PS| ≤ 2K

Input: Chained relays: CR : R 7→ 2R, Conflict map: CM : R 7→ 2R

Result: Child ⊆ R
if Mom = Dad then

Child←− RandomChild() return Child
end
childSize = RandInteger (|Dad|, |Mom|)
genePool = Mom ∪Dad
Child = ∅
while |Child| < childSize and genePool 6= ∅ do

pick random relay g ∈ genePool if ∃ĝ ∈ Child : g ∈ CM(ĝ) then
genePool←− genePool \ {g}

else
Child ←− Child ∪ {g} genePool ←− genePool \ {g} if Rand(0, 1) ≤ pChainedRelay
and |Child| < childSize then

pick random relay h ∈ CR(g) Child←− Child∪{h} genePool←− genePool \ {h}
end

end

end
if (childSize− |Child|) ≤ |PS| then

while |Child| < childSize do
pick random relay g ∈ PS Child←− Child ∪ {g}

end

else
Child←− Child ∪ PS while |Child| < childSize do

pick random relay g ∈ R Child←− Child ∪ {g}
end

end
return Child

Algorithm 1: RAP crossover operator

bounds might not be tight. Hence, we won’t be able to have a strong assessment
about the quality of the obtained solution (even if the solution is in fact optimal).

A cooperative environment is implemented by the execution of both ap-
proaches as two independent processes able to communicate with each other. We
use a shared incumbent environment as the cooperation scheme between both
solvers, which consists in letting both methods continuously exchange their best
found solutions so far. In the MILP solver, this corresponds to the best upper
bound (also known as the incumbent solution). In the GA, it is simply repre-
sented by the best individual that has been evaluated so far.

The hybrid nature of the GA and its MILP functional component used in
the evaluation operator, facilitates the implementation of the shared incumbent
environment. Each time an individual is evaluated by the GA, we can easily
obtain, from the reduced MILP, the values of the variables corresponding to
the optimal routing solution. These values, together with those corresponding
to the positions (which are available from the encoding), allows to compose
the solution vector of the complete MILP model. Due to the potentially large
number of variables, we use a data compression scheme for the communication
of the solution vectors. A graphical representation of the proposed bio-inspired
shared environment is presented in Figure (3).
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6 Evaluation

To evaluate the proposed method, we considered a number of randomly gener-
ated network instances representing complex scenarios of the RNP-PE. In total,
we considered 20 network instances generated with different topological charac-
teristics, i.e. uniform, clustered, and small world. Networks were embedded in an
area of size 150m×150m, and the set of possible relay positions was determined
using a uniform grid, with the grid points separated by ∆=2 m of distance.
Considering the grid resolution and the size of the area, the number of possible
relay positions becomes particularly large (up to 5000). We have considered two
group of experiments varying the value of K since this parameter determines
the number of deployments, and has an impact on the performance of the GA.
Table (1a) indicates the parameters of network topologies considered. Figure (4)
depicts one of the topology instances. The evaluation consisted on three steps.

(a) Initial network (b) Relay locations

Fig. 4: Example of network topology instance.

First, all instances are exhaustively solved using the MILP model presented in
Section (3.1). To solve the MILP we used the CPLEX R© solver under its default
parameters. In this step, the mathematical solver was given a larger amount of
computational resources, in terms of both CPU time (10 hours) and physical
memory (8 GB RAM), in comparison to the following experiments. In this way,



we aimed at obtaining the optimal or best sub-optimal solutions to each of the
problem instances, through an intensive and exhaustive solving process.

In the second step, we solved the same instances using the hybrid Genetic
Algorithm presented in section (4). To evaluate the efficacy of the genetic op-
erators, we also use a simplified version of the GA, in which the crossover and
mutation operators were replaced by a one-point random crossover and a uni-
form random mutation operators. In the implementation, we use a steady state
genetic algorithm, and the GAlib library [29]. The main parameters of the GA
are listed in Table (1b). Finally, in the last step, we solve the instances using
the cooperative environment as described in Section (5). Both components (i.e.,
the mathematical solver and the GA) were executed on similar CPUs, and the
communication was implemented using sockets. All methods, except the initial
step, were given a maximum CPU time of 2 hours and 2GB of physical memory.

Table 1: Experimental setup
(a) Instances parameters

Area 150× 150 m2

|S| 200

|B| 5

TX range (r) 10m

(b) GA parameters

Population size 100

Scaling scheme Linear

Selection scheme Tournament

Crossover probability 0.9

Mutation probability 0.1

6.1 Experimental results

After performing the first step of the evaluation, we obtained solutions to each of
the instances considered. Table (2) shows objective function values, optimality
gap, and solving time for some of the instances considered. The mathematical
solver was not able to prove the optimality of any of the considered instances.
For some instances, the solver ran out of memory and finished before consuming
the available CPU time, as noted in the table. In the second step, we analyze per-
formance of the solution approaches, namely the GA with one-point crossover
and uniform mutation (GA-one point), the GA with the RAP crossover and
the proposed mutation operators (GA-RAP), and the cooperative environment
featuring a MILP solver and the GA within a shared incumbent environment
(MILP+GA). To measure the performance of each approach, we consider the
ratio between the objective function value of their best solutions found and the
solutions obtained in the first step. We refer to this value as the performance
ratio. For each instance, we performed 20 independent runs (to account random-
ness in the GA procedure), and we took the median value of the performance
ratio at different points of time.

Figure (5) shows the average performance ratio over all the instances consid-
ered for each value of K. We can observe a variation of performance depending
on the choice of the genetic operators. The GA-RAP method is more effective
than its naive counterpart and provides better solutions. However, both tend
to converge fast and have difficulties in improving their best solution as time



Table 2: Solutions obtained by the MILP.
Obj. value Gap (%) CPU time (s)

1576.79 11.79 30290.7

2111.38 13.87 36002

1403.98 16.52 19397.2

1318.45 9.53 16725.7
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Fig. 5: Comparison of the proposed solution methods

advances. On the other hand, the performance of the MILP+GA cooperative
scheme is considerably better, and in some of the instances is also able to pro-
vide solutions better than those obtained with the first step.
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Fig. 6: Illustration of cooperation process.

To illustrate the interactions between both methods within the cooperative
environment, we selected one execution of the MILP+GA method. Figure (6)
shows the interactions and the evolution of the best solution over time (log-
arithmic scale). We can observe two clear behaviors: the reactive interactions
(sequences of solution exchanges separated by short intervals, and stand-alone
interactions. We conclude that none of the methods strictly dominates the oth-
ers, and the performance obtained by the combination is much superior than the
performance achieved by each method individually.



7 Conclusions

We considered an integrative and cooperative environment for solving a complex
mixed-integer optimization problem in WSNs. The approach features the use of
two problems solvers, of different nature and with orthogonal properties, which
interact and cooperate in order to improve their joint performance. Specifically,
we presented the case of a bio-inspired metaheuristic (i.e., a genetic algorithm)
and a traditional MILP solver for the relay node placement problem in WSNs.

The contributions of this work lie along three lines/ First, we propose a GA
which makes use of a decomposition strategy and a MILP solver to evaluate the
individuals of the population. Secondly, we designed a cooperative environment
in which a MILP solver and the proposed GA work, solve the same problem in
parallel, interacting and continuously exchanging relevant information. The ob-
jective is to help ach other to overcome their weaknesses and speed-up the solving
process. Finally, we demonstrate through extensive experiments the effectiveness
of the proposed strategy and show a significant performance improvement when
the solvers are combined, compared to their use as independent solvers.

Future work involves considering larger groups (three or more) of solvers,
including other types of metaheuristics and mathematical solvers, and studying
and assessing the collaboration level achieved according to the size and nature
of the group of solvers. Together with this, we will also consider the application
of this strategy to other, possibily related, optimization problems.
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