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ABSTRACT

Human action recognition has drawn much attention in the field of video analysis. In this paper, we develop
a human action detection and recognition process based on the tracking of Interest Points (IP) trajectory. A
pre-processing step that performs spatio-temporal action detection is proposed. This step uses optical flow
along with dense speed-up-robust-features (SURF) in order to detect and track moving humans in moving
field of views. The video description step is based on a fusion process that combines displacement and spatio
temporal descriptors. Experiments are carried out on the big data-set UCF-101. Experimental results reveal
that the proposed techniques achieve better performances compared to many existing state-of-the-art action
recognition approaches.

Keywords: Action recognition, trajectory, dense sampling, Optical flow, spatio-temporal descriptor, dis-
placement descriptor, fusion.

1. INTRODUCTION

Human action detection and recognition in real scenes remains an important topic in computer vision. How-
ever, it is a challenging task as videos may include complex actions with large intra-class variations, poor
quality or camera motion. An e�cient remedy to these challenges is a relevant video description thus seg-
mentation of videos into small sequences. In order to segment video sequences and reduce the amount of
data involved in this task, we propose in this work to detect and segment human motion. Human motion
segmentation is another theme in recent work.1 Pixel-wise techniques, namely background subtraction and
temporal di↵erencing,2 are the most straightforward methods in this task. However, when dealing with mov-
ing cameras, these models are likely to fail as the background is continuously varying along with the target’s
motion. Optical flow (OF) based methods3 are one of the most employed techniques in motion segmentation.
Lucas and Kanade (L&K)4 is one of the oldest yet most employed OF algorithms. Regarding its limitations
toward accuracy and illumination changes, some improvements are presented.5 In our research, to detect
moving objects, we computed the OF of IP extracted using SURF6 descriptors over a regular dense grid. In
fact, a recent evaluation of dense sampling proposed by Uijlings et al.7 proved that dense SURF descriptors
may be extracted more quickly with no loss of accuracy.
Among the major obstacles facing robust motion segmentation is camera motion. In this case, objects’
motion is combined with both the camera and background motions. Thus, camera motion compensation is
compulsory. Earlier approaches relied on estimating the camera motion as a 2D a�ne transform or homogra-
phy.8,9 Cinbis et al.10 applied video stabilization using homography-based motion compensation approach.
Nga et al.11 subtracted the estimated camera flow, multiplied by the camera direction, from the flow of
each extracted spatio-temporal keypoint. All these works support the potential of motion compensation.
However, in some cases it is almost impossible to separate the foreground and the background when there
are close up captures of the human activity.
To describe actions in videos, spatio-temporal (ST) local features were widely exploited.12 In the work of
Dalal et al.,13 ST descriptors are extracted by extending the 2D IP to the temporal domain (1D). Laptev
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and al.,14 expanded the volumetric features corner detector to extract space-time local structures. Local
descriptors were also extended to the temporal domain such as the histograms of oriented 3D spatio-temporal
gradients,15 E-SURF16 and the 3D-SIFT.17 In,18 it has been proven that the previous techniques su↵er from
inaccuracy due to the use of spatial and temporal information in a common 3D space. In fact, spatial infor-
mation has di↵erent characteristics from temporal information, so associating them in a new scheme deserves
to be more investigated and might be the cue of success for action detection in big datasets. That is to detect
spatio-temporal features; various works tracked IP upon a video sequence. Indeed, Sun et al.,19 performed
e�cient action recognition by leveraging the motion information of trajectories. Sameh et al.,20 proposed a
method based on tracking the trajectory of SURF IPs into a frame packet. One of the latest work is proposed
in18 where descriptors based on appearance (Histogram of oriented gradient), motion (Histogram of optical
flow) and trajectories are fused to characterize shape (point coordinates). Their approach provided excellent
performances for action recognition. What we propose is also based on trajectory tracking. We suggest a
video description based on the Spatio-temporal SURF (ST-SURF),20 the histogram of motion trajectory
orientation (HMTO) and the motion boundary histogram (MBH).13

2. RELATED WORKS

Recently, researchers are focusing on action description by tracking interest points motion.21 This allows
exploring several motion cues such as velocity,22 orientation,23 location,24 trajectory curves,25 trajectory
parts26 or di↵erent motion cues combinations.20 Moreover, Sun et al.,27 encode the SIFT trajectory to
extract spatio-temporal context models. Trajectory patterns can be extracted using a tracker such as the
KLT (Kanade-Lucas-Tomasi) tracker4 which is commonly employed in videos.28 Authors in19 used both
SIFT and KLT features to extract long duration trajectories. Trajectory tracking is proven to be an intu-
itive and successful approach in several public datasets.18 Trajectory segmentation is another di�cult task
for trajectories description. To segment the trajectory, several works are based on trajectory clustering,29

others on moving object trajectory tracking. More recently, in,18 a new scheme is proposed to characterize
dense trajectories in order to preserve trajectory smoothness. The trajectory attributes are then extracted
by concatenating interest points trajectory in successive frame. Finally, a trajectory shape descriptor which
characterizes the displacement is computed.
Another challenging issue is to ensure robustness of extracted features to camera motion and varying back-
ground. The insight behind the success of several proposed video descriptors is the use of static camera
and uniform background.30 Although, many schemes have been proposed to reduce camera motion,31 this
problem remains unsolved in some cases. It is the purpose of this work to develop a video presentation which
discards camera motion without sacrificing significant human action cues.
To this end, the motion boundaries histogram descriptor (MBH), derived from the optical flow gradient,
is used as done in.32 It removes constant motion and preserves significant one. MBH was employed in
various action recognition schemes.18 It provides more interesting results when applied to video containing
important camera motion. However, MBH is not dedicated to remove camera motion, but combined with the
spatio-temporal SURF (ST-SURF) proposed by,20 it contributes significantly to compensate camera motion.
Descriptors extraction step is followed by a classification task based on code-book generation. Many ap-
proaches were proposed to extract a code-book for action recognition. A code-book can be generated using
various techniques including, but not limited to, Random forest,33 Sparse code-book learning34,35 or bag
of visual words (BOVW).18,36 The BOVW approach achieved good results in action recognition in both
image37 and video analysis.38 This is owing to the orderless feature presentation of BOVW that discards
features spatial position and inter-relationship between the extracted visual words. However, the accuracy
of BOVW decreases when the size of the database is huge in the case of more realistic scenes with many
actors and rich background.

3. HUMAN MOTION DETECTION AND SEGMENTATION

The proposed motion segmentation algorithm is based on computing optical flows of detected dense features.
Moreover, camera motion estimation is achieved by tracking features between successive frames: first interest
keypoints are extracted using dense SURF, then, the iterative Lucas & Kanade (LK) OF using a pyramidal



representation5 is applied to track them over the next frame. However, in an image, several parts, such as
the sky or the roof, have almost the same color distribution and do not, generally, contribute with useful
information. They also may add noise in the estimated OF. In order to overcome this drawback while
preserving the most important structural features, we start our process by detecting image edges using
canny edge detector.39As follows, all steps of the motion segmentation process will be applied on the edge
frame. OF computation outputs a set of four-dimensional vectors V such as:

V = {V1 · · ·VN |Vi = (xi, yi, ai,mi)} (1)

Where xi and yi are the image coordinates of keypoint i; ai and mi are respectively the motion direction
and magnitude of i in the current frame and its corresponding feature in the next one. In general, OF is
computed between two successive frames. However, the result may be unstable when objects either move too
fast, too slowly or stop between two frames. In this paper, we propose to extract keypoints and compute OF
with a temporal step size of N frames. This step allows also the removal of static features that correspond
to pixels with OF magnitudes lower than a threshold T in both x and y directions. In our experiments, the
minimum motion magnitude is set to 0.5 pixel per frame.

3.1 Detection and compensation of camera motion

Camera motion detection : Once dense features are tracked, we should verify the existence of camera
motion by analyzing OFs between two frames in a frame set under the assumption that if most points move in
the same direction, camera motion exists and has the same direction as the moving points. At this level, we
propose to cluster OF vectors in order to eliminate outliers and determine the direction of camera motion. In
view of our real-time requirements, it is desirable to have a low number of clusters with similar flow directions.
In this work, we define eight possible directions for the camera: six in the horizontal direction (forward (up,
down or right) or backward (up, down or left)), and two in the vertical direction (up or down). The flow field
is segmented into these 8 clusters by employing k-Nearest Neighbor (KNN) clustering algorithm. However,
some small clusters that do not belong to a dominant cluster may appear. To reduce unuseful data, clusters
with a size lower than a certain threshold are discarded. Figure 1 presents examples of OF clustering using
KNN. In these representations, it is easy to distinguish the moving objects from the background as well as
determining the direction of camera motion. Thereafter, the size of each of the eight clusters is determined

Figure 1. OF clustering using KNN algorithm. Row 1: OFs between two successives frames. Row 2: Results of
KNN clustering. Each of the eight directions of the camera is represented by a di↵erent color.

and compared to a threshold. Finally, camera motion exits if supcl 2{1,..,8}{scl} > K ; Where scl is
the size of cluster cl and K is a threshold representing the minimal required proportion of moving points.
In our experiments, we set K as N

2 where N is the total number of detected points. The motion magnitude
and deviation are then computed as follows:

mm = mean | fi | ; ✓m = mean(✓fi) (2)

Here, fi and ✓fi refer, respectively, to the flow and deviation of keypoint i. mm and ✓m refer, respectively,
to the camera flow magnitude and deviation.
Camera motion Compensation : in videos captured by a hand-held camera, camera motion is random.



This motion is a combination of translation and rotation. In Nga et al.’s work,11 only the camera translation
is considered. Camera motion is compensated by subtracting the camera flow from the original flow of each
SURF keypoint. As a result, the camera motion will not be correctly compensated if the motion is, for
example, oblique. We propose to solve this problem by applying a�ne transformation to each frame in
which camera motion is detected.

In this work, we take under consideration only translation and rotation motions. Scaling is one of our
future works.Hence, the transformed frame I 0 is obtained as follows:

I 0 =

"
cos ✓m � sin ✓m

sin ✓m cos ✓m

#
⇥ I +

"
mmH

mmV

#
(3)

Here I is the original frame; mmH (respectively mmV ) refers to the camera flow magnitude when the
camera translates horizontally (respectively vertically). d equals 1 if the camera moves in a positive direction
or -1 if the camera moves in a negative direction. In case of horizontal motion, mmV = 0 and in case of
vertical motion, mmH = 0. Unlike in9 and11 where the motion of each flow vector is compensated for
independently, in our work, we apply the a�ne model on the whole image.

3.2 Foreground extraction

After compensating the camera motion, we obtain a situation similar to one where the camera is static. Here,
moving objects are segmented using a pixel-wise technique known as temporal di↵erencing. It is the simplest
method for extracting moving objects and is robust in dynamic environments. This algorithm classifies a new
pixel as being a foreground pixel whenever k I(x, y)� Iprev(x, y) k� Th where Th is a defined threshold. The
obtained result is a binary image. However, due to camera noise and limitations of the background model, the
foreground mask (binary image) typically contains numerous small ”noise” clusters. These erroneous clusters
can be removed by applying a noise filtering algorithm to the foreground mask. In fact, removing them at
an early stage is desirable since they can interfere with later post-processing steps. In general, morphological
operations are performed to remove noise and extract significant information from images. In our system,
both morphological erosion and dilatation, respectively, are employed to remove noise and unwanted objects.
Small and useless clusters are removed by setting limitation on their sizes. The remaining clusters represent
the moving objects. Finally, a bounding box is drawn around each detected object. The aforementioned steps

Figure 2. Results of our proposed method for motion segmentation. Column 1: consecutive frames from a video
sequence with camera motion on which OF is drawn. Column 2: segmentation results before camera motion compen-
sation. Column 3: segmentation results after camera motion compensation. Column 4: final segmentation results.

of our proposed method for motion segmentation are applied to an input video with a temporal step of size
N . Thus, the detected objects need to be tracked in the remaining frames. To accomplish this, a template
matching technique, normalized cross correlation,40 is employed. Figure 2 emphasizes the e↵ectiveness of
our motion segmentation method. It can be observed that almost only local motions remain which are then
employed, after filtering noise, to segment the foreground. Our method succeeded to eliminate the motion
induced by the camera and thus leaving only the motion of humans/objects. If the camera is detected as
being still, we admit that the detected flow belongs to the objects/humans in motion. Hence, instead of
applying the temporal di↵erencing technique, here, a second clustering of OF vectors is applied based on



the degree of similarity of their magnitudes, angles and closeness, under the assumption that OFs of a single
person/object have similar characteristics. We assume that two OF vectors, fi and fj , belong to the same
cluster if the following assumptions are satisfied:

| li � lj | lth ; | ✓i � ✓j | ✓th ; | posXi � posXj | posXth ; | posYi � posYj | posYth (4)

where lidx is the magnitude of fidx; ✓idx is the deviation (angle) of fidx; (Xidx, Yidx) are the coordinates of
the OF vectors. Finally, lth, ✓th, posXth and posYth are thresholds.
All detected flow vectors are compared two-by-two based on these similarity comparisons leading to form
a fixed number of clusters. In order to remove noisy and meaningless clusters, we discard ones with a size
smaller than a threshold. The remaining clusters belong to the foreground. A bounding box is drawn around
each one. Figure 3 presents the segmentation results derived from the OF clustering technique compared to

Figure 3. Motion segmentation in videos with a static camera. Column 1: a set of consecutive frames. Columns 2
and 3: OF clustering using KNN algorithm. Columns 4 and 5: results of the temporal di↵erencing technique.

using the frame di↵erencing technique. The OF clustering technique (column 3) achieves better segmentation
results. It succeeds to capture the whole human motion, whereas the second technique (column 5) leads to
loss of information and only some parts of the motion are segmented.

4. HUMAN ACTION RECOGNITION FRAMEWORK

In order to detect actions, video are not usually treated as whole part. In this paper, we propose to segment
videos based on the actions or sub-actions they contain. For a relevant spatial-temporal video segmentation
into small video portions, we extract IP located into the Bounding box. The trajectory of the extracted
descriptor is then tracked until the end of the video segment to be analyzed. The steps for selective temporal
segmentation are described below:

4.1 Selective snippets (SS) and Group of SURF (G-SURF) segmentation

One of the main objectives of the proposed method is to reduce the number of video frames to be treated.
We propose the use of concepts of selective snippets and the group of SURF (G-SURF). Considering three
successive frames (n, n+ 1, n+ 2), a detected SURF in frame n can be detected in the same location in the
following frame (n+1). Also it can simply disappears or be detected in another spatial location if the SURF
moves. Therefore, a trajectory description to follow the motion of this point can be extracted. Considering
↵ the angle between the lines segments supporting the motion of a SURF from the couple of frames (n, n+1)
and (n+ 1, n+ 2), we compare ↵ to ↵max (↵max is empirically set) to segment a succession of frames (SS)
in which each SURF has an ↵ lower than ↵max. Let Dn,n+1 be the displacement vector of a given SURF
from the frame (n) to the frame (n+ 1); Dn,n+2 from the frame (n) to the frame (n+ 2).

Dn,n+1 = (Dxn,n+1, Dyn,n+1, Dtn,n+1) (5)

and
Dn+1,n+2 = (Dxn+1,n+2, Dyn+1,n+2, Dtn+1,n+2) (6)

↵ = arccos
Dn,n+1 ·Dn+1,n+2

kDn,n+1k ⇥ kDn,n+2k
(7)



Note that, within a SS, all SURF motions are lower than ↵max. In order to avoid an over-sized SS, we
introduce the concept of G-SURF. This is a parameter defining the number of grouped SURF empirically
tuned. The grouping technique is then performed over successive SURF detected in a reference frame. By
defining G-SURF, an average motion angle (↵avg) is computed and compared to ↵max. The more SURFs
are, the less ↵avg is sensitive to motion and the more the SS will have extended borders. The extracted
keyframes are called tmin and tmax.

4.2 Feature extraction

Action recognition is a challenging computer vision task. As mentioned in the introduction, several descrip-
tors have been proposed to achieve high quality action detection. In this section, we describe in details
the main stages of the extraction of the used descriptors. The motion trajectory detection tracking and
extraction are based on the following steps:

4.2.1 Optical flow extraction

Features tracking is performed by estimating optical flow. To increase optical flow estimation accuracy,
several methods derived from the Horn and Schunck (HS) Optical flow formulation41 have been proposed. Sun
et al.41 proposed an algorithm to approximate an optimized computationally tractable objective function,
based on the original HS formulation. First, a median filtering is used to denoise the flow field. The pre-
filtering of the frames reduces the influence of illumination changes. By exploiting relation between median
filtering and L1-based denoising, it has been proved that algorithm relying on a median filtering step allows
to optimize a di↵erent objective that regularizes the flow over a large spatial neighborhood.41 It is filtered
using a bilateral weight that depends on the spatial and the color value distance of the pixels as done in
bilateral filer. The resulting algorithm ranks 1st in both angular and end-point errors in the Middlebury
evaluation.41 The initially computed optical flow serves in many blocks in the proposed framework. This
reduces feature extraction computational time.

4.2.2 Trajectory tracking

To every selective snippet corresponds a volume of frames in the 3D space called SS Volume (SSv). This
cubic volume is characterized by:

• The frame number (FN) varying from 1 to tmax.

• the frame surfaces dimensions (FS) varying from x to xmax in the x direction, and from y to ymax in
the y direction.

• The SS cubic volume center (SScc) coordinates.

A given interest point IP = (x, y, t) is defined by its spatial position (x, y) and its temporal cue t. In
frame (t + n), the IP undergoes a displacement u in the x direction, and v in the y direction defined as,
IP (t+n) = (x+u, y+v, t+n). In all our experiments, unless mentioned otherwise, we consider only moving
interest points when u 6= 0, v 6= 0. In every pre-defined SSv, the 3D direction (u, v, n) is the direction of the
IP motion. The motion vector is calculated by the Sun et al.41 optical flow approach. Our main contribution
consists on the use of motion trajectory orientation to describe IP displacement, instead of using directly the
optical flow fields (u, v, n). In-fact, the motion vector in the 3D space can be found by the intersection of two
orthogonal planes to the plane (t, x) and the plane (t, y). To extract IP motion trajectory orientation, we
project its motion vectors onto the planes (t, x) and (t, y) of the SSv to define an angle for each projection
of the first angle ↵x between optical flow and the plane (t, x), the angle ↵y between the plane (t, y) and the
motion vector.

/x= 90� 180

⇧
arctan(

u

n
),/y= 90� 180

⇧
arctan(

v

n
). (8)

The projection of each SURF 0s motion vector on the planes (t, x) and (t, y) yields to two lines Lx and Ly.
The orthogonal projection of SSccx and SSccy onto the lines Lx and Ly allows computing the two distances
Dx and Dy between the SSv center and the lines supporting the motion vectors (Lx and Ly).
For an IP located at (x, y, t), the distances Dx and Dy are given by:

Dx = Dxu �Dtv, Dy = Dyv �Dtu (9)



where

Dxu = (x� xmax/2)cos(180/⇧arctan(
u

n
)) (10)

Dtv = (t� tmax/2)sin(180/⇧arctan(
v

n
)) (11)

Dyv = (y � ymax/2)cos(180/⇧arctan(
v

n
)) (12)

Dtu = (t� tmax/2)sin(180/⇧arctan(
u

n
)) (13)

where tmax, xmax and ymax are the dimensions of the SS volume with tmax depending on the number of
the frames contained within a segmented (SSv). In the following, Dx and Dy describe the motion trajectory
location in the 3D volume generated from the successive frames.

4.2.3 Histogram of motion trajectory orientation (HMTO)

Figure 4. An overview of HMTO extraction.

A wide range of histograms have been proposed in the literature for action recognition description.
Some of them focus on extracting motion cues such as36 or MBH.32 While other extract spatial information
i.e., HOG descriptor.13 In this paper, we introduce a novel descriptor called motion trajectory orientation
histogram (HMTO). The most valuable property of this descriptor is that it is splitted in order to capture
motion trajectory orientation patterns in both (x,t) and (y,t) directions. To gain more accuracy, we extract
both HMTOx and HMTOy from a SURF centered patch. The patch is a square region with size 20s where
s represent the current scale. Furthermore, for every pixel in the detected patch, we compute the optical
flow. Then, we extract the direction parameters ↵x and ↵y. These are considered as the angular votes in
HMTOx and HMTOy. To use the trajectory cues to track actions, we propose to bin them based on the
absolute motion distance. Finally we extract 8 bins histogram HMTOx and HMTOy. These histograms
are finally L2 normalized (see Figure 4).

4.2.4 Motion boundary histogram (MBH)

The motion boundary histogram (MBH) was introduced in32 to detect actions. MBH contains the distribu-
tion of the gradient of the optical flow fields in both x and in y directions. Hence, it captures salient optical
flow changes while suppressing static motion usually derived from camera motion. The final MBHx and
MBHy are 96D (2⇥2⇥3⇥8) features set. In this work, we used MBH, not only for its aptitude of reducing
camera motion, but also as a motion descriptor for its action recognition discriminative power attested in
the state-of-the-art.18,32



4.2.5 Spatio-temporal SURF (ST-SURF)

ST-SURF was introduced by.20 The main idea is to detect the trajectory of a SURF point by tracking its
motion trajectory. The authors use Hessian Matrix to detect salient points. Then, they extract all SURFs
in a given video. Finally they compute a 68D spatio-temporal SURF called ST-SURF. The results given
by their proposed approach are encouraging but still below the state-of-the-art. In this paper, we give an
optimized ST-SURF extracted over a SS. This step is based on a dense SURF extraction, which boosts the
information detection step. We combine ST-SURF with other descriptors to capture maximum spatial and
temporal cues. We choose ST-SURF for many reasons. First, it contains spatial information driven by the
SURF and temporal information driven by the optical flow, the size of this descriptor and finally it provides
localization information. The latter will add spatial information to the bag of words encoding step.

5. EXPERIMENTS AND RESULTS

5.1 Experimental settings

We start the segmentation process with dense SURF features extraction on a 6⇥6 sized grid with a temporal
step size of N = 3 frames so that small motions will not be lost and fast motions will be captured without
error. In the case of a still camera, a second clustering of the flow vectors based on the degree of similarity of
their magnitudes, angles and closeness is conducted. Thresholds are set experimentally as follows: lth = 15,
✓th = 2.0, posXth = 45 and posYth = 35.
The descriptors employed in the action recognition process provide a rich video representation in terms of
space and the motion of moving interest points. From each clip, we extract local spatio-temporal features as
ST-SURF. As described previously, the extracted ST-SURF is a 68D vector (64D SURF, ↵x, Dx, ↵y, Dy).
We also extract square-shaped patches surrounding the detected SURFs. The size of each detected patch
is 20s. For each patch, a HMTO is computed in both planes (x, t) and (y, t). HMTOx and HMTOy are
both 96D vectors. To reinforce our action recognition system, we used motion boundary histogram MBH
as a motion descriptor and as a remover of camera motion. MBHx and MBHy are 96D histograms. We
performed an experiment using the bag-of-words approach to provide baseline results on the UCF101 dataset.
The classification step starts by k-mean clustering applied to a set of 106 randomly selected features to build
a visual dictionary for every extracted descriptor type (ST-SURF, HMTOx, HMTOy, MBHx, MBHy).
For each one, we construct 4000 visual words. The k-mean clustering is initialized eight times, and we keep
the configuration with the lowest error rate. The extracted histograms are L2 normalized to ensure better
visual quality. Finally, to classify the actions, we use a non linear SVM with an RBF 2

� Kernel.36

K(vi, vj) = exp(�
X 1

Ac
D(vci , v

c
j)), (14)

where D(vci , v
c
j) is the �2 distance between video vi and vj of the channel c. Ac is the mean distance value

of the training features.

5.2 Dataset

In this work, experiments are conducted on a large realistic dataset called UCF101.42 It includes a total
number of 101 action classes which are divided into five types: Human-Object Interaction, Body-Motion,
Human-Human Interaction, Playing Musical Instruments and Sports. The clips of one action class are
divided into 25 groups which contain 4-7 clips each. The clips in one group share some common features,
such as the background or actors. The videos are downloaded from YouTube43 and the irrelevant ones are
manually removed. All clips have fixed frame rate and resolution of 25 FPS and 320⇥240 respectively.

5.3 Results and discussion

As described, we use the same settings and evaluation metrics of the state-of-the-art. The accuracy rates
reported for the predefined action types are shown in Table 1. For the Sports (87.23%), Playing Musical
Instrument (79.4%), Human-Object Interaction (86.07%), Body-Motion Only(85.19%), Human-Human In-
teraction (88.61%). We can notice that Human-Human Interaction actions achieve the highest accuracy
since the spatio-temporal segmentation we introduced in this thesis highlight human bodies, thus the feature
extraction is performed in the humans bounding boxes boosts significantly human detection. Performing



sports action achieves a reasonable accuracy of 87.23%, this is due to two factors the first one is the tempo-
ral segmentation while the second one is the motion based extraction features. In fact, sports actions show
important motion which is very well described in our proposed approaches. Despite that Human-objects and
Body motion actions are not based on significant motion, the classification shows satisfactory results. We
believe that pixel motion segmentation precision in detecting motion is a good cue to explore human action.

Table 1. Recognition results over the UCF101 dataset.

Action class Accuracy (%)
Sports 87.23%

Playing Musical Instrument 83.4%
Human-Object Interaction 86.07%

Body-Motion Only 85.19%
Human-Human Interaction 88.61%

We present the results of our approach compared to trajectory and motion based video description
approaches. MBH descriptor is associated with several approaches to detect human actions since it is
based on optical flow. This proves that combining MBH with di↵erent descriptors is a straightforward
way to improve the results. The proposed approach which combines ST-SURF, HTMO and MBH gives an
accuracy rate of 79.2% equivalent to the state-of-the-art trajectory based video description. As expected,
the proposed spatio-temporal segmentation improves the proposed approach by 6.1% achieving 85.3% of
accuracy in the challenging realistic big dataset UCF101. Compared with trajectory based descriptors,
the proposed approach gives good performances. To represent action-specific scene context, authors in44

compute local SIFT pyramids on grayscale (P-SIFT) and opponent color keyframes (P-OSIFT) extracted as
the central frame of each clip. They improve accuracy by using L1-regularized logistic regression (L1LRS) for
stacking classifier outputs 85.7%, 0.2% better than our method. The results given in45 are lower than ours.
In fact, authors provide an extensive empirical evaluation of CNNs on large scale video classification 63.3%.
However, in,46 authors investigate architectures of indiscriminately trained deep Convolutional Networks
(ConvNets) for action recognition in video. This method achieves 87.6% which is the best result. This, also,
highlights the importance of the classification task investigation, especially in term of deep classification.

Table 2. Some state of the art recognition results over the UCF101 dataset.

Method Year Accuracy (%)
Murthy et al.47 2013 72.8
Shi et al.48 2013 78.9

Wang et al.49 2013 85.9
Karaman et al.44 2013 85.7
Khuramm et al.50 2012 44.5
Karpathy et al.45 2014 63.3
Simonyan et al.46 2014 87.6

6. CONCLUSION

In this paper, we presented an end-to-end framework for human action recognition in big datasets. Our
method is based on studying optical flows induced by human motion which are, then, clustered to determine
the existence of camera motion. The latter, if it exists, is compensated by means of a�ne transformation.
Finally, human motion is extracted using temporal di↵erencing along with pre-processing operations to reduce
noise. Our second contribution in this framework is the video description process. It is a combination of
motion, trajectory and appearance descriptors. We have shown promising results in both action detection and
recognition processes in videos taken under di↵erent conditions and with complex background. Compared to
many existing state-of-the-art approaches, our proposed framework achieves a reasonable trade-o↵ between
high accuracy and prohibitive computational cost.
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