
Revisit Network Anomaly Ranking in Datacenter
Network Using Re-ranking

Shaohan Huang‡, Carol Fung †,Kui Wang∗‡, Yaqi Yang‡, Zhongzhi Luan∗‡, Depei Qian∗‡
∗Beijing municipal key laboratory of network technology, Beihang University, Beijing, China
†Computer Science Department, Virginia Commonwealth University, Richmond, Virginia, USA

‡Sino-German Joint Software Institute, Beihang University, Beijing, China

buaahsh@foxmail.com, cfung@vcu.edu, kwang@buaa.edu.cn,

yaqi.yang@buaa.edu.cn, zhongzhi.luan@jsi.buaa.edu.cn, depeiq@buaa.edu.cn

Abstract—With the continuous growth of modern datacenter
networks in recent years, network intrusions targeting those
datacenters have also been growing rapidly. In this situation,
system monitoring and intrusion detection become essential to
control the risks of such networks. There are many network
anomaly detection systems being used to identify significant
anomalies in datacenter networks. However, they often focus
on detecting significant anomalies, while ignoring insignificant
anomalies oftentimes. Existing anomaly ranking models are not
accurate in detecting insignificant anomalies. This becomes an
issue when attacks are from insignificant anomaly traffic. In
this paper, we revisit the network anomaly ranking problem
and propose a re-ranking model based on a commonly used
unsupervised network anomaly ranking method. We introduce
several new features into the re-ranking model to capture extra
information about outliers. Our experimental results based on
real datacenter network data demonstrate that the proposed re-
ranking model improves the ranking quality over the unsuper-
vised method, especially for insignificant outliers.

I. INTRODUCTION

With the continuous advances of datacenter networks and

datacenter applications, the datacenter has become indispens-

able infrastructure to our daily lives. At the same time, various

types of datacenter network attacks also become increasing-

ly rampant, such as computer viruses, worms, trojan, and

distributed denial of service. Those attacks are threatening

the security of datacenters. Known attacks can be detected

by signature-based intrusion detection technologies. On the

other hand, anomaly detection technologies are commonly

employed detect unknown attacks in datacenters. Many types

of anomaly detection methods for datacenter protection have

been proposed in the past few years, such as methods based

on statistical theory [1], data mining [2], machine learning [3],

and a combination of the above methods.

In the literature, most network anomaly detection meth-

ods focus on either anomaly detection or anomaly taxono-

my. Anomaly detection commonly adopts binary classifica-

tion models. The main purpose is to determine whether the

observed traffic is normal or not. The anomaly taxonomy

improves the anomaly detection, by further identifying the

types of abnormality, such as scanning or denial of service.

Since the anomaly taxonomy provides the type of attacks

for the detected anomalies, it is no longer a simple binary

classification, nor a simple simple multi classification. Most

works in the literature focus on either anomaly detection or

anomaly taxonomy, few have provided the ranking of anoma-

lies for datacenter monitoring. Although extensive research

on network traffic anomaly detection have been conducted

and various types of anomaly detection systems have been

proposed, little research has been done on anomaly ranking.

Anomaly ranking can be seen as a ranking model instead of

a classification model.
In reality many reputable network anomaly detection tech-

niques [4], [5] have been adopted by datacenters, and have

shown effectiveness in identifying significant anomalies. Their

detection methods are commonly based on identifying out-

liers from the monitored traffic. A common way of ranking

ourliers is based on their distances from the centroid of all

normal points. The further an outlier is from the centroid,

the more abnormal the outlier is. Distance to the centroid

can be an effective metric to rank significant anomalies.

However, we found this method has poor performance in

ranking insignificant outliers, which degrades the effectiveness

of anomaly detection accuracy. For example, an attacker who

uses Distributed Denial of Service attacks (DDoS) may only

start to attack when there is a large volume of data being

exchanged between nodes. In this case, it is necessary to

investigate insignificant anomaly.
To improve anomaly ranking for insignificant outliers, we

propose a new anomalies ranking model, which integrates a

re-ranking model based on unsupervised anomaly detection

algorithm. We employ a support vector regression model for

the re-ranking task. The re-ranking model reuses features from

the unsupervised learning model and also introduces new

features based on the k-nearest neighbours algorithm. In order

to evaluate the results of the re-ranking model, we propose

a novel evaluation method for outliers ranking based on

Discounted Cumulative Gain. Evaluation results demonstrate

that the re-ranking model can improve over the unsupervised

anomaly ranking model by 8% in average, and the new

ranking result can improve the detection rate of insignificant

abnormalities.
The main innovation and contributions of this paper are

listed as follows:

• Our work takes a different approach to visit the anomaly

detection problem, by ranking the degree of abnormality



in datacenter network.

• We propose a re-ranking model based on unsupervised

network anomaly system and using the new features to

overcome some sorting deficiency than the unsupervised

model.

• We propose a new evaluation method to evaluate our

anomaly re-ranking model.

The remainder of the paper is organized as follows: Section

2 gives an overview of work about network anomaly detection

in the literature; Section 3 presents our anomaly re-ranking

system and our proposed evaluation method MDCG; In Sec-

tion 4 we conduct anomaly ranking experiments using data-

center network traffic dataset and the corresponding results.

Finally, in section 5, we conclude this paper and summarize

our future work.

II. RELATED WORK

Network anomaly detection has become an area of active

research during the last decade. Methods for detecting network

anomalies can be broadly classified into statistical theory [1],

data mining [2], classification and clustering [6]. Our work

focuses on unsupervised methods and ranking methods.

The authors present an unsupervised method for classi-

fication and characterization of security related anomalies,

and attacks occurring in honeypots. They use a clustering

technique based on sub-space-density clustering to identify

clusters and rank outliers in multiple low-dimensional spaces.

Delimargas et al. [7] reports an optimized version of Princi-

pal Component Analysis (PCA) to detect network-wide traffic

anomalies in highly aggregated traffic flows. While there are

some limitations on the classic PCA methods, the modified

method can possess promising capabilities to efficiently detect

network anomalies.

In [4] authors use two feature extractors: a data-dependent

normalization and a spectrum kernel for mapping data ele-

ments to a feature space. They also introduce three different

clustering algorithms: fixed-width clustering, optimized k-NN,

and one class SVM to detect network anomaly based on the

1999 KDD Cup data-set.

Reference [5] reports that the unsupervised cluster-based

method can detect new intrusions. Authors use a hierarchical

clustering method to cluster data and use the standard Eu-

clidean distance for inter-patterns similarity, from the same

data-set with [4].

Density-based and grid-based clustering algorithms are also

suitable for unsupervised anomaly detection. The authors of

[8] combine density-grid-based clustering algorithm to im-

prove computational complexity, obtaining similar detection

results.

There has been many work in the field of unsupervised

anomaly detection. Most methods are based on clustering and

outliers ranking. However, to the best of our knowledge, our

approach is the first to focus anomaly ranking and detect the

insignificant abnormalities in datacenter network.

Fig. 1. Overall Structure of Network Anomaly Re-ranking System

III. NETWORK ANOMALY RANKER AND EVALUATION

METHOD

In this section, we first describe at a high-level design of

our anomaly ranking system and its difference from other

network anomaly detection systems. Then we present in detail

of our re-ranking model and new features selection. Finally,

we demonstrate the evaluation results for our anomaly ranking

model.

A. Overview of Network Anomaly Ranking System

Figure 1 shows our system structure and work flow. The

network anomaly ranker system consists of two parts - unsu-

pervised network anomaly ranking and network anomaly re-

ranking.

The first part of the system has a similar structure with

a conventional network anomaly detection system such as

the unsupervised network anomaly detection (UNADA) [9].

It consists of five sub-parts: network traffic capturing, flow

aggregation, features, selection unsupervised algorithm and

outlier ranking.

Our system performs network anomaly ranking on single-

link packet-level traffic, which are captured and aggregated

into IP flows. IP flows are analyzed using either IPsrc aggre-

gation key or IPdst aggregation key [9]. These classifications

can describe different spatial structure anomalies, including 1-

to-N anomalies and N-to-1 anomalies. 1-to-1 anomalies can

be seen as a special case of 1-to-N or N-to-1, and N-to-N can

be treated as multiple N-to-1 or 1-to-N anomalies.

Selecting features from aggregated flows is a key to detect

anomalies [10]. We use 10 features in this paper: number

of source/destination IP addresses and ports [11], ratio of

the number of sources to the number of destinations [8],

packet arrival rate, ratio of ICMP and SYN packets [12],

average packet size, and ratio of the number max packet size

to the average packet size. According to Fernandes’s work

on signature-based anomaly-characterization [3], these traffic

features can be used to describe common network attacks such

as DoS, DDoS, port scans, and worms/virus propagation.



Next we use several unsupervised algorithms, such as UN-

ADA [9], PCA [7], DBSCAN [13] and one-class SVM [4],

for the purpose of anomaly detection. These algorithms are

commonly used for anomaly detection. They can identify

outliers, which are remarkably different from the rest of the

samples. After all, an outlier is a sample that does not belong

any cluster.

The outliers ranking module determines the level of dif-

ference of these outliers and rank these anomalies based on

the degree of difference. The core process of outliers ranking

is the computing of the distance between the outlier and the

centroid of normal data samples. The further the distance is,

the higher the degree of abnormality is. We then sort these

anomalies according to computed distances and output the

sorted anomalies sequence as the ranking result.

The second part of our system is network anomaly re-

ranking, which consists of re-ranking features selection and

outliers re-ranking. In addition to the features in ranking sub-

system, we add several new features into re-ranking process,

including the score of the unsupervised system, ranking se-

quence, K-normality, and K-density of the outliers. Outliers

re-ranking uses support vector regression model to detect and

sort these anomalies using the new features. The details of this

part will be described in next the chapters.

B. New Features Selection and Re-ranking Model

Anomaly re-ranking model system uses the output sequence

of unsupervised detection as its input and reorders the se-

quence to reach the final output of our system.

The first challenge of the reordering system is the feature

selection. In an unsupervised anomaly detection system, the

distance (Euclidean distance or Mahalanobis distance) is com-

monly used to measure the level of abnormality. This way

detectors can find the significant outliers easily, but may ignore

insignificant outliers due to the low sensitivity. Therefore we

need more new feature to overcome this problem.

In addition to 10 unsupervised models features, we add

four new features into the reordering model. Because the

input of the re-ranking model is output of unsupervised sub-

system, both unsupervised model detected outliers. The four

new features we have chosen are: sorted fraction in the

unsupervised model, reciprocal of position in the old sequence,

K-normality and K-density.

The K-normality and K-density are the two compound

features that further describe the characters of outliers. The

value of K-normality describes the condition of the k nearest

neighbor points around the outliers. If we select k nearest

points around the outlier, the value of j/k means there are j

points labeled as abnormal based on the former unsupervised

learning model. The K-normality values range from 0 to 1.

The idea of the K-density came from some density-based

machine learning algorithms such as DBSCAN. The intuition

is that the further an outlier is from its neighbors, the more

abnormal it should be. K-density can be calculated using the

ratio of average distance between the outlier and its K nearest

points to the distance from the centroid of all normal points.

As shown in Figure 2, all normal points are marked red, all

anomaly points are marked black and the green star is the

centroid of all normal points. In Figure 2 the outlier A is

should be ranked more abnormal than the outlier B since it

is further separated from the mass. However, the outlier A

is closer to the centroid of all the normal points (green star)

compared to outlier B, so it will be ranked to be less abnormal

than B based on Euclidean distance. The use of the K-density

feature can fix this ranking error.

After including new features, we apply a regression model

in our network anomaly re-ranking. In statistics, regression

analysis is a statistical process for estimating the relationships

among variables.

Fig. 2. Special anomaly situation

Regression analysis is a supervised machine learning

method. Before running the model, we need labelled history

traffic as training data to build such regression model. The

training data is generated form the output of unsupervised

anomaly detection system on old traffic capturing. Then we

detect new outliers based on this model.

Support Vector Regression was chosen for the re-ranking

task. Support Vector Machines are supervised learning models

with associated learning algorithms that analyze data and

recognize patterns, used for classification and regression anal-

ysis [14]. The method of Support Vector Classification can be

extended to solve regression problems. This method is called

Support Vector Regression (SVR). SVR contains all the main

features to support a maximum margin algorithm [15]. In SVR

a loss function is used to penalize regression errors that are

greater than a threshold. Such loss functions usually lead to

the sparse representation of the decision rules, resulting in

significant algorithmic and representational advantages.

C. Effective Evaluation Method

In this subsection, we propose a new ranking evaluation

method for outliers ranking based on Discounted Cumulative

Gain (DCG). We modified DCG to match anomaly ranking

named MDCG.

We use an example to explain the evaluation methods.

Suppose there are i anomalies, j suspicious and k notices in

the output sequence. Besides these abnormal cases, there are

l irrelevant examples in this sequence. An ideal ranking result

should start with the i anomalies, followed by j suspicious and



end with k notices. The more consistent the arrangement of

ranking results are with the ideal ranking sequence, the higher

score it achieves.

An effective evaluation method should satisfy the following

three conditions:

1) Scores are relevant to both the degree of anomaly and the

position of each anomaly item.

2) Different level of anomalies have different weights.

3) Front position anomaly scores higher than rear position.

In order to find a better measuring algorithm for anomaly

ranking, we investigated some common ranking evaluation

methods such as Precision@K (P@K), Mean Average Preci-

sion (MAP), Mean Reciprocal Rank (MRR), and Normalized

Discounted Cumulative Gain (NDCG). P@K, MAP, and MRR

use binary relevance, NGCG uses multiple levels of relevance,

which is more suitable for anomaly ranking.

DCG is a popular measuring method to evaluate web

search and ranking tasks. Using a graded relevance scale of

documents in a search engine result set, DCG measures the

usefulness, or gain, of a document based on its position in the

result list. The gain is accumulated from the top of the result

list to the bottom, with the gain of each result discounted at

lower ranks [16].

The Discounted Cumulative Gain accumulated at a partic-

ular rank position p is defined as:

DCPp =

p∑

i=1

2reli − 1

log2(i+ 1)
(1)

Where p represents the ranked position and reli is the

graded relevance of the result at position i.

In order to be cross-query comparable, producing the max-

imum possible DCG till position p as Ideal DCG (IDCG)

and normalized discounted cumulative gain (nDCG) is ratio

of DCG of IDCG, which is computed as:

nDCPp =
DCPp

IDCPp
(2)

DCG computes Cumulative Gain of the items on top p

positions, disregarding the other positions. That is reasonable

for information retrieval. The lower the ranked position of a

relevant document, the less useful it is for the user, since it is

less likely to be examined. However, our anomaly ranking

uses a different approach. Besides the top p positions, we

accept other anomaly cases that can be ordered at more

forward position. Therefore we modified the DCG formulation

as following:

MDCPp =

p∑

i=1

2reli − 1

log2(posi)
(3)

Where p represents the number of abnormal cases and is the

position in sequence for i abnormal case. The is weight of

i abnormal example. We can also compute the normalized

MDCG where IMDCG is the Ideal MDCG.

IV. EXPERIMENTAL EVALUATION

We evaluate the effectiveness of network anomaly re-

ranking model using the real data set from the public MAW-

I repository of the WIDE project [16] and the datacenter

network dataset collected by our monitoring system from

Amazon Web Services (AWS). Our experimental results show

that the new ranking model can benefit the ranking result

of insignificant abnormalities and achieve satisfying result in

MDCG.

A. Data Collection

We have collected labelled network traffic traces to evaluate

our system. MAWILab is a database for researchers to evaluate

their traffic anomaly detection methods. The dataset collected

using tcpdump consists of daily raw packet traces of 15

minutes long each day for the last fourteen years.

Besides the MAWI traffic dataset, we also collect IP level

datacenter network logs from our AWS nodes. We deployed

monitoring endpoints in 8 AWS nodes over two months. We

used tcpdump toolkit to collect our datacenter data, which has

the same data structure with the MAWI dataset.

Combining the results from multiple distinct and indepen-

dent anomaly detectors, MAWI applies a voting mechanism

to generate labelled traces. In the MAWI archive, it annotates

traffic anomalies with four different labels: anomalous, suspi-

cious, notice, and benign. The label anomalous is assigned to

all abnormal traffic and should be identified by any effective

anomaly detector. The suspicious is assigned to all traffic that

is probably anomalous but not clearly identified by MAWI

methods. The label notice is assigned to all traffic that has

been reported by at least one anomaly detector. All the

other traffic are labeled benign because none of the anomaly

detectors identified them. We use the same voting mechanism

to generate labelled dataset traces in our datacenter network

traffic.

We refer the MAWI traffic labelled dataset and our collected

datacenter dataset as our ground truth. If the ranking model

performs great, it can replace several anomaly detectors in

network anomaly detection.

B. Building Support Vector Regression Model

Support Vector Regression Model is a supervised machine

learning method. Unlike unsupervised algorithms, it requires

training data and the model needs to be trained before predic-

tion.

All traffic in the dataset is annotated with four different

labels: anomalous, suspicious, notice, and benign. Anomalous,

suspicious and notice are three different levels of abnormal

and should be ordered accordingly by ranking system. To

differentiate the difference between the different levels of

anomaly, we assign different weights to each type. We weight

anomalous to be 1, suspicious to be 0.8 and notice to be 0.05.

These weights are applied in training data generation and the

MDCG formulation for evaluation.

As we mentioned before, in the re-ranking sub system, we

need build the Support Vector Regression model to reorder the



0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

AFP

AT
P

DBSCAN Raw
DBSCAN w=0
DBSCAN w=0.5%

0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

AFP

AT
P

ONECLASS Raw
ONECLASS w=0
ONECLASS w=0.5%

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

AFP

AT
P

PCA Raw
PCA w=0
PCA w=0.5%

0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

AFP

AT
P

UNADA Raw
UNADA w=0
UNADA w=0.5%

Fig. 3. Average True Positives(ATP) Rate vs Average False Positive(AFP)
Rate in MAWI

output of unsupervised detector. The labelled data are divided

into two parts: training dataset and testing dataset.

In the training phase, traffic data shall be sorted by un-

supervised system. We use the output of the unsupervised

detector, which is a sequence of sorted data points and real

sequence result as input for the regression model. We then

transform the sequence into an array of class labels. For

regression model, these class labels are dependent variables

and they are continuous values. We generate class labels based

on anomaly weights. Our strategy is selecting the max score

of unsupervised detector as C (ceiling). The formulation of

class labelling can be written as: Label = C × w.

Where w is the weight of the label class. The advantage of

using the weight of abnormal label is that it is consistent with

the evaluation method. It means that method of generating

training data is reasonable.

After the training dataset is ready, we fit the SVR model

with scikit-learn [17] , which is a machine learning toolkit

in Python. It is a simple and efficient tool for data mining

and data analysis. We train SVR model with the Radial

Basis Function (RBF) kernel, where two parameters must be

considered: C and γ. The parameter C can be used to tune the

trad-off between the fitting on samples and smoothness of the

outcome. A low C makes the decision surface smooth, while

a high C aims at classifying all training examples correctly. In

our model, we set C 1.0. γ is another parameter defines how

much influence a single training example has. We set γ = 0
considering our traffic data is unbalanced.

C. Ranking outlier in labelled traffic with Ground Truth

To evaluate our proposed re-ranking system, we build our

system following the design shown in Figure 1. We compare

the performance of our re-ranking model with other models

using different clustering algorithms.

Figure 3 presents the Receiver Operating Characteristic

(ROC) curve in the detection of anomalies in MAWI, using

IPsrc as key. We compare the performance of four common

unsupervised algorithms: UNADA, DBSCAN, PCA and one-

class SVM as the selected learning model in part I. All

these methods use the Mahalanobis distance to their centroid

as ranking criteria. In Figure 3, the ROC curve reports the
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Rate in MAWI

performance of detecting anomalous classes, which is more

significant than other labels. Figure 4 presents the ROC curve

in the detection of the whole abnormal points including

anomalous, suspicious and notice.

In the two figures, Raw lines represent the ranking result

of unsupervised algorithms and w = 0 line shows the perfor-

mance of re-ranking model when unsupervised output are fully

re-ordered. We can see that with re-ranking the performance

drop down using anomalous classes as standard. But in Figure

4 , when we evaluate the entire abnormal traffic, the re-ranking

method can achieve better performance. This outcome shows

that significant anomalies have been detected by unsupervised

model. Re-ranking algorithm will affect the ranking position

for most significant anomalies. Through Figure 4 we can see

that the re-ranking model can handle the insignificant cases

and get better ROC than unsupervised method.

Through the above experimental results, we decide the best

strategy is to re-rank the insignificant anomalies while keep

the significant anomalies in place. That will not only affect

significantly abnormal results, but also improve non-significant

abnormal ranking. At the same time we can use MDCG to

evaluate our methods.

In the next experiment, we do not change the top w

percent of the unsupervised model outputs, re-order the rest

of sequence using regression model.

As shown in Figure 3 and Figure 4, using the notable ex-

ception as evaluation standards, while maintaining the previous

0.5%, the results of unsupervised models are mostly the same

as the re-ranking algorithm. When we include all abnormal

points into the evaluation, the ranking quality is improved after

re-ranking model.

Table 1 shows the performance of our system under d-

ifferent clustering models and w settings. We can see that

when w is 0, MDCG value declines compared to the model

without re-ranking. Despite the fact that figure 4 shows better

ROC curve when w is 0 compared to the raw method,

MDCG decreases since significant abnormality have more

weight. When we slightly increase the portion of the top

w% of most significant data points without re-ranking them,

MDCG value increases. Among the four selected clustering

algorithms, UNADA shows the best performance. For all the



four different algorithms, the average enhancement is 8%

through re-ranking. We can conclude that the re-ranking model

can improve the quality of network anomaly ranking.

TABLE I
MDCG VALUE FOR MAWI DATA

- DBSCAN UNADA SVM PCA

Raw 59.50% 61.80% 56.74% 55.38%

0 57.48% 57.38% 52.49% 51.05%

0.1% 69.19% 68.28% 63.03% 55.62%

0.5% 68.98% 69.47% 64.45% 62.63%

1% 67.90% 68.81% 64.17% 62.57%

5% 64.70% 65.92% 61.33% 61.29%

10% 63.52% 65.15% 60.62% 60.14%

Max Increase 9.69% 7.67% 7.71% 7.29%

Then we set the threshold w to 0.5% and conduct ex-

periments in our collected AWS datacenter network traffic

using IPsrc and IPdst as keys. We further demonstrate the

performance of re-ranking system using IPsrc as key in Table 2

and using IPdst as key in Table 3. The results show that in both

cases, the re-ranking can enhance the anomaly detection by a

gain of 6-8% to 9-11% respectively. Thus, we have verified

the effectiveness of our system to rank network anomaly in

datacenter network.

TABLE II
MDCG VALUE FOR DC DATA, IPSRC KEY

- DBSCAN UNADA SVM PCA

Raw 61.48% 63.37% 57.32% 53.11%

0.5% 69.32% 70.29% 65.34% 61.93%

Increase 7.84% 6.92% 8.02% 8.82%

TABLE III
MDCG VALUE FOR DC DATA, IPDST KEY

- DBSCAN UNADA SVM PCA

Raw 54.21% 58.45% 56.28% 52.33%

0.5% 63.85% 67.64% 67.34% 61.47%

Increase 9.64% 9.19% 11.06% 9.14%

V. CONCLUSION AND FUTURE REMARKS

In this paper we take a different approach to solve the

anomaly detection problem through anomaly ranking. We

propose a re-ranking model that is based on an unsupervised

learning model plus another round of ranking adjustment by

introducing some additional features. We compare our model

with previous work in the field of unsupervised anomaly ranker

in datacenter network environment. Our results based on real

data show that our re-ranking model can improve the detection

rate on insignificant anomalies. New model can improve the

detection rate of insignificant abnormalities.

As our future work, we plan further experimental evaluation

of our re-ranking model in cloud network environment. Addi-

tional work is to integrate our anomaly ranking system with a

diagnosis engine that can not only rank anomaly network but

can also determine the cause of a ranked anomaly.
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