
elatório
técnico

echnic
report

alt
r

IPP-HURRAY! Research Group

Polytechnic Institute of Porto
School of Engineering (ISEP-IPP)

Distributed Computer-Controlled
Systems: the DEAR-COTS Approach

Paulo VERÍSSIMO (FCUL)
António CASIMIRO (FCUL)

Luís Miguel PINHO
Francisco VASQUES (FEUP)
Luís RODRIGUES (FCUL)

Eduardo TOVAR

HURRAY-TR-0021

October 2000

THIS WORK IS PARTIALLY SUPPORTED BY FCT UNDER PROJECT DEAR-COTS (Praxis/P/EEI/14187/1998)

Distributed Computer-Controlled Sytems: the DEAR-COTS Approach

Paulo VERÍSSIMO, António CASIMIRO, Luís RODRIGUES

University of Lisboa, FCUL
Bloco C5, Campo Grande,
1749-016 Lisboa
Portugal
Tel.: +351.21.7500087
E-mail: {pjv,casim,ler}@di.fc.ul.pt
http://www.hurray.isep.ipp.pt

Luís Miguel PINHO, Eduardo TOVAR

IPP-HURRAY! Research Group
Polytechnic Institute of Porto (ISEP-IPP)
Rua Dr. António Bernardino de Almeida, 431
4200-072 Porto
Portugal
Tel.: +351.22.8340502, Fax: +351.22.8340529
E-mail: {lpinho, llf}@dei.isep.ipp.pt
http://www.hurray.isep.ipp.pt

Francisco VASQUES

University of Porto (FEUP)
Rua Dr. Roberto Frias
4050-123 Porto
Portugal
Tel.: +351.22.5081702, Fax:
E-mail: vasques@fe.up.pt
http://www.fe.up.pt/~vasques

Abstract:
This paper proposes a new architecture targeting real-time and reliable Distributed
Computer-Controlled Systems (DCCS). This architecture provides a structured approach for
the integration of soft and/or hard real-time applications with Commercial Off-The-Shelf
(COTS) components. The Timely Computing Base model is used as the reference model to
deal with the heterogeneity of system components with respect to guaranteeing the timeliness
of applications. The reliability and availability requirements of hard real-time applications are
guaranteed by a software-based fault-tolerance approach.

DISTRIBUTED COMPUTER-CONTROLLED

SYSTEMS: THE DEAR-COTS APPROACH 1

P. Ver��ssimo�, A. Casimiro�, L. M. Pinho��,

F. Vasques���, L. Rodrigues�, E. Tovar��

�University of Lisboa, FCUL, Bloco C5, Campo Grande,
1749-016 Lisboa, Portugal, E-mail: pjv,casim,ler@di.fc.ul.pt
�� Polytechnic Institute of Porto, ISEP, Rua de S~ao Tom�e,

4200-072 Porto, Portugal, E-mail: lpinho,emt@dei.isep.ipp.pt
���University of Porto, FEUP, Rua Dr. Roberto Frias, 4200-465

Porto, Portugal, E-mail: vasques@fe.up.pt

Abstract: This paper proposes a new architecture targeting real-time and reliable
Distributed Computer-Controlled Systems (DCCS). This architecture provides a
structured approach for the integration of soft and/or hard real-time applications
with Commercial O�-The-Shelf (COTS) components. The Timely Computing Base
model is used as the reference model to deal with the heterogeneity of system
components with respect to guaranteeing the timeliness of applications. The reliability
and availability requirements of hard real-time applications are guaranteed by a
software-based fault-tolerance approach.

Keywords: Real-Time, Fault Tolerance, Distributed Embedded Systems, COTS

1. INTRODUCTION

Currently, there is a trend to incorporate Com-
mercial O�-The-Shelf (COTS) components in Dis-
tributed Computer-Controlled Systems (DCCS),
in order to minimise costs and development time.
Therefore, there is the need for architectures al-
lowing the integration of COTS components, hard
real-time reliable applications and non-reliable
and/or soft real-time applications.

This paper proposes the DEAR-COTS (Dis-
tributed Embedded ARchitecture using Commer-
cial O�-The-Shelf components) architecture for
supporting real-time and reliable DCCS. This ar-
chitecture provides DCCS with a generic frame-
work, in which hard real-time applications can ex-
ecute, guaranteeing their timeliness and reliability
requirements, whilst, at the same time, embody-
ing soft real-time or non real-time applications.

1 This work was partially supported by the FCT, through
project Praxis/P/EEI/14187/1998 (DEAR-COTS).

This framework is put together by means of a
Timely Computing Base (TCB), which is used as
the reference model to deal with the heterogeneity
of system components with respect to guarantee-
ing the timeliness of applications.

The remainder of this paper is organised as fol-
lows. Section 2 presents some of the relevant
work concerning dependable distributed real-time
systems. Afterwards, Section 3 presents the pro-
posed architecture. Section 4 and 5 present the
Hard Real-Time and Soft Real-Time Subsystems
of the DEAR-COTS architecture. Finally, Section
6 draws some conclusions and points out possible
future directions.

2. RELATED WORK

The problem of reliable real-time DCCS is rea-
sonably well understood when considering syn-
chronous and predictable environments. However,
the use of COTS components and the integration,

in the same environment, of hard real-time and
soft or non real-time applications introduces new
problems.

The guarantee of these properties cannot be
achieved by an \ad-hoc" solution, as it has been
shown by structured approaches to the prob-
lem of designing dependable real-time systems
(e.g. DELTA-4 (Powell, 1991), MARS (Kopetz
et al., 1989) or GUARDS (Powell et al., 1999)).
However, specialised architectures are costly, thus,
there is the need for a fault-tolerant real-time dis-
tributed architecture for DCCS, based on highly
available and low cost COTS technologies.

A few works have addressed the implementation
of timeliness requirements in environments where
no real-time guarantees can be given (Cristian and
Fetzer, 1999; Ver��ssimo and Almeida, 1995). But
the Timely Computing Base model presented in
(Ver��ssimo et al., 2000) provides a generic frame-
work to deal with this problem. It is used as a
reference model in the design of the DEAR-COTS
architecture. The appropriateness of the TCB
model to COTS-based environments is discussed
in (Casimiro et al., 2000) for a distributed system
composed exclusively by COTS components It
concludes that the system must be able to cope
with the occurrence of residual timing failures.

Fault tolerance is the preferred means to achieve
reliability. A fault-tolerant service can be imple-
mented by co-ordinating a group of processes
replicated on di�erent nodes. There are three
main replication approaches: active replication,
primary-backup (passive) replication and semi-
active replication (Powell, 1991). The use of
COTS induces fail-uncontrolled replicas, so it be-
comes necessary the use of active replication tech-
niques. In active replication, all the replicas pro-
cess the same inputs, keeping their internal state
synchronised and voting all on the same outputs.

It is also clear that the feasibility of the appli-
cations' requirements must be ensured by sound
schedulability analysis techniques. The use of
these techniques (e.g., the well-known Response
Time Analysis (Audsley et al., 1993)) allows
checking if the task set will meet its deadlines, a
required condition for hard real-time applications.

3. THE DEAR-COTS ARCHITECTURE

The DEAR-COTS architecture provides an execu-
tion environment for real-time applications, with
reliability and availability requirements, through
the use of COTS hardware and software. Its main
purpose is to provide continuous and adequate ser-
vice to the controlled system, in order to increase
the con�dence level put in the controlling system.
The DEAR-COTS architecture is not targeted to
safety-critical systems, as these systems require

a greater level of dependability and a more re-
stricted set of failure assumptions (Laprie, 1992).

Besides the reliability and availability require-
ments to guarantee the correct behaviour of
the supported real-time applications, DCCS also
needs to be interconnected with other parts of the
overall system. Currently, these kind of systems
demand for more
exibility and interconnectivity
capabilities, while guaranteeing the availability
and reliability requirements of the supported real-
time applications. Hence, the integration of hard
real-time applications, whose requirements have
to be guaranteed, with soft real-time applications,
where a more
exible approach can be used, is
another goal of the DEAR-COTS architecture.

A common characteristic among all these applica-
tions is their real-time behaviour. This real-time
behaviour is speci�ed in compliance with timeli-
ness requirements, which in essence call for a syn-
chronous system model. However, the demand for
an environment with
exibility and interconnec-
tivity capabilities and based on possibly hetero-
geneous COTS components, makes the enforce-
ment of timeliness assumptions very diÆcult. The
Timely Computing Base (TCB) model provides a
generic solution to this problem.

In the DEAR-COTS architecture the TCB model
is used as a reference model to deal with the
heterogeneity of system components and of the en-
vironment, with respect to timeliness. From a sys-
tem model perspective we devise a generic DEAR-
COTS architecture to address the fundamental
problems in a global and integrated way. From an
engineering point of view, we devise speci�c mech-
anisms to deal with the reliability and availability
requirements of hard real-time applications, and
to deal with the requirements of soft real-time
applications.

3.1 The TCB model

The TCB model provides a generic framework
to deal with the problem of implementing appli-
cations with timeliness requirements in environ-
ments that are unpredictable or unreliable. The
fundamental idea, which is applied to the DEAR-
COTS architecture, is that systems are assumed
to have two distinct parts with respect to syn-
chrony. In a system with a TCB there is a control
part, with synchronous properties, made of local
TCBmodules interconnected by a control channel.
There is also a payload part, over a global network
or payload channel, that may have any degree of
synchronism. In particular, the payload part can
either enjoy synchronous properties but can also
be completely asynchronous.

The synchronous part is supposed to be a very
small and simple part of the overall system.
Therefore, its synchronous properties can be en-

forced with much higher coverage than if the syn-
chronous properties would have to be assumed
for the overall system. Applications execute in
the payload part of the system and use a set of
basic services provided by the control part, the
TCB: Timely Execution, Duration Measurement
and Timing Failure Detection. The de�nition of
these services and the respective API can be found
in (Ver��ssimo et al., 2000).

Applications can bene�t from the TCB by con-
struction, using TCB services to \be aware" of
their timeliness and, therefore, to behave always in
a manner that preserves the safety of the system.
This is the case of many soft real-time applica-
tions, namely all those that can live with sporadic
failures, that can adapt to the available quality
of service, or those that can switch to a fail-safe
state when some timing failure is detected.

In fact, timing faults a�ecting components or ap-
plications with soft real-time requirements, can be
addressed with the help of a timing failure detec-
tion service and by applying adequate tolerance
or safety measures, as explained in section 5.

3.2 A generic DEAR-COTS node

Given the above description of the TCB model,
the architecture of a generic DEAR-COTS node,
capable of simultaneously handle the require-
ments of hard and soft real-time applications, can
be understood in a very intuitive manner. In fact,
the basic idea of casting into the architecture
the heterogeneity in system synchrony, has been
applied to the generic DEAR-COTS node, as rep-
resented by Figure 1.

Control

channel

Real-Time channelGeneral purpose channel

TCB

DC
H

DC
S1

(Timely Computing Base)

Synchronous Asynchronous synchronous

DC
Sn

real-time
SoftHard

Partially

real-time real-time
Soft

Fig. 1. DEAR-COTS node structure.

The several modules depicted in the �gure are
intended to fully characterise a node in terms
of the synchrony assumptions. The TCB mod-
ule acts as a gluing element, being always the
most synchronous part of the system. It pro-
vides timely services to less synchronous mod-
ules through an interface that bridges the syn-
chrony gap. The DCH , DCS1 and DCSn modules
constitute the payload part of the system, and
represent the several possible environments with
respect to synchrony that may exist in a DEAR-
COTS node. Each of these modules can be seen

as a particular subsystem on which applications
with di�erent requirements will be executed.DCH
represents a hard real-time subsystem (HRTS),
with synchronous properties, which is supposed
to exist in every node running distributed and/or
replicated hard real-time applications. Di�erent
DCS subsystems can be de�ned, accordingly to
the synchrony properties that they enjoy, namely
the asynchronous one, DCS1 , and several par-
tial synchrony models, DCSn (Cristian and Fet-
zer, 1999; Ver��ssimo and Almeida, 1995). With the
help of a TCB, all these subsystems (including the
asynchronous one) can support the execution of
certain applications with timeliness requirements.
Therefore, we will refer to all of them as soft real-
time subsystems (SRTS).

Each node may have access to di�erent communi-
cation channels with respect to synchrony. As in
the TCB model, we assume that TCB modules
communicate through a control channel, which
can be implemented as a virtual channel over the
physical (real-time) network or can be a sepa-
rate network by itself. There is also a real-time
channel serving DCH subsystems, implemented
over a real-time network, and a general purpose
channel serving DCS subsystems, where no real-
time guarantees are provided.

This generic node architecture can indeed be in-
stantiated into di�erent node con�gurations, de-
pending on the modules used in a node. A DEAR-
COTS system is built by interconnecting several
DEAR-COTS nodes, choosing suitable con�gura-
tions for each node.

3.3 Implementing a DEAR-COTS system

A DEAR-COTS system is built using distributed
processing nodes, where distributed hard real-
time and soft real-time applications may coexist.
To ensure the desired level of fault tolerance (relia-
bility and availability) to the supported hard real-
time applications, speci�c components of these
applications may be replicated. To ensure the
timeliness properties of soft real-time applications
and allow system resources to be shared by every
(soft and hard real-time) application, processing
nodes are modelled as DEAR-COTS nodes.

From a generic DEAR-COTS node it is possible
to de�ne particular node instances, with di�er-
ent characteristics and purposes. A DEAR-COTS
node is characterised by the synchrony subsystems
it is composed of. There are essentially three basic
node types: Hard real-time nodes (H), soft real-
time nodes (S) and gateway nodes (H/S).

Hard real-time nodes are those where only a
hard real-time subsystem (HRTS) exists. There-
fore, they will exclusively be used to provide a
framework to support reliable and available hard
real-time applications, which are the core of the

DCCS application. The existence of a TCB in
these nodes is not essential to allow the implemen-
tation of hard real-time applications. However, as
in any system assumed to be synchronous, and
even more in a COTS based one, there is always a
small probability that timing failures occur. The
need for a TCB, as an instrument to amplify the
coverage of synchronous assumptions, has to be
equated in terms of the dependability required by
the supported DCCS application.

Soft real-time nodes only include a soft real-time
subsystem (SRTS). The soft real-time subsystem
provides the execution environment for the remote
supervision and remote management of the Dis-
tributed Computer Control System. The existence
of a TCB in these nodes is crucial to allow the
implementation of applications with timeliness re-
quirements.

A gateway node integrates both a hard real-time
subsystem (HRTS) and a soft real-time subsystem
(SRTS). In these nodes there are two distinct and
well-de�ned execution environments. The idea is
to allow hard real-time components, executing in
the HRTS, to interact in a controlled manner
with soft real-time components, executing in the
SRTS. The communication mechanisms between
both subsystems must be carefully designed, guar-
anteeing that failures in the soft real-time sub-
system (less reliable) do not interfere with the
hard real-time subsystem (concerning its timing,
availability and reliability requirements). There-
fore, mechanisms for memory partitioning must
be provided, and also the inter-communication
mechanisms must guarantee the integrity of data
transferred from the SRTS to the HRTS, by up-
grading its con�dence level.

Wide Area Network

DEAR-COTS

H Node
H/S

Node

"DC Gateway"

H Node

S Node S Node

DEAR-COTS DEAR-COTS

DEAR-COTS DEAR-COTS

Sensors/Actuators

Controller Area Network

General purpose

Real-Time

DEAR-COTS nodes:

H/S Node - Gateway node

S Node - Soft Real-Time node

H Node - Hard Real-Time node

HRT

App

SRT

App

SRT

App

HRT

App

SRT

App

HRT

App

Fig. 2. Generic DEAR-COTS system.

Figure 2 represents a system containing all the
above node con�gurations. H and H/S Nodes are
interconnected by a real-time network, which pro-
vides the communication infrastructure for the
hard real-time applications (interconnecting con-
trollers, sensors and actuators). This real-time
network also provides the DEAR-COTS architec-
ture with a communication infrastructure to sup-
port the replica management mechanisms. At the
above level, as there is the need to interconnect
these nodes with the upper levels of the DCCS
(e.g. for remote access, remote supervision and/or

remote management), there is a general-purpose
network interconnecting H/S and S nodes. The
control channel required for the TCB is not nec-
essarily an independent network. The assumption
of a restricted channel with predictable timing
characteristics (control) coexisting with possibly
asynchronous channels is feasible in some of the
current networks (Prycker, 1995).

At the hard real-time level, the HRTS is re-
sponsible for providing a framework for reliable
execution. Hence, applications have guaranteed
execution resources, including processing power,
memory and communication infrastructure. This
is the main reason for the need of a separated
real-time communication network for the HRTS,
where messages sent from one node to another are
received and processed in a bounded time interval.

The SRTS provides a set of services to support the
supervision and management level of the DCCS.
At this system level,
exibility is a major goal,
since new services can be provided as the system
evolves. However, since there are no hard real-
time guarantees, either the TCB services are used
to allow applications to be aware of the available
quality of service (and adapt themselves, if possi-
ble), or techniques such as best-e�ort scheduling
or value-based scheduling must be used.

4. THE HARD REAL-TIME SUBSYSTEM

The set of H and H/S nodes provides a framework
to support distributed hard real-time applications
(Figure 3). The reliability and availability require-
ments are guaranteed by the software replication
of COTS components, rather than the usual so-
lution, which is to build software on top of spe-
cialised hardware.

Real-Time Network

Kernel

Hardware

Kernel

Hardware

Kernel

Hardware

Kernel

Hardware

Hard Real-Time Application

Hard Real-Time Application

Hard Real-Time Application

Fig. 3. HRTS structure.

One hard real-time application is constituted by
several tasks (processing units). These tasks are
distributed over the H and H/S nodes. Each node
has its own (non-distributed) COTS real-time
kernel and hardware, which provides the desired
multitasking support. An advantage of using both
a COTS kernel and hardware is that it allows
for the easy upgradability and portability of the
system.

The set of H and H/S nodes also supports the ac-
tive replication of software (Figure 4) with dissim-
ilar replicated task sets in each node. By providing

di�erent execution environments in each node, the
tolerance to design faults is increased, since nodes
are considered as independent from the point of
view of failures. At the same time
exibility is
increased, since nodes are not just copies of each
other, allowing for a more
exible design of real-
time applications.

τ1

Replica Manager

Communication Manager

 τ1‘ τ2 τ2’

 τ3 τ3‘

HRTS

Support

Software

Fig. 4. Replicated Hard Real-Time Application.

The goal of the HRTS support software (Figure
4) is to provide the distribution support (includ-
ing both the application distribution itself and
the replication management) to hard real-time
applications. A layered approach to the HRTS is
provided to simplify the development of the HRTS
support software:

� The Communication Manager layer is re-
sponsible for the adequate communication
services;

� The Replica Manager layer is responsible for
transparently manage the replicated compo-
nents.

4.1 Scheduling model

In the HRTS, each application consists of a set of
related tasks (�1 ... �n), being each task a single
processing unit. Tasks from the same application
can be allocated to di�erent nodes. In order to al-
low the use of current o�-line schedulability anal-
ysis techniques (e.g., the well-known Response
Time Analysis (Audsley et al., 1993)), each task
is released only by one invocation event, but can
be released an unbounded number of times. A
periodic task is released by the runtime (temporal
invocation), while a sporadic task can be released
either by another task or by the environment.
After being released, a task cannot suspend itself
or be blocked while accessing remote data (remote
blocking).

Tasks are allowed to communicate with each other
either through shared data objects or by release
event objects (which can also carry data). Shared
data objects are used for asynchronous data com-
munication between tasks, while release event ob-
jects are used for the release of sporadic tasks.
Tasks are designed as small processing units,
which, in each invocation, read inputs; carry out
the processing; and output the results. The goal is
to minimise task interaction, in order to improve
the schedulability analysis and increase the sys-
tem's eÆciency. Internal blocking can be bounded

and o�-line analysed through the use of Priority
Ceiling Protocols (Sha et al., 1990).

4.2 Replication Model

As there is the target of reliability through replica-
tion, it is important to de�ne the replication unit.
From the above de�nitions, two di�erent entities
could be considered: a single task or the com-
plete hard real-time application. However, both
solutions would be very restrictive. In the latter,
in order to replicate part of the application, all
of its tasks would have to be replicated, which
would unnecessarily increase the processing load.
In the former, each task output would have to be
consolidated, which would increase the inter-task
communication load.

Therefore, the notion of component is introduced.
Applications are divided in components, each one
being a set of tasks and resources that interact
to perform a common job. The component can
include tasks and resources from several nodes, or
it can be located in just one node. In each node,
several components may coexist. As an example,
Figure 5 shows a real-time application with 4 tasks
(�1, �2, �3 and �4). The application is divided
in two di�erent components (C1 and C2), which
ensure the desired level of reliability.

C1

C1’

C2’C2

 τ1 τ1’ τ2’τ2

τ3 τ4 τ4’ τ3’

Fig. 5. Hard real-time application.

A similar concept is the \capsule" de�ned in
the Delta-4 architecture (Powell, 1991). As the
DEAR-COTS \component", a Delta-4 \capsule"
is the unit of replication, embodying a set of
tasks (referred as threads) and objects. However,
a \capsule" has its own thread scheduling and
separated memory space, and is also the unit of
distribution. Thus, the Delta-4 concept of \cap-
sule" is more related to Unix processes, whilst
the presented component is a more lightweight
concept, which is used to structure replication
units.

By creating components, it is possible to de�ne
the replication degree of speci�c parts of the real-
time application, accordingly to the reliability of
its components and the desired level of reliabil-
ity for the application. However, by replicating
components, eÆciency decreases as the number of
tasks and messages increases. Hence, it is possible
to trade reliability for eÆciency and vice-versa.
Although eÆciency should not be regarded as the
goal of a reliable system, it can be increased by

means of decreasing the degree of redundancy of
more reliable components.

Nevertheless, as active replication is used, there
is the need to guarantee determinism, i.e., that
replicated tasks execute with the same data and
timing-related decisions are the same in each
replica. The use of timed messages (Poledna et
al., 2000) allows a restricted model of multitasking
to be used and eliminates the need for agreement
between the internal tasks of each component.
With timed messages, agreement is only needed
to guarantee that all replicated components work
with the same input values and that they all vote
on the �nal output. The use of timed messages im-
plies the use of clock synchronisation algorithms,
since clock deviations must be bounded.

4.3 HRTS Replica Manager

The goal of the Replica Manager layer is to
provide hard real-time applications with the set
of resources required for communication between
distributed tasks and between replicated compo-
nents. In the HRTS, tasks communicate with each
other by using shared data and the release of event
objects.

If precedence relations exist between tasks, the
communication mechanisms can be simpli�ed,
since these precedence relations guarantee deter-
ministic execution (Wellings et al., 1998). If the
receiving task is sporadic and is released by a
sending task, it is guaranteed that, in all repli-
cated components, the replicas of the task will
execute with the same data. The same reasoning
can be applied when the receiving task is periodic
with a period related to the period of the sender
task.

The application programmer (transparent ap-
proach) does not consider the use of components
at the design phase. Later, in a con�guration
phase, the system engineer con�gures the compo-
nents and its replication level, and allocates the
di�erent tasks in the distributed system. In this
phase, communication streams that need timed
messages are identi�ed.

The hindrance of this approach is that, because
the programmer is not aware of the possible dis-
tribution and replication, complex applications
could be built relying heavily in task interaction.
However, the model for tasks (presented in Sec-
tion 4.1), where task interaction is minimised,
precludes such applications.

4.4 HRTS Communication Manager

The Communication Manager layer is responsible
for the adequate communication services, provid-
ing a reliable and timely transfer of real-time data.

The group communication abstraction can be
used as the framework for reliable communication,
and also for replica management (Powell, 1994).
In the replication model of DEAR-COTS, a set of
replicas from the same component is referred as
a group. The goal is to use group communication
techniques for simplifying the needed communica-
tion mechanisms.

When a task wishes to disseminate its result to
more than one task (1-to-many communication),
reliable multicast algorithms must be used to
guarantee that replicated receivers get the same
information.

When a task receives inputs from more than one
task (many-to-1 communication), it must use a
consensus algorithm, to choose one of the, possibly
di�erent, results it receives, or to compute a
result based on the received results. However,
as this computation is very application-speci�c,
the application programmer de�nes appropriate
functions for each data stream, which are applied
to the set of results.

In many-to-many communication, a group of out-
puts disseminates its results to other group. Each
value is the opinion that each member of the group
has on the result of the computation. Thus, an
interactive consistency algorithm must be used.
Once again the programmer must de�ne speci�c
choosing functions.

For 1-to-1 communication there is no need for
speci�c algorithms besides a reliable transfer of
data, as there is no replication.

The suitability of the Controller Area Network
(CAN) (ISO, 1993) for the communication infras-
tructure of the architecture is being studied. Al-
though current results indicate that CAN presents
some problems, as it is not resilient to station
errors, it is perceived that, with the appropriate
fault assumptions, it can be used as the commu-
nication infrastructure for the architecture (Pinho
et al., 2000).

4.5 Interconnection with the outside world

The interconnection of the HRTS with the SRTS
in an H/S node must provide mechanisms for
transfer of information between both subsys-
tems. These subsystems are in separated memory
spaces, in order to prevent errors in the SRTS to
interfere with the HRTS behaviour.

Communication from the HRTS to the SRTS
does not present major problems, since it is as-
sumed that this information has a higher relia-
bility level. However, if the output to the SRTS
comes from replicated components, appropriate
agreement must be performed. Conversely, the re-
liability of the data arriving from the SRTS must
be increased, in order to prevent the introduction

of erroneous values. As the de�nition of what is an
erroneous data is very application-speci�c, �lters
must be de�ned for each data stream, which must
be applied to the incoming data. As before, if the
data is to be provided to replicated components,
reliable communication algorithms must dissemi-
nate this data.

Interconnection with the controlled system is per-
formed through the use of sensors and actuators.
Sensor values can be treated as the output of
components. The dissemination of the values must
be performed using the algorithms identi�ed in
the previous section. However, the time at which
the value is valid must also be agreed upon.

Output to actuators must also be agreed upon
between di�erent replicas. Such agreement may
be made either in the computational system or the
actuators may perform themselves this agreement,
by mechanical or electronic voting on the result.
It is out of the scope of the DEAR-COTS project
to study actuator agreement whenever such agree-
ment is made outside the computational system.

4.6 Composition of real-time protocols

From the point of view of protocol design the
run-time must provide a framework to support
the clean composition of micro-protocols. This en-
courages the re-use of protocol components and al-
lows the applications to con�gure protocol stacks
exactly tailored to their needs. This aspect is
particularly relevant in the context of real-time
applications where, due to memory and power
consumption constraints, it is interesting to ex-
ecute in each component just the protocol layers
required to support the intended functionality.

The x-Kernel (Hutchinson and Peterson, 1991) is
an early and in
uential work on protocol com-
position. A version of x-Kernel adapted to real-
time operation has been developed in the scope
of the CORDS project (Travostino et al., 1996).
Following a similar approach, we are developing
RT-Appia (Rodrigues et al., 2000), a modern ar-
chitecture that attempts to balance the
exibility
and eÆciency of micro-protocols with the pre-
dictability requirements of real-time applications.

In RT-Appia, a communication channel is an or-
dered sequence of sessions, instances of proto-
col layers. Sessions communicate through the ex-
change of events. Each channel is executed in the
context of a single thread with a �xed and pre-
allocated set of memory resources. Layers declare
which events need to be subscribed. This ensured
that the events are only processed by the relevant
layers. Additionally, this knowledge is used to de-
rive the worst case execution time of each channel
activation, based on the processing time of each
event and on the worst case chain of events that

may be produced in response to a stimuli (from
the application, the network or the timer).

5. THE SOFT REAL-TIME SUBSYSTEM

The main goal of the SRTS subsystem is to sup-
port the execution of soft real-time applications.
The challenging issue is to ensure that applica-
tions can have a real-time behaviour despite the
occurrence of timing failures.

Timing failures, in a fault-tolerance sense, can
be handled either by masking, detection and/or
recovery techniques. A generic approach to timing
fault tolerance, that is, one that can use any or
all of the above techniques, requires attributes
such as timeliness, to act upon failures within
a bounded delay, completeness, to ensure that
failure detection is seen by all participants and ac-
curacy, not to detect failures wrongly. In DEAR-
COTS, these attributes are mostly ensured by the
TCB module and its services.

Separating the mechanisms of timing failure into
delay, uncoverage and contamination, allows the
introduction of classes of applications that deal
with combinations of the former, achieving vary-
ing degrees of dependability, when assisted by a
TCB: fail-safe, which exhibits correct behavior
or else stops in fail-safe state; time-elastic, which
exhibits coverage stability; and time-safe, which
exhibits no-contamination. In the DEAR-COTS
architecture, the idea consists in mapping these
application classes (or combinations thereof) into
the above-mentioned fault-tolerance techniques.
This can be done independently of the synchro-
nism of the SRTS, and allows several degrees of
fault tolerance to be achieved, namely:

� Fail-safe operation: by switching to a fail-safe
state after the �rst failure. Requires the tim-
ing failure detection service and applications
to be of the fail-safe class;

� Recon�guration and adaptation: by enforc-
ing coverage stability, adapting essential tim-
ing variables to environment conditions. Re-
quires applications to be of the time-elastic
and time-safe classes.

� Timing error masking: by using replication
to mask transient timing errors. Requires
accurate timing failure detection and time-
safety.

6. CONCLUSIONS

This paper has presented the DEAR-COTS ar-
chitecture, targeted to the development of reli-
able distributed computer-controlled systems. It
is based in the use of COTS components, and pro-
vides a generic framework, in which hard real-time
applications can execute, whilst, at the same time,

allowing soft or non real-time applications in the
system, without interfering with the guarantees
provided to hard real-time applications.

DEAR-COTS systems are built using distributed
processing nodes, where a mixture of hard real-
time and soft real-time applications may execute.
The Timely Computing Base model is used as a
reference model to deal with the heterogeneity
of system components and of the environment
with respect to guaranteeing the timeliness of
applications.

The paper also describes the main components
of the architecture, the Hard Real-Time and Soft
Real-Time Subsystems, and its integration in ac-
tual implementations of the architecture. The use
of the DEAR-COTS architecture allows to fully
integrate COTS components and non hard real-
time applications with the timeliness and reliabil-
ity requirements of DCCS.

7. REFERENCES

Audsley, A. N., A. Burns, M. Richardson, K. Tin-
dell and A. Wellings (1993). Applying new
scheduling theory to static priority pre-
emptive scheduling. Software Engineering
Journal 8(5), 285{292.

Casimiro, A., P. Martins and P. Ver��ssimo (2000).
How to build a Timely Computing Base us-
ing Real-Time Linux. In: Proceedings of the
3rd IEEE International Workshop on Fac-
tory Communication Systems. Porto, Portu-
gal. pp. 127{134.

Cristian, F. and C. Fetzer (1999). The timed asyn-
chronous distributed system model. IEEE
Transactions on Parallel and Distributed Sys-
tems 10(6), 642{657. Special Issue on De-
pendable Real-Time Systems.

Hutchinson, N. and L. Peterson (1991). The x-
kernel: An architecture for implementing net-
work protocols. IEEE Transactions on Soft-
ware Engeneering 17(1), 64{76.

ISO (1993). International standard 11898 - road
vehicles - interchange of digital information -
controller area network (can) for high-speed
communication. Technical report.

Kopetz, H., A. Damm, C. Koza, M. Mulaz-
zani, W. Schwabl, C. Senft and R. Zain-
linger (1989). Distributed Fault-Tolerant
Real-Time Systems: The Mars Approach.
IEEE Micro 9(1), 25{41.

Laprie, J. C., Ed.) (1992). Dependability: Basic
Concepts and Terminology. Dependable Com-
puting and Fault Tolerance. Springer-Verlag,
Berlin Germany.

Pinho, L. M., F. Vasques and E. Tovar (2000).
Integrating inaccessibility in response time
analysis of CAN networks. In: Proceedings
of the 3rd IEEE International Workshop on

Factory Communication Systems. Porto, Por-
tugal. pp. 77{84.

Poledna, S., A. Burns, Wellings A. and Bar-
rett P. (2000). Replica determinism and
exi-
ble scheduling in hard real-time dependable
systems. IEEE Transactions on Computers
49(2), 100{111.

Powell, D. (1994). Distributed fault tolerance |
lessons learnt from delta-4. Lecture Notes in
Computer Science 774, 199{217.

Powell, D., Ed.) (1991). Delta-4 - A Generic Ar-
chitecture for Dependable Distributed Com-
puting. ESPRIT Research Reports. Springer
Verlag.

Powell, D., J. Arlat, L. Beus-Dukic, A. Bondavalli,
P. Coppola, A. Fantechi, E. Jenn, C. Rab�ejac
and A. Wellings (1999). GUARDS: A Generic
Upgradable Architecture for Real-Time De-
pendable Systems. IEEE Transactions on
Parallel and Distributed Systems 10(6), 580{
599.

Prycker, M. de (1995). Asynchronous Transfer
Mode: Solution For Broadband ISDN. third
ed.. Prentice-Hall.

Rodrigues, J., H. Miranda, J. Ventura and L. Ro-
drigues (2000). The design of rt-appia. Tech-
nical report. Universidade de Lisboa, Facul-
dade de Ciências.

Sha, L., R. Rajkumar and J. P. Lehoczky (1990).
Priority inheritance protocols: An approach
to real-time synchronization. IEEE Transac-
tions on Computers 39(9), 1175{1185.

Travostino, F., E. Menze and F. Reynolds (1996).
Paths: Programming with system resources in
support of real-time distributed applications.
In: Proceedings of the 2nd IEEE Workshop on
Object-Oriented Real-Time Dependable Sys-
tems. Laguna Beach, CA.

Ver��ssimo, P., A. Casimiro and C. Fetzer (2000).
The Timely Computing Base: Timely ac-
tions in the presence of uncertain timeliness.
In: Proceedings of the International Confer-
ence on Dependable Systems and Networks.
IEEE Computer Society Press. New York
City, USA. pp. 533{542.

Ver��ssimo, P. and C. Almeida (1995). Quasi-
synchronism: a step away from the traditional
fault-tolerant real-time system models. Bul-
letin of the Technical Committee on Oper-
ating Systems and Application Environments
(TCOS) 7(4), 35{39.

Wellings, A., Lj. Beus-Dukic and D. Powell
(1998). Real-time scheduling in a generic
fault-tolerant architecture. In: Proceedings of
the 19th IEEE Real-Time Systems Sympo-
sium. Madrid, Spain.

