
Energy-efficient GPU Design with Reconfigurable
In-package Graphics Memory

Jishen Zhao1, Guangyu Sun2, Gabriel H. Loh3, and Yuan Xie1,3

1The Pennsylvania State University 2Peking University 3Advanced Micro Devices, Inc.

Dept. of Computer Science and Engineering Center for Energy-efficient AMD Research

Computing and Applications

{juz138, yuanxie}@cse.psu.edu gsun@pku.edu.cn gabriel.loh@amd.com

ABSTRACT
We propose an energy-efficient reconfigurable in-package graphics
memory design that integrates wide-interface graphics DRAMs with
GPU on a silicon interposer. We reduce the memory power con-
sumption by scaling down the supply voltage and frequency while
maintaining the same or higher peak bandwidth. Furthermore, we
design a reconfigurable memory interface and propose two reconfig-
uration mechanisms to optimize system energy efficiency and through-
put. The proposed memory architecture can reduce memory power
consumption up to 54%, without reconfiguration. The reconfigurable
interface can improve system energy efficiency by 23% and through-
put by 30% under a power budget of 240W.∗

Categories and Subject Descriptors
B.3.1 [Memory Structures]: Semiconductor Memories

Keywords
Graphics Memory, 3D Packaging, Reconfigurable Interface

1. INTRODUCTION
Modern GPU systems have become an attractive solution for both

graphics and general-purpose workloads that demand high compu-
tational performance. The graphics processing unit (GPU) exploit
extreme multi-threading to target high-throughput [1, 15]. For ex-
ample, the AMD RadeonTM HD 5870 employs 31,000 threads inter-
leaved across 1600 stream processors [1]. To accommodate the high-
throughput demands, the power consumption of GPU systems con-
tinues to increase. As existing and future integrated systems become
power-limited, reducing system power consumption while maintain-
ing high energy efficiency is a critical challenge for GPU system
design.

To satisfy the demands of high-throughput computing, the GPUs
require substantial amounts of off-chip memory (from hundreds of
megabytes to gigabytes). Consequently, off-chip memory consumes
a significant portion of power in a GPU system. Figure 1 evaluates
the maximum power consumption of two GPU systems, the AMD
RadeonTM HD 6990 [1] and NVIDIA Quadro R© FX5800 [15] with
the memory power model described in Section 5. We considered the

∗
This work is supported in part by SRC grants, and NSF 0903432, 0916887

and 1017277.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’12, July 30–August 1, 2012, Redondo Beach, CA, USA.
Copyright 2012 ACM 978-1-4503-1249-3/12/07 ...$10.00.

���

����	

����

���	����������

���	

���

���	

����

����	

����������

����	

������
��	
���������

���
�	
�����������

Figure 1: Power breakdown of NVIDIA and AMD GPUs.

memory bandwidth utilization (the fraction of all cycles when the
data-bus is busy transferring data for reads or writes) from 10% to
50%. For both GPU systems, the off-chip memory consumes from
20% to over 30% of the total GPU system power. Note that for the
workloads evaluated in this paper, the highest average bandwidth
utilization observed was 35%. At this bandwidth level, the memory
power consumption is 21.8% and 34.5% for the two GPU systems,
respectively. These results match well with results provided by an in-
dustry partner, which indicated that the graphics memory consumes
∼25% of the total GPU power. If we can reduce the memory power
by half, 12.5% of system power can be saved; this may seem like a
relatively small amount, but it is quite significant. For example, the
maximum power consumption of the AMD RadeonTM HD 6990 is
375W; therefore a 12.5% power reduction saves 47W. Consequently,
techniques that reduce the graphics memory power can be very ef-
fective at reducing the total system power.

In this paper, we propose to integrate GDDR-like graphics mem-
ory with the GPU processor and memory controllers in a single pack-
age with silicon interposer system-in-package (SiP) technology so
the number of memory I/Os are not constrained by the package pins.
By using the significantly larger number of data I/Os, we can provide
a given amount of bandwidth while reducing the power consumption
of memory by scaling down its supply voltage and frequency. Fur-
thermore, we design a reconfigurable memory interface, and propose
two reconfiguration mechanisms (EOpt and PerfOpt) to optimize (1)
GPU system energy efficiency and (2) system throughput under a
given power budget. With minor changes to the memory interface,
our wide-bus in-package memory design is practical and easy to im-
plement. With the flexibility of optimizing for either power or per-
formance, our design can adapt to both high-performance computing
which prefers high throughput, and power-constrained applications,
which prefers better energy efficiency.

2. BACKGROUND AND RELATED WORK
Energy-efficient GPU Architectures: Various existing work ex-
plores how to address the GPU power challenge. Most of the ex-
isting studies explore either GPU shader cores and caches architec-
ture [7,17], or software optimization [13], and require both hardware
and software modifications to current GPU processor design. In our
work, we explore power reduction techniques by limiting the archi-

Figure 2: Overview of the proposed in-package graphics memory design.

tectural modifications to the graphics memory interface with only
minor changes to GPU compute-unit architecture.

Graphics memory: Graphics double data rate (GDDR) memories
are specifically designed for graphics cards, game consoles, and high-
performance computing systems. GDDR memories usually employ
high frequencies to achieve very high bandwidths. Unfortunately,
power consumption dramatically increases as well. A large power
supply is required, and usually comes with high cost. Conventional
GDDRs have employed VF scaling techniques to reduce power by
adapting the memory interface to the memory bandwidth require-
ment of an application [6]. However, the power reduction comes
at the expense of memory bandwidth degradation. For future high-
performance GPGPU and advanced video processing (e.g., 3D HD
multi-screen video games), existing power saving techniques may
not suffice.

3D Package Using Silicon Interposer Technology: The new pack-
aging approaches with silicon interposer attract much attention in
high-performance multi-chip module (MCM) and SiP designs. A
variety of work from academia and industry explores the develop-
ment of MCM and SiP with silicon interposers [4, 5, 16]. A silicon
interposer provides high-density interconnections, and is capable of
providing a line width of less than 10μm and thousands of I/O pads
per square centimeter. The coarse-pitch through-silicon vias (TSVs)
provide the external connections between the package and individ-
ual dies/chips for the parallel and serial I/O, power/ground, clocking,
configuration signals, etc. The length of the interconnection from
the chip to the substrate is reduced. In our work, we leverage sili-
con interposer-based 3D packaging technology to explore the energy
efficiency benefits for GPU systems.

3. IN-PACKAGE GRAPHICS MEMORY AR-
CHITECTURE

Many power-saving techniques for GPU memory come with the
undesirable side effect of a degradation of the provided memory
bandwidth [6]. In this section, we present the feasibility results
and energy efficiency benefits of in-package wide-interface graphics
memory, integrated side by side with a GPU processor. We show that
VF scaling can be employed to reduce power consumption without
affecting memory bandwidth by leveraging silicon interposer-based
3D packaging technology.

Figure 2 depicts an overview of our GPU system architecture with
integrated graphics memory. The data I/Os of conventional graph-
ics memory standards are 16 or 32 bits wide per channel, limited
by the package pin count. Our in-package memory does not suffer
from such limitations since the DRAMs are directly integrated with
the GPU processor in the same package. In addition, the number of
power/ground pins can be reduced at the much lower DRAM power
consumption than conventional GDDRs. While we fix the DRAM

capacity in this work, the capacity of graphics memory can be ex-
tended by stacking multiple DRAM dies together.

3.1 Feasible Design with 3D Packaging
DRAMs are integrated on the GPU processor package with silicon

interposer technology. Our thermal analysis results showed that such
integration does not incur significant temperature increase to the sys-
tem. We studied a GPU system configuration based on NVIDIA
Quadro R© FX5800 [15]. We computed the maximum power con-
sumption of GPU processors and memory controllers by subtracting
the DRAM power from the reported maximum power consumption
of Quadro R© FX5800 [15], resulting in 124W. The power of 4GB
DRAM is calculated as 60W, based on Hynix’s GDDR5 memory [8].
The areas of different GPU components are obtained from the GPU
die photo, which has a 470 mm2 die area. We assume the ambi-
ent temperature to be 40 ◦C. We used the HotSpot thermal simula-
tion tool [14] to conduct our analysis. The maximum steady-state
temperature of the GPU (without DRAMs) is 72.6 ◦C. With 4GB
interposer-mounted DRAMs placed beside the GPU processor, the
maximum temperature is 78.4 ◦C. Thus, it is feasible to employ
interposer-based memory integration.

3.2 Energy Efficiency Benefits
We examine the peak-memory bandwidth (PBW) [2] and maxi-

mum total power consumption of 2GB graphics memories with dif-
ferent memory interface configurations, including per-channel bus
widths (abbreviated as bus width in the following), memory fre-
quency, and supply voltage (Figure 3). The memories considered
are electrically similar to GDDR DRAMs except for the wider buses.
The supply voltage is scaled appropriately to support the given mem-
ory clock frequency. DRAMs with bus widths of 16 and 32 bits per
channel are evaluated as off-chip GDDR memory. DRAMs with
wider buses are evaluated as in-package memory. The GDDR mem-
ory power model that we used will be described in detail in Section 5.

The bars in Figure 3(a)-(e) show the maximum power consump-
tion for configurations with different bus widths and clock speeds,
but maintaining the same PBW (i.e., bus-width × clock speed is kept
constant). The opportunity for memory power reduction is exploited
by scaling down the memory’s supply voltage corresponding to the
frequency reduction. It can be observed that the power consumption
follows U-shaped bathtub curves. With wider memory buses, lower
frequency allows us to scale down the supply voltage which directly
results in a power reduction. However, the power consumed by I/O
output drivers and on-die termination keeps increasing with the bus
width. When the bus width is increased to 256 bits, the I/O power
component starts to dominate the total memory power and finally
overwhelms the power benefits of VF scaling. Figure 3(f) shows
the potential benefit of achieving higher PBW with the in-package
graphics memory at the same or lower memory power consump-

�����

��		

�����

���	

�����

���

�����

���

������

���

	

�	

�		

��	

�		

	

	��

�

���

�

���������	�
������������	��

�������������������
 ����� ���

�
�
�
�

��
�
�

�
��
��

�

�����

�			

�����

��		

�����

���	

������

���

	

�		

�		

�		

	

	��

�

���

�

���

���������	�
������������	��

�
�
�

�
!
��
�
�

�����

���	

�����

���

�����

!�

�����

��!

������

���

	

�	

�		

��	

�		

��	

	

	��

�

���

�

���

�"�������	�
��������#���	��

�����

�			

�����

��		

�����

���	

�����

���

������

���

	

�		

�		

�		

�		

	

	��

�

���

�

���

�$�������	�
��������%#��	��

�
�
�

�
!
��
�
�

�����

���	

�����

���

�����

���

�����

!�

�����

��!

�����

���

	

�	

�	

�	

	

	

�		

�		

�		

�		

�&���� ��'�������	(�)�����*��
���������������� ���"�#�$%�&%�'

�	(�������+���,��

�-.�/��0(�
$'���"��.��12�

�
�

�
�

��
�
�

�
��
��

�

�
�
�
�
�	

�

�
�

�
��

��
�

	
��

�

�����

���	

�����

���

�����

!�

������

��!

	

�	

�		

��	

�		

	

	��

�

���

�

���

���������	�
���������*��	��

�	(�������+���,��

�-.�/��0(�
$'���"��.��12�

�
�
�
�

��
�
�

�
��
��

�

Figure 3: The PBW and maximum total memory power consumption of 16×1Gb GDDRs with various interface configurations of
bus width and memory clock frequency. (a)-(e) show memory power at the same PBW. (f) shows different PBW that can be achieved
at a fixed memory power consumption.

tion. With a fixed memory power consumption of 80W, the standard
GDDR5 with 32-bit interfaces can only provide 160GB/s of PBW.
However, the wide interface in-package memories can achieve up
to 320GB/s bandwidth. In addition, the (64, 938) configuration can
even provide higher bandwidth than the standard GDDR5 while con-
suming less power.

4. RECONFIGURABLE ARCHITECTURE
In this section, we present a reconfigurable memory interface that

can dynamically adapt to the demands of various applications based
on dynamically observed memory access and performance informa-
tion. On top of the reconfigurable memory interface hardware, we
further propose two reconfiguration mechanisms, EOpt and PerfOpt,
that optimize system energy efficiency and performance (in terms of
throughput), respectively.

4.1 Application Classification
We analyze the unique characteristics of GPGPU applications, and

classify the applications into two types, memory-intensive and non-
memory-intensive. Figure 5 illustrates the typical GPU system per-
formance, power, and energy efficiency (applications nw and sd2 are
used as examples). Here we define energy efficiency as the perfor-
mance per Watt. It is shown that higher PBW can directly lead to
higher DRAM power consumption with both types of applications.
The relationship between the system performance and memory in-
terface configuration appears to be different with the two types of
applications. The IPC of type-M (memory-intensive) is sensitive
to the change of memory interface configuration, as shown in Fig-
ure 5(a). Decreasing the memory frequency (and consequently in-
creasing the memory access latency) results in significant IPC degra-
dation, even though we provide wider buses to keep the same PBW.
Furthermore, the IPC of these applications typically stays low, due
to the continuous memory demands that significantly slow down the
instruction execution. As shown in Figure 5(b), the IPC of type-C
(non-memory-intensive or compute-intensive) applications is much
higher than that of type-M. The IPC curve remains stable with dif-
ferent memory interface configurations at the same PBW. Overall,
varying the memory interface configuration will affect both IPC and
DRAM power consumption in type-M applications. Trade-offs be-
tween the two must be considered to optimize the system energy effi-
ciency. With type-C applications, we can improve the system energy
efficiency by reducing the DRAM power without significant perfor-
mance degradation. If we take a closer look at the details of each

Figure 4: A single application can have different memory inten-
sities during the execution.

application execution, both type-M and type-C periods can be ob-
served in a single application (e.g., bfs) as illustrated in Figure 4. The
rough analysis shows that this application is memory-intensive, due
to the total amount of DRAM accesses. However, a non-trivial por-
tion of the instruction execution is actually non-memory-intensive.
For the best system energy efficiency or performance, different mem-
ory configurations should be adopted with the two levels of memory
intensities.

4.2 Memory Interface Hardware Design
Our reconfigurable memory interface is aware of these different

application behaviors, such that the bus width and memory frequency
can be dynamically tuned according to the observed performance
and memory access information of each workload.

Hardware implementation: At the interface between the GPU pro-
cessor and the in-package graphics memories, we add a central con-
troller, control signals to the bus drivers, and controls for dynamic
VF scaling (Figure 2(b)). The central controller is used to collect
global information of GPU performance and memory accesses. A
vector of counters are maintained in the controller to collect perfor-
mance and memory access information from either GPU hardware
performance counters or memory controllers. A threshold register
vector is used to store various thresholds and initial values described
in reconfiguration mechanism. The calculator module calculates sys-
tem energy efficiency based on the collected performance informa-
tion and the estimated power consumption. The memory intensity is
calculated as the memory accesses per 1000 instructions.

Overhead: The reconfigurable memory interface incurs both area
and performance overheads. The total storage overhead is 128B,
including various counters, registers, and arithmetic logic compo-

��������	

��������

��������

��������

�������

��������

�������		

��������	

��������

���������

��������	

��������

�������

���������

������			

�������		

��������	

���������

	

�	

�	

�	

	

	

�	

�		

��	

�		
�������	
�� ���������� ���

��
�

�
�
�
�
��
�
�
�
�
��
�

BW=160GB/s BW=240GB/s BW=320GB/s BW=480GB/s BW=640GB/s

��

���
��

��	

���
���

���
��� ��	

���

���

���

��	
���

���

���

�� ���
��

���� !��""#$#��$!

��������	

��������

��������

��������

�������

��������

�������		

��������	

��������

���������

��������	

��������

�������

���������

������			

�������		

��������	

���������

	

�		

�		

�		

		

�			

	

�	

�		

��	

�		

��	

������	����

�%&'��#()*�+����*#+��,��-&��$!
��.#)'���/0

��
�

�
�
�
�
��
�
�
�
�
��
�

BW=160GB/s BW=240GB/s BW=320GB/s BW=480GB/s BW=640GB/s

�.

��	� ����
���	 ����

���� ���

����

���� ���
����

���

���� ����

���
����

��	� ����
����

Figure 5: Performance, power, and energy efficiency of two types of applications, which are (a) memory-intensive (Type-M) and (b)
non-memory-intensive (or compute-intensive) (Type-C).

nents shown in Figure 2(b). The bus transmission lines are routed
on the silicon interposer, which has sufficient space for the buses.
To estimate the performance overhead, we evaluated the total la-
tency of memory access pattern change detection and reconfigura-
tion from 100 to 1000 cycles, i.e., 300ns to 3μs at 325MHz GPU
core clock frequency in our baseline. We measured the execution
time of various applications, and the maximum and minimum values
are 6,000,000 cycles (18ms) and 40,000 cycles (120μs), respectively.
Therefore, the maximum performance overhead is estimated as 3μs
/ 120μs, which is less than 2.5% of total execution time.

4.3 EOpt: Optimizing Energy Efficiency
A direct way of utilizing our reconfigurable memory interface is

to optimize the system energy efficiency. Specifically, we strive to
maintain performance that is competitive to a static memory inter-
face approach, but dynamically choose different memory configura-
tions to save power when possible. During type-M execution peri-
ods, both IPC and memory power consumption will be affected by
the change of memory interface. Therefore, we choose configura-
tions that maintain high memory clock frequencies to minimize the
IPC degradation. Given the memory frequency constraint, the bus
width is then configured to minimize the memory power consump-
tion. During type-C execution periods, IPC is stable when we change
the memory interface configuration. Consequently, we tend to adopt
the memory frequency and bus width configuration that minimizes
the memory power consumption.

Our reconfiguration mechanism for system energy efficiency op-
timization is composed of three steps: detection, comparison, and
reconfiguration. During the execution of an application, we sam-
ple both IPC and the memory access count. If we detect a change
of memory intensity, we compare the estimated system energy ef-
ficiency with different (bus width, frequency) configurations. The
configuration that results in the highest system energy efficiency will
be adopted. Sophisticated prediction schemes could be incorporated
into the reconfiguration mechanism, although most GPU applica-
tions do not frequently change their memory access patterns. There-
fore, we use a simple 1-bit prediction scheme that yields sufficient
accuracy without much performance overhead.

4.4 PerfOpt: Optimizing System Performance
Under a Given Power Budget

As long as the power consumption is affordable, the primary de-
mand from the graphics and high performance computing markets

is high performance, in terms of throughput. Therefore, we explore
GPU system performance optimization under a given power budget.
Our performance optimization target is the instruction throughput
(the executed instructions per second).

Figure 6 shows the flow chart of our reconfiguration mechanism.
Our reconfiguration mechanism addresses the type-M and -C exe-
cution periods of a workload with different strategies. During type-
C periods, we always employ the memory interface configuration
that minimizes the DRAM power consumption. Any saved power is
transferred to scale up the GPU core clock frequency/supply voltage
to improve system performance. During type-M periods, we con-
sider two possible strategies. First, because the memory interface
configuration directly affects system performance (during type-M
phases), we choose the memory configuration that delivers the high-
est system performance while staying within the system power bud-
get. Second, sometimes an application can be a relatively memory-
intensive phase while still having significant compute needs as well.
In these cases, reconfiguring the memory interface to free up more
power for the GPU can still result in a net performance benefit de-
spite the reduced raw memory performance. Based on the predicted
benefit, our system will choose the better of these two strategies.

Note that short-duration violations can be tolerated if there is suf-
ficient thermal headroom. Existing CPU systems (e.g., Intel’s Turbo
Boost technology) already “overclock” beyond their nominal power
limits for short itervals. If violations last too long, on-chip thermal
monitors can always trigger more aggressive VF scaling to prevent
catastrophic damage to the chip [9]. Another possible issue with this
reconfiguration mechanism is that the power budget may be violated
within an instruction interval. In fact, it is a trade-off between the
strictness of following the power budget constraint and the amount
performance overhead. We evaluated various lengths of instruction
intervals from 1000 to 1 billion, and find that 1 million instruction
intervals can provide sufficient guarantee of power budget constraint
with below 5% of reconfiguration overhead.

5. EXPERIMENTAL SETUP
Simulations are performed on GPGPU-Sim [2], a cycle accurate

PTX-ISA simulator. The shader cores, caches, and interconnec-
tion network of the baseline GPU are configured based on NVIDIA
Quadro R© FX5800 [15]. We modify the simulator to implement our
reconfiguration mechanisms. The instruction interval N is set to
be 1 million. The baseline graphics memory is off-chip GDDR5
memory, reported as can support up to 3.5GHz frequency [8]. We

Figure 6: Flow chart for PerfOp.

Table 1: DRAM configurations.
Memory Clock tRAS tCL tRP tRC tRCD tRRD

Baseline: Off-chip GDDR5, 2GB, Bandwidth = 320GB/s
2.5GHz 22ns 8ns 8ns 30ns 8ns 5ns

In-package Graphics Memory, 2GB,
Bandwidth = 160GB/s, 240GB/s, 320GB/s, 480GB/s, 640GB/s

3.75GHz 16ns 5ns 5ns 20ns 5ns 4ns

2.5GHz 18ns 7ns 7ns 24ns 7ns 4ns

1.875GHz 21ns 8ns 8ns 29ns 8ns 4ns

1.25GHz 23ns 10ns 10ns 32ns 10ns 5ns

938MHz 27ns 12ns 12ns 36ns 12ns 6ns

625MHz 31ns 14ns 14ns 38ns 14ns 7ns

469MHz 37ns 16ns 16ns 40ns 16ns 11ns

313MHz 47ns 20ns 20ns 50ns 20ns 14ns

scale the PBW to 320GB/s by increasing the memory frequency
from 1.25GHz to 2.5GHz. We use curve fitting based on GDDR5
to obtain the low-level DRAM timing as shown in Table 1. The la-
tency of signals passing through silicon interposer can be reduced to
1/5 of that with standard I/Os [5]. We conservatively assume 20%
memory latency improvement compared to off-chip memories.

We evaluate various available GPU workloads from the NVIDIA
CUDA SDK [12], Rodinia benchmarks [3], and applications dis-
tributed with GPGPU-sim [2]. Table 2 lists the characteristics of
our 16 workloads. The memory intensity (MI) of some applications,
such as aes and sto, is lower than 1.0. The three most memory-
intensive benchmarks are mum, bfs, and nw.

We calculate the DRAM power based on the power model from
Micron [10] and modify it to calculate the I/O power of GDDR mem-
ory with the pseudo-open drain (POD) signaling scheme. We calcu-
late the power of GPU cores, caches and memory controllers based
on the power model from McPAT [11], and modify the model to
adapt to the configuration of GPU shader cores. The performance
and memory-access information is fed into the power model to cal-
culate the run-time system power consumption.

6. RESULTS
Static Interface: Figures 7 shows the performance and power of the
in-package graphics memories with fixed bus widths of 64-bit (other
bus width configurations also show the same trend in energy effi-
ciency improvements). Our results of the integrated graphics memo-
ries are normalized to the baseline of off-chip GDDR5 memory that
supports a peak bandwidth of 320GB/s. Some applications show
IPC losses compared to the baseline. This is due to the fact that for a
given fixed bandwidth, the larger buses provided by the in-package
graphics memories are offset by lowering their clock speeds. At
a system bandwidth allocation of 160GB/s, memory-intensive ap-
plications (e.g., mum, bfs, and nw), do incur some significant IPC

���

���

���

��������	
�������������

���

���

���
�	������	
�������

����	
����������� ����	
����������� ����	
�����������

����	
����������� ����	
�����������

�
�
�
�
�
�

�
�
�

�
�
�

�

!

"
�

�
�
�
�
#

�
$
�
�
#
�
�
�
%
#&

(
&

��
$ �

#

�
$
�

�
�

���

���

���
��������	
�������������������������

��������

	

��

Figure 7: (a) IPC, (b) DRAM power, and (c) energy efficiency
with in-package graphics memory (no reconfiguration).

degradations when using the in-package graphics memory. Not sur-
prisingly, the non-memory-intensive applications (e.g., aes and sto),
do not suffer from the reduction in memory clock speed. The in-
package memory, however, provides a much more power-efficient
implementation (middle plots), which in turn leads to better energy
efficiency. Of course, fixing system bandwidth to be equal to the
off-chip solution does not really take advantage of the wide inter-
face provided by the in-package memory. By increasing the mem-
ory interface clock speed to provide bandwidths of 480GB/s and
640GB/s, performance on the memory-intensive applications can
be brought back up. Even without reconfiguration, the in-package
graphics memory solution significantly improves the overall energy
efficiency of the GPU system by up to 54% on average.
EOpt: Figure 8 shows performance and power results of reconfig-
urable memory interface optimized for energy efficiency. Because
we do not have any initial information about an application, the ini-
tial memory interface configuration is always set to a 128-bit bus
width. All results are normalized to the case of in-package graph-
ics memory using static 128-bit interfaces to demonstrate the addi-
tional benefit of dynamic reconfiguration on top of the benefits of
integrated memories. As shown in Figure 8(a), the reconfiguration
mechanism yields the greatest IPC improvement for the three most
memory-intensive applications. The IPCs of non-memory-intensive
applications are not affected by the change of memory interface, and
execution pattern detection may cause performance overhead. For-
tunately, most applications do not incur frequent execution pattern
changes, and the IPC remains stable on the non-memory-intensive
applications. Figure 8(b) shows that DRAM power with almost all
applications is reduced, and by an average of 14%. Figure 8(c) il-

Table 2: Characteristics of selected GPGPU benchmarks (the instruction count (IC) and the memory intensity (MI)).
Abbrev. Benchmarks IC MI Abbrev. Benchmarks IC Memory
HS Hot Spot 80M 1.5 BP Back Propagation 193M 4.3

PRF Particle Filter 3.9G 4.4 BFS Breadth First Search 484M 37.0

NW Needleman Wunsch 218M 8.0 LUD LU Decomposition 40M 2.5

PF Path Finder 76M 1.9 FWT Fast Walsh Transform 4.5G 5.2

AES AES Encryption 30M 0.3 BLK BlackScholes Option Pricing 196M 3.2

LPS 3D Laplace Solver 82M 3.8 MUM MUMmerGPU 75M 43.7

RAY Ray Tracing 65M 3.0 STO StoreGPU 123M 0.6

SD1 Speckle Reducing Anisotropic Diffusion 8.4G 5.8 SD2 Speckle Reducing Anisotropic Diffusion 2.4G 3.8

�
�
�
�
�
�
�
�
�
�
	

�
�

�
�

�
�
�
�
� �

�
�
�

���

���

���

��������	
�������������������������
���������	�
�����
������
���
���

�
�
�

�
�
�

�
�
�

�
�
�

�
	

�
�

�

�
�
�

�
�

��

�
�

��
	

�
�

�
�
� �

�

�
�
�

�
�

���

���

���
��������	
�������������

�
�
�

�
�
�
�

��

��
	

�
�
�
�
�

�
�

���

���

���

���

�����	�
�����
������
���
���

���

���

���

���
�	������	
������

������� !"!����#$ ������� !"!%��#$ ������� !"!&��#$

������� !"!%���#$ ������� !"!�%��#$

�����
�������
����

����
��
��������

Figure 8: Results of using EOpt to all benchmarks. (a) IPC. (b)
DRAM power. (c) System energy efficiency improvement.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
	

�

�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�

�
�
� �

�
�
�

���

���

���
������ ����������� ��!��� ����������� ��!���

Figure 9: The fraction of instructions spent on different config-
uration modes, using PerfOpt.

lustrates that the overall system energy efficiency is improved for all
the benchmarks. Across all low- and high-intensity applications, the
energy efficiency improves by 23% on average.
PerfOpt: Figure 9 illustrates the fraction of instructions spent on
each configuration mode under the power budget of 220W (sim-
ilar trend can be observed with other power budgets). Even the
most memory-intensive applications have a portion of less memory-
intensive periods, which we can utilize to improve system perfor-
mance. For example, mum, spends about 68% of its instructions with
high memory clock speed to avoid system performance degradation
(strategy-1). In 25% of the instructions, the memory clock is slowed
down by strategy-2 to increase the GPU clock frequency. In the rest
7% of instructions, the memory power is minimized as type-C peri-
ods to further improve system performance. It is also shown that the
configuration modes change from one to another for most applica-
tions. The exceptions are those non-memory-intensive applications,
such as aes, sto,hs, and pf, which stay in type-C configuration all the
time. Table 3 shows the results of the reconfiguration for improving
overall GPU throughput given various system power budgets. All
the performance results are normalized to the mean throughput of
the static configuration that leads to the highest average performance
with all the applications under the given power budget. The results
demonstrate that the reconfiguration mechanism can adjust the mem-
ory power consumption to fit the application memory needs, and that

Table 3: Mean Throughput improvement of all tested bench-
marks for each given GPU system power budget.

Budget(W) 200 210 220 230 240

Imprv. 10.0% 14.8% 21.8% 27.5% 30.3%

the saved power can be effectively redeployed to improve the GPU
core performance.

7. CONCLUSION
We have presented a reconfigurable in-package wide interface graph-

ics memory, integrated with a high-performance GPU on a silicon
interposer. Our design is feasible and easy to implement. Almost
all the hardware modification is limited to the memory interface and
controllers and no modifications are required to the internal struc-
tures of the processors and the memory arrays. Reconfiguration is
only applied to the memory interfaces, and internal bus widths are
fixed. Therefore, the main extra manufacturing costs is the packag-
ing cost. Another merit of our design is the flexibility of optimizing
either power or performance. For high performance computing sys-
tems, performance is the primary design consideration. Yet, power
constrained applications prefer high energy efficiency. Our reconfig-
uration mechanisms can be employed by both types of systems.

8. REFERENCES
[1] AMD. Radeon specifications. http://www.amd.com/us/products/desktop/graphics/.

[2] A. Bakhoda, G. Yuan, and W. Fung et al. Analyzing cuda workloads using a
detailed gpu simulator. In Proc. of Intl. Symp. on Performance Analysis of
Systems and Software, pages 163–174, 2009.

[3] S. Che, M. Boyer, and J. Meng et al. Rodinia: a benchmark suite for
heterogeneous computing. In Proc. of Intl. Symp. on Workload Characterization,
pages 44–54, 2009.

[4] X. Dong, Y. Xie, and N. Muralimanohar et al. Simple but effective heterogeneous
main memory with on-chip memory controller support. In Proc. of the
International Conference for High Performance Computing, pages 1–11, 2010.

[5] P. Dorsey. Xilinx stacked silicon interconnect technology delivers breakthrough
FPGA capacity, bandwidth, and power efficiency. In Xilinx White Papers, 2010.

[6] Elpida. Introduction to GDDR5 SGRAM. http://www.elpida.com/pdfs/e1600e10.pdf. 2010.

[7] M. Gebhart, D. R. Johnson, and D. Tarjan et al. Energy-efficient mechanisms for
managing thread context in throughput processors. In Proc. of the Intl. Symp. on
Computer architecture, pages 235–246, 2011.

[8] Hynix. GDDR5 SGRAM datasheet. http://http://www.hynix.com/products/graphics/.

[9] Intel. Thermal protection and monitoring features: a software perspective. In Intel
Software Network, pages 1–6.

[10] J. Janzen. The Micron power calculator, http://www.micron.com/products/dram/syscalc.html.

[11] S. Li, J. H. Ahn, and R. D. Strong et al. McPAT: an integrated power, area, and
timing modeling framework for multicore and manycore architectures. In Proc. of
the Intl. Symp. on Microarchitecture, 2009.

[12] NVIDIA. CUDA SDK. http://www.nvidia.com/object/cudasdks.html.

[13] D. Q. Ren and R. Suda. Modeling and optimizing the power performance of large
matrices multiplication on multi-core and GPU platform with CUDA. In Proc. of
the International Conf. on Parallel Processing and Applied Mathematics, pages
421–428, 2010.

[14] K. Skadron, M. R. Stan, and K. Sankaranarayanan et al. Temperature-aware
microarchitecture: modeling and implementation. ACM Trans. on Architecture
and Code Optimization, 1(1):94–125, 2004.

[15] N. specifications. http://www.nvidia.com/object/productquadrofx5800us.html.

[16] M. Sunohara, T. Tokunaga, T. Kurihara, and M. Higashi. Silicon interposer with
TSVs (through silicon vias) and fine multilayer wiring. In Proc. of the Electronic
Components and Technology Conference, pages 847–852, 2008.

[17] W.-K. S. Yu, R. Huang, and S. Q. Xu et al. SRAM-DRAM hybrid memory with
applications to efficient register files in fine-grained multi-threading. In Proc. of
the Intl. Symp. on Computer Architecture, pages 247–258, 2011.

