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Abstract—The paper describes progress achieved in our long-
term research project SHOPBOT, which aims at the development
of an intelligent and interactive mobile shopping assistant for
everyday use in shopping centers or home improvement stores.
It is focusing on recent progress concerning two important
methodological aspects: (i) the on-line building of maps of the
operation area by means of advanced Rao-Blackwellized SLAM
approaches using both sonar-based gridmaps as well as vision-
based graph maps as representations, and (ii) a probabilistic
approach to multi-modal user detection and tracking during the
guidance tour. Experimental results of both the map building
characteristics and the person tracking behavior achieved in an
ordinary home improvement store demonstrate the reliability of
both approaches. Moreover, we present first very encouraging
results of long-term field trials which have been executed with
three robotic shopping assistants in another home improvement
store in Bavaria since March 2008. In this field test, the robots
could demonstrate their suitability for this challenging real-world
application, as well as the necessary user acceptance.

I. INTRODUCTION

In the year 2000, we got our long-term research project
SHOPBOT (also known as PERSES) started which aims at
the development of interactive mobile shopping assistant for
everyday use in public environments, like shopping centers
or home improvement stores [1]. Such shopping companions
are to autonomously contact potential customers, intuitively
interact with them, and adequately offer their services. Typical
service tasks tackled in this project are to autonomously guide
customers to the locations of desired goods (see Fig. 1), and to
accompany them during the purchase as personalized mobile
companion offering a set of functionalities, like video con-
ferencing to a salesperson, price scanning, infotainment, etc.
To accommodate the challenges that arise from the specifics
of this interaction-oriented scenario and the characteristics of
the operational area, a uniformly structured, maze-like and
populated environment, we have placed special emphasis on
vision-based and multi-modal methods for both human-robot
interaction and robot navigation. Since one of the robot’s tasks
is to guide customers to the goods they are looking for, it needs
to know its current position in the operation area as accurate
as possible to give precise information how to find the desired
articles. This requires advanced self-localization methods and
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Fig. 1. Interactive mobile shopping
assistant based on a SCITOS AS5 plat-
form developed by MetralLabs GmbH
Ilmenau, Germany, during a guided tour
to a goods location in our test site,
an ordinary home improvement store in
Erfurt (Germany).

- as a prerequisite for this - robust map building techniques.
Therefore, in section III, we first focus on recent progress
concerning the on-line building of maps of the operation
area using advanced Rao-Blackwellized SLAM (Simultaneous
Localization And Mapping) approaches employing both sonar-
based gridmaps as well as vision-based graph maps as repre-
sentations. For an effective human-robot interaction and a user-
specific, personalized dialog control, a robust people detection
and tracking during the whole shopping process is another pre-
requisite. Therefore, the developed probabilistic, multi-modal
people tracking system of our mobile shopping assistant will
be presented in Section IV. Finally, first encouraging results
of long-term field trials which have been executed with three
shopping companions in a home improvement store in Bavaria
since March 2008 will be presented.

II. THE MOBILE SHOPPING ROBOT SCITOS

The robot, which has been developed for the application
as shopping assistant, is a SCITOS A5 shown in Fig. 2. For
navigation and interaction purposes the system is equipped
with different sensors. First, there is an omnidirectional camera
mounted on the top of the head. Due to the integrated hardware
transformation, we are able to get both a panoramic image
(720x150 pixels) and high resolution frontal image (720x362
pixels), which can be panned around 360°. Besides this main
sensor, the robot is equipped with a set of 24 sonar sensors at
the bottom, which is used for obstacle detection and localiza-
tion. Because of their diffuse characteristics, these sensors do
not allow to distinguish objects from people, but they cover
the whole 360° around the robot. The last sensor available for
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Fig. 2. Interactive mobile shopping assistant SCITOS A5

person detection is the laser range finder SICK S300 mounted
in front direction at a height of 35cm. Additionally, the robot
has a touch display, a sound system, and a 6 DOF head for
interaction.

IIT. SLAM IN LARGE-SCALE, PUBLIC ENVIRONMENTS

A basic requirement for an autonomous mobile robot is
the ability to build a map of the environment and to use
this map for self-localization and path planning. Because
mapping depends on a good estimate of the robot’s pose in
the environment, while localization needs a consistent map,
the localization and mapping problems are mutually coupled.
The term Simultaneous Localization And Mapping (SLAM)
has been coined for this problem [2]. The mutual dependency
between pose and map estimates requires to model the state
of the robot in a high-dimensional space, consisting of a
combination of the pose and map state. An effective means
of handling the high-dimensionality in the SLAM problem
has been introduced in the form of the Rao-Blackwellized
Particle Filter (RBPF) [3]. In this approach, the state space
is partitioned into the pose and map state. A particle filter
approximates the pose belief distribution of the robot, while
each particle contains a map which represents the model of
the environment, assuming the pose estimation of that specific
particle (and its history, which is the estimation of the entire
robot path) to be correct.

In recent years, the RBPF approach to SLAM has been
very successfully used with landmark-based maps [4] as well
as with gridmaps [5]. However, only very few approaches
are known that use topological maps (graphs) for map rep-
resentation in RBPF [6]. Taking the challenging operational
environment in a shopping center and the project-specific focus
on low-cost and vision-based sensor systems into account,
we developed two complementary RBPF approaches using
either metric gridmap models or topological graph models
labeled with appearance views and metric data for environment
modeling. While in most RBPF implementations the evaluation
of state hypotheses (particles) is based on the compliance of

the current observation with the global map through a sensor
model, both of our approaches use two different types of maps
for evaluation: a global map, which represents the already
known environment model learned so far and a local map
representing the current and the latest observations (see Fig. 3
and Fig. 5). This way, the likelihood of a given global map to
be correct can be evaluated in a simple way by comparing the
local and the global map directly. This has several advantages:
any sensor can easily be integrated in the SLAM framework,
as long as a gridmap or a topological map can be built from
the sensor observations. Furthermore, because the local map
can incorporate subsequent observations, it is particularly well
suited for sensors with low spatial resolution or high noise (e.g.
sonar), where a sequence of measurements (preferably from
slightly different positions) will yield significantly richer infor-
mation than a single measurement. In the following, first we
will introduce our gridmap match SLAM approach and show
its successful application to SLAM with low resolution/high
uncertainty sonar range sensors. After that, we’ll present our
graph-match and vision based SLAM approach.

A. Gridmap match SLAM with RBPF

In contrast to the often used landmark representations,
gridmaps [7] do not make assumptions about any specific fea-
tures to be observable in the environment. They can represent
arbitrary environment structures with nearly unlimited detail.
However, known gridmap solutions mostly use laser scanners
and exploit their high resolution and accuracy in order to
reduce state uncertainty and therefore computational cost [8].
In contrast to most of the approaches that have been proposed
so far, we aim at developing a SLAM algorithm that is not
adapted to any specific sensor characteristics. Instead, a widely
applicable model and algorithm should be used to represent the
robot’s observations and to build the global environment map.

For this purpose, additionally to its global gridmap, each
particle contains a local gridmap (Fig. 3), which is built from
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Fig. 3. Data representation overview: The particles model the distribution of
the robot pose belief. Each particle contains a full map of the environment,
which is a combination of the particle trajectory and the sensor observations.
Furthermore, each particle contains a local map, which only contains the most
recent measurements and depends on the particle’s current pose belief. The
situation shown is shortly before a loop closing. Apparently, the left particle
is a better approximation of the true pose than the right one.
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Fig. 4. Temporal evolution of the SLAM-process using 500 particles for
the RBPF. In this experiment, only the robot odometry and the sonar sensors
were used. The environment, the home improvement store, consists of a large
number of more or less long loops of hallways with 50, 100, or 160 meters
loop length. The entire path length in this experiment is about 2000 meters. In
the figures from left to right, after 10, 20, 40, and 60 minutes of joysticking
the robot through the store, for the best matching particles the corrected paths
(magenta lines) and the corresponding maps from our Map Match SLAM
approach are shown: all position errors are corrected and the obstacles (shelves,
etc.) and free space in the map are clearly defined, despite the limitations of
the sonar sensor and its local field of view.

sensor observations in the same way as the global map, but
consists of the most recent observations only [9], [10]. By
delaying the updates for the global map until the robot has
moved on for several meters, we can ensure that local and
global map consist of disjoint sets of observations. Because
of the delayed updates, from the start of mapping, as long
as the robot moves forward, the global map at the current
position is unknown, and there is no overlap between local
and global map. Only in case of loop closing, i.e. when the
robot returns to a known area (more precisely, when a particle
believes to return to a known area), the local and global map
overlap at the estimated position and can be compared. For
a correct particle position estimate, local and global map of
the particle should be compliant with each other (assuming
a static environment), while for wrong position estimates,
there will be discrepancies between the maps. Therefore, the
matching of local and global map is an appropriate measure for
evaluating the correctness of the particle’s position estimate.
The calculation of the match value between the local and
global map of each particle is simple: for each occupied cell in
the local map, the occupancy value of the corresponding cell
in the global map is tested. The match value becomes positive
if local and global map are very similar, and negative if many
objects exist in the local map where there is free space in the
global map. Details of this comparison are given in [10]. A
major problem with using gridmaps in RBPF is the memory
cost. Therefore, we introduced a simple and fast, but very
efficient shared representation of gridmaps, which reduces the
memory cost overhead caused by inherent redundancy between
the particles (see [9]). This makes the maximum memory cost
dependent on the loop size instead of the overall map size.
To verify our approach, we built maps of the "TOOM Bau-
Markt” home improvement store in Erfurt (Germany) which
has been the public test site for all our experiments since 2002.
This environment is very well suited for our online SLAM

Fig. 5. The graph repre-
sentation of the particles in
our approach: Each particle
models its current pose es-
timation based on its path
history, a full global graph
map, and a local graph.
Due to the path history, all
particles are slightly differ-
ent and their maps differ
as well. Some maps are
more likely to be correct
and consistent than others.
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approach as it essentially consists of more or less large loops
of hallways (50 to 160 meters loop length) (see Fig. 4). In
this experiment, only the robot odometry and the low-quality
sonar range sensors were used. The robot was moved about
2,000 meters through the operation area by joysticking while
the online built global map of the best matching particle was
used by the operator as indicator for necessary loop closings.
A map update was not done with every observation, but in
intervals: whenever the robot has moved on for 0.2 meters, first
the new particle position is sampled from the odometry motion
model, then the particle’s map is updated with the observation
at that believed position. An importance weight calculation and
resampling of the particles was done in intervals of 1 meter.

After completing the on-line mapping of the whole store,
the global map of the best matching particle was stored to
be used later on in the routine operation with customers as
global map for Monte Carlo Localization [11], [13], [2], and
path planning to the article locations. Beforehand, however,
this global map had to be labeled with the locations of all
articles (about 60,000) available in that store. Fortunately, this
could be done semi-automatically, because all article locations
are stored in the merchandize management system of the store
with an exact reference to the shelf number and the position
within the shelf. It is an essential advantage of our approach
and the used metric representation that the built gobal gridmap
can easily be made fitting with the metric CAD map of the
merchandize management system by a simple manual map
transformation. Results of long-term field trials using an on-
line built gridmap subsequently labeled with article locations
are presented in Section V.

B. Appearance-based visual SLAM with RBPF

Another objective of our research was to clarify whether
vison-based SLAM approaches are also suited for this type
of indoor environments, and if so, how they can be made
capable of working online and real-time. In our research on
vision-based SLAM, we prefer the appearance-based approach
for the following reasons: in a highly dynamic, populated and
maze-like environment, a robust recognition of earlier selected
natural landmarks cannot be guaranteed. Furthermore, the
need for a robust and invariant detection of visual landmarks
often results in highly computational costs and, therefore, map
building is often performed off-line by these approaches. Based
on own earlier experiences in view-based Monte Carlo Local-
ization [12], [13], we developed an appearance-based visual
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SLAM approach that is also using the RBPF concept [14].
Similar to the gridmap approach described before, each particle
incrementally constructs its own environment model, in this
case a graph-map, which is labeled with visual observations
and the estimated poses of the places where the snapshots were
taken from.

As observations we utilize holistic appearance features
extracted from panoramic snapshots obtained from the 360°
camera located at the top of our experimental robot platforms
(see Fig. 2). A number of possible appearance-based features
has been studied in our lab with respect to their capability to
visually distinguish neighbored positions in the environment,
the computational costs, and the preservation of similarities
under changing illumination conditions and occlusions. The
respective features experimentally investigated include local
RGB mean values [12], HSV-histograms [13], FFT-coefficients
[15], and SIFT features [16], [17] as appearance-based image
description. Considering the findings and constraints of these
investigations (see [14]), in our final implementation we de-
cided in favor of the HSV histogram features (lower memory
usage and computational costs than SIFT), especially because
of the real-time requirements of our SLAM approach and the
high robustness of these features.

Basic idea of this approach: Our appearance-based SLAM
approach also utilizes the standard RBPF approach to solve the
SLAM problem, where each particle contains a pose estimate
X; (position z,y and heading direction ¢) as well as a map
estimate (see Fig. 5). In contrast to the gridmap-based approach
described before, the environment model used here is a graph,
where each node 7 representing a place in the environment
is labeled with the features z; extracted from the panoramic
view captured at that place and the estimated pose x;. As in our
gridmap-based approach, here we again use the two different
types of maps, a global map representing the already known
environment model, and a local map representing the current
and the latest observations, and the local path between them.
This way each particle (see Fig. 5) estimates and stores a local
map, a global map, and the currently estimated pose. Serving
as a short-term time-window of observations, the local map
is used to compute the likelihood of each global map to be

Fig. 6.  Graph-based environment representation of our appearance-based
approach: The red nodes show the global map of a single particle with
respect to the path estimated by this particle. The blue nodes code the local
map, whose data represent a short-term time-window of observations (the
current and the n latest observations) used for map matching to determine
the likelihood of the respective global map. The idea of our appearance-based
RBPF is, that only particles with correctly estimated trajectories are able to
build correct maps, so that the matching between local and global map provides
a higher matching value than wrongly estimated trajectories.

correct (Fig. 6). This has a substantial advantage: the local
map provides both geometric and visual information about
the lastly observed places. This way, correct comparisons can
be made taking both spatial relations and visual observations
into consideration. We achieved the best results with a local
trajectory length of about 2 meters and an average distance
between the nodes of 0.2 meters.

To determine the importance weight of each particle, their
local and the global graph maps have to be compared. Thereto,
corresponding pairs of nodes in both maps are selected by
a simple nearest neighbor search in the position space. The
relation between each pair of corresponding nodes ¢ and j of
the local and global map provides two pieces of information,
a geometric one (spatial distance d;;) and a visual one (visual
similarity S;;). Both aspects of each relation ij are used to
determine a matching weight w; for the respective node ¢ of the
local map. In the context of appearance-based observations, the
visual similarity between observations is not only depending on
the difference in position but also on the environment itself. If
the robot, for example, moves in a spacious environment with
much free-space, the similarity between observations from
slightly different positions will be very high. In a narrow
environment with many obstacles, however, observations at
positions with low spatial distance are already drastically influ-
enced, which leads to low visual similarities. To that purpose,
we developed an adaptive sensor model that estimates the
dependency between surrounding-specific visual similarities
S’i ; of the observations z; and z; and their spatial distance czw
Different approaches to approximate this sensor model have
been investigated, e.g. Gaussian Process Regression (GPR) as
a non-parametrical description, or a parametrical polynomial
description. Since the model has to be computed after each
motion step, and applied to each node of the local map of each
particle during the graph-matching process, we decided for the
parametrical polynomial description. Mathematical details of
the developed adaptive sensor model and the graph comparison
to determine the importance weight of each particle, i.e. the
likelihood of the respective global map, are given in [14].

The computational and the memory costs of this algorithm
only depend linearly on the number of particles and quadrat-
ically on the number of nodes in the local maps required for
graph matching. At a single-core CPU with 1.8GHz, the com-
putation of the adaptive sensor model is done in approximately
60 ms (independent from map and particle size), whereby 20
nodes of the local map were used for the estimation of the
similarity model. The rest of the computational cost is spent
for map updates, weights determination, and the resampling
process. For a small number of 250 particles as used in the
following experiment, one complete iteration cycle requires
0.08 s, which allows real-time and on-board mapping.

Experimental results: For the experimental investigation,
we used the aforementioned home improvement store in Erfurt
again. All data for the analysis were recorded during routine
operation of the store, i.e. people walked through the operation
area, shelves were rearranged and with that their appearance,
and other dynamic changes (e.g. illumination, occlusions)
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Fig. 7. The red path shows the robot’s movement trajectory estimated by our
appearance-based visual SLAM approach. The map shows a high accuracy
with only small alignment errors. Only for visualization of the localization
accuracy, an occupancy map was built in parallel using raw laser data arranged
along the pose trajectory estimated by means of our appearance-based SLAM
approach and superimposed to the estimated movement trajectory.

happened. In this experiment, the robot was moved several
times through the home store along repeated loops around
the goods shelves. The resulting graph (Fig. 7) covers an
area of 20 x 30 meters and was generated by means of 250
particles in the RBPF. Thus, 250 global graph maps had to
be built, whereas Fig. 7 only shows the most likely final
trajectory and an occupancy map superimposed for visual-
ization only. This occupancy map built by laser scannings
and the visually estimated path gives an impression of the
high quality and accuracy of our appearance-based SLAM
approach. It only shows marginal alignment errors, all hallways
and goods shelves are arranged very precise along straight
lines. To evaluate the visually estimated path shown as red
trajectory in Fig. 7, in addition a ground truth path and map
built by means of a laser-based RBPF SLAM algorithm were
calculated. A first result was, that the trajectories estimated
by both SLAM approaches are very similar. This is also
expressed by a mean localization error of 0.27 meters (with a
variance o = (.13 meters) compared to the laser-based SLAM
results. The maximum position error in this experiment was
0.78 meters. These experimental results demonstrate, that our
vision-based approach is able to create a consistent trajectory
and, for this reason, a consistent graph representation too.
Furthermore, in contrast to the gridmap approach introduced
before, topological maps require significantly less memory
because of the efficient observation storage, where the feature
sets of each snapshot are shared and only repeatedly linked.

IV. ROBUST USER DETECTION AND TRACKING

The aim of a shopping companion is to assist customers
during their purchase. Therefore, at first, people, who seem to
need assistance have to be found, while the system is patrolling
through the operational area. Indications for the interest of
customers to interact with the robot are given, when a person
is standing still and facing the robot for a while. During the
guided tour, the robot has to continuously observe the user
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Fig. 8.  Architecture of the multimodal tracker, left: the sources of infor-

mation, middle: preprocessing systems, delivering Gaussian hypotheses, right:
probabilistic model and update mechanism.

to detect if the person stops or keeps on following the robot.
For this purpose, usually visual cues for face detection and
tracking are used, but for our application, tracking people only
in image space is not sufficient. The goal is to track them
in a two dimensional reference frame, allowing to estimate
their distance to the robot, and to infer about their behavior
and movement trajectories. Therefore, in [18] we introduced a
probabilistic approach for tracking people’s positions in a robot
centered (r, ¢)-coordinate system, which realizes an equitable
fusion of different sensory systems. The main improvement
there was to overcome the disadvantages of single sensor or
hierarchical tracking systems, often used in mobile robotics,
e.g. in [19], [20], [21], [22]. The essential drawback of most
of these hierarchical approaches is the sequential integration
of the sensory cues. These systems typically fail if the laser
range finder as primary sensor yields no information. Besides,
for a mobile robot which has to deal with moving people,
faces will not always be perceivable, hence verification could
fail too. Due to these findings, for the application of the
shopping assistant, we concentrated on the improvement of the
already existing sensor fusion method [18], which additionally
has the advantage that the perceivable area is not limited by
the range of one sensor. In [23], the algorithm of [18] had
already been improved by representing the position of people
in an Euclidean world space, allowing to generate movement
trajectories and to estimate their velocity. For the application
presented here, however, the model had to be extended again
by components needed for making decisions on the robot’s
behavior.

A. Multi-modal probabilistic person tracker

As mentioned above, different sensory cues are used for
estimating the positions of people nearby the robot. The main
sources of information are the images and the occupancy
map of the local environment, integrating all the range in-
formation from sonar and laser (see Fig. 8). The centered
column of Fig. 8 shows the preprocessing modules. Each
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Fig. 9.  Two hypotheses of the probabilistic user model are shown. Each
one has a position @ and a velocity v which are modelled by Gaussians in
2D world coordinates. Further, for each hypothesis the probability of being a
human w, the need for interaction I, and the probability of being the current
dialog partner D are modeled by discrete distributions over {0, 1}.

of the cues provides Gaussian distributed hypotheses H; =
(N (pg, Cs) ,ws) of persons’ positions each with an individ-
ual reliability weight w,. Here A is the Gaussian with mean
p, and covariance matrix Cs. The improved probabilistic user
model at the right side of Fig. 8 is using these observations
to estimate the users’ positions and further properties, like
the estimated need for interaction, or the probability of being
the current dialog partner (see Fig. 9). In extension to the
algorithm of [18] and [23], a user motion model, further
sources of information, and a Kalman filter-based update rule
have been introduced. In our fusion approach, the different
sensory systems are absolutely equitable. So, their advantages
and shortcomings can complement each other.

Because of the limited scan sector of the laser range finder
and the noisy sonars, we decided to extend our former system
by integrating the raw range measurements of the sonars
in a local occupancy gridmap (similar to that one used for
SLAM), representing the current local surroundings of the
robot. Based on this occupancy map, we are able to calculate
a virtual local 360° range scan R; (n) at the robot’s position,
which is representing the current situation with an acceptable
certainty. Objects in that virtual scan are then classified as
person or background. For that purpose, a second scan R (n)
is extracted for the estimated pose from the global occupancy
map built during SLAM (see Section III). By comparing these
two scans, Gaussian observation hypotheses of non-static,
moveable objects can be generated [24]. Because in a dynamic
environment, the probability for these detections to be a person
is relatively weak, the hypotheses resulting from this cue only
get a low weight w,. By means of a set of simple rules, leg pair
hypotheses can be generated from the laser scan as described in
[24]. For each of these pairs, a Gaussian observation hypothesis
is generated at the average position of the legs. Due to the
cluttered environment, the reliability ws of observing a person
this way is also chosen as low.

To find and track regions of skin color in the panoramic
image, a set of particle filters is used. The concept introduced

in [25] allows to track multi-modal distributions of skin color
in the image resulting in a set of disjoint hypotheses for
people’s skin regions. To generate observation hypotheses in
2D world coordinates, the average direction ¢ and a typical
distance to the robot 7 y;,, = 1.5 m are used to specify the mean
of the Gaussian hypotheses. Furthermore, the variance in radial
direction is chosen fix to (1.5m)? and the variance in tangential
direction to the robot is estimated from the particles’ variance
in ¢. The average weight 7 of all particles of the respective
filter then defines the weight wg for these hypotheses.

A reliable feature of humans is motion, which, therefore,
is chosen as a further cue. Because proper motion on a
mobile robot is making motion classification difficult, this is
only useful, while the robot is not moving. This allows the
utilization of a simple difference image based approach, which
gives a reliable hint for motion in the panoramic image (for
more details see [24]).

A very promising hint for people in the surroundings of the
robot is a face in the image. For finding faces, the well known
Viola and Jones detector [26] is applied. The likelihood for
an image patch to be a face is estimated, which is yielding a
further reliability ws. For generation of Gaussian observation
hypotheses, besides the given direction, a distance is needed
again. The typical size of faces (about 15 cm) is utilized to
triangulate the distance with a deviation of about 40 cm.

All these sensory systems are chosen to complement each
other. We have range sensors useful for observing the position
of people with a high accuracy, but with a high false positive
rate. Therefore, these inputs will have a high influence on
the position of a hypothesis, but a weak one on the belief
of representing a person at all. On the other side, there are the
vision-based observations, each with a low spatial accuracy,
but with a higher selectivity. Thus, the main task of skin
color is to generate hypotheses at distinct directions to the
robot. Later, they can be refined in their distances by the
range sensors. Finally, motion and face detections are useful
to prove the hypothesis to be a person with a high reliability.
Face detections give a further hint, that the person did notice
the robot, because only frontal faces are found. All these
observations H from the various subsystems are used to keep
a probabilistic user model up to date, which is introduced
subsequently.

B. Probabilistic user model

The probabilistic user model for tracking potential inter-
action partners in the surroundings of the robot is illustrated
in Fig. 9. There is a varying number of hypotheses Hj =
(zg, vk, Ix, D, wy), where the position xy o< N (py, Ck)
and the velocity vy o< N (v, V) are modeled by Gaussians
in 2D world coordinates with mean g, and covariance matrix
C} and vy and V) respectively. The probability for the
object in the model to be a human at all is described by wy.
Additionally, for each hypothesis k£ the need for interaction
I, and the probability Dj of being the user who is currently
in dialog with the robot are estimated internally. I}, is used
to decide whether to offer service to a detected person while
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Fig. 10. Exemplary tracking results of a person instructed to follow the robot.
(Right) trajectories of robot (black) and user (green) following in different
distances, top: 2m, middle: 1.5m, bottom: stopping at point S. (Left) estimated
distance of the robot to the user over time.

searching for new users. The position of the hypothesis with
maximum Dy, and a wj, above a threshold, determines whether
to wait for the user, or to continue a guiding tour to a given
target point in the store. Algorithmic details of the update
process for the user model are described in [24].

C. Experimental results in user tracking

In order to evaluate the ability to track a customer during a
guided tour, the robot gave several tours, while the customer
had to follow the robot in a particular distance. In Fig. 10 three
of these runs are shown. The plots visualize the continuity of
the tracking result for different average distances. During the
tours with a length of about 50 m, the robot lost contact only
two times in five trials, where the people where asked to keep
a distance of about 1 to 1.5 m, which is a normal displacement
for people doing a shopping tour. In a second experiment, the
number of false positive hypotheses was evaluated. Here, the
robot should interrupt its tour, if a customer stopped following.
Therefore, at the marked point S in Fig. 10 the customer
stopped, while the robot continued its guiding tour. In all of
these trials, the robot detected the disappearance of the user
correctly after at most 5 m and interrupted its guidance tour.

V. ACTING AS SHOPPING ROBOT - FIELD TRIALS

Our long-term field trials started at the end of March
2008 and still ongoing (at the end of July 2008) aim at
studying whether and how a group of interactive mobile
shopping robots can operate completely autonomous without
any assistance by roboticists in an everyday environment,
an ordinary shopping center, and how they are accepted by
non-briefed customers. To this purpose, a home improvement
store with a size of about 7,000 square meters situated in
Bavaria (Germany) was equipped with 3 robotic shopping
assistants allowing a working in parallel. With the objective
of finding people who might need assistance, the robots move
around in the store and patrol between particular points of
interest. If one of the robots detects a potentially interested
customer during its tour (see Section IV), it stops and offers

its service by using a short voice output like “Hello! May
I help you to find an article?” If the customer is interested
in assistance, he/she starts the communication with the robot
by pressing the “Start” button on the touch screen. Then,
the menu for selecting the several modi for goods search
are displayed and also verbally explained. If the customer
has found the requested article in the database, a map of the
store is shown, in which the current position, the position of
the article in the store, and the suggested path planned by
the robot are drawn in. If the customer presses the button
”Go”, the robot moves along its planned path to the requested
article. At the arrival point, the robot drives a bit aside, so
that the customer has enough space for choosing the preferred
article, and offers additional services like a video conference
to a salesperson, a price scanning, or a new search. If the
customer wants to bring the assisted shopping process to an
end, she can finally press a "Good bye” button. To get an
impression whether the users are contented with the robots or
not, we inserted two dichotomous questions on the last screen
page: First, the robot asks if the customer was satisfied, and
then, if she would use the shopping robot again in the future.

During the first four months of this still ongoing long-term
field test, there were about 210 kilometers traveled by each
robot on average. The run-time was limited by the battery
capacity and the decision to use not more than two robots at the
same time in the store. With a full battery charge, the robots
are running between 6 and 8 hours. The mean daily run time
was 4.1 hours a day. All in all, 3,764 customers have started
the dialogue with the robots. On average, a customer wanted
to reach 1.53 arrival points during an interaction. The "Go”
button was pressed 5,781 times; if we adjust this figure by
subtracting the events when the customer has manually stopped
the guidance process, we get 2,799 real guidance tours. Based
on the last named figure, in 83,7% of all cases the robots have
reached their arrival points. The price scanning function was
used 382 times. The results from the survey at the end of the
interaction are very promising; about a fifth of the users has
taken an interest in giving a feedback. 93,4% of the interviewed
persons are contented with the shopping robot, and 92% would
use the robot again.

Finally, we made the experience that the patrol mode is
indeed a good choice to advise the customers to the shopping
robot, but there are times, where it does not make sense.
Particularly, in the case of very crowded stores during the rush
hours, it is better that the robot remains at a waiting position
defined in advance, otherwise it happens, that it obstructs a
passage without giving a service. Furthermore, due the fact
that a shopping robot is an unexpected innovation in a store,
the customers should be advised of the services of the robot.
This increases the numbers of interactions and, therewith, the
benefit for the customers, who want to find articles faster with
the guiding help of a robot. Our experiments were successful in
two main dimensions. First, they demonstrated the robustness
of the various probabilistic techniques in a really challenging
real-world task. Second, they provided some evidence towards
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the feasibility of using mobile robots as assistants to people
without any background knowledge in robotics.

VI. RELATED WORK AND DISCUSSION

A comprehensive overview of the employment of mobile
robots as tour guides in expositions or museums is given in
[27]. Among them are such well known robots like Rhino,
Minerva, and Sage, or the exposition guide RoboX. Usually,
these robots guide visitors to a set of predefined exhibits
following a planned path while offering exhibition-related
information. They navigate in densely populated, structured,
but completely known operation areas as they are typical for
expositions - in the most cases limited to a few hundred
square meters. Unlike this, the shopping robot scenario and
the respective operational environments in supermarkets or
home stores make more challenging demands. Amongst others,
there are the very large operation area up to 10,000 square
meters, the uniformly structured, maze-like environment con-
sisting of numerous similar, long hallways, the enormous total
length of all hallways (up to several kilometers), and the
continuous changing of the environment (e.g. due to rack
filling or rearrangements). Besides the work presented here,
there are only a few approaches known that tried to meet
at least some of these challenges. RoboCart [28], or the
approaches of [29] and [30] belong to this. However, these
systems don’t navigate autonomously, some require engineered
environments (e.g. equipped with RFID-tags for localization),
others are remote-controlled from outside [30]. They are proof-
of-concept prototypes or even only design concepts, show
very limited functionality only, often require assistance by
roboticists, and are not yet ready for everyday use. None of
these systems has continuously been involved in shopping tasks
over longer periods of time, or was subject of long-term field
trials during routine operation of the store.

VII. SUMMARY AND CONCLUSIONS

This paper describes recent progress in developing a mobile
shopping robot for interactive user guidance in shopping
centers. Building on former work in robot navigation and
human-machine interaction, new approaches specifically aimed
at robust navigation and human-robot interaction in complex
and populated public environments, and results of still run-
ning long-term field trials are presented. With the successful
development of the world’s first shopping robot, that supports
people in looking for goods in a completely autonomous
fashion, one important step towards assistive robotics for
everyday use has been completed. Our shopping companion
intuitively offers its services, keeps continuously contact to
the current customer, and guides its user to the desired good’s
location. In four-month field trials, the robot has shown its
suitability for a challenging real-world application, as well as
the necessary user acceptance. The companion robot offers
unequaled opportunities and demonstrates that such service
robots can be usefully utilized in a variety of applications in
daily life. Areas of application, that could benefit from such
interactive, mobile robot assistants, are all those, where people

have need for individual assistance along their way, because of
missing knowledge of place and contact persons, respectively.
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