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ABSTRACT

Signal classification is an important task in numerous application do-
mains that is increasingly being approached through ensemble meth-
ods, such as those involving boosting and bootstrap aggregation. In
decision support scenarios, it is often of interest for automatic clas-
sification algorithms to abstain from making decisions on the most
uncertain signals; this is known as classification with a reject option.
In this work, a bound on generalization error for ensemble classifi-
cation with a reject option is derived that involves two intuitive prop-
erties of the ensemble: average strength and mean correlation. The
bound is shown to be predictive of empirical classification behavior
and useful in setting the rejection threshold for a given rejection cost.

Index Terms— ensemble classifier, random forest, reject op-
tion, generalization bound

1. INTRODUCTION

Signal classification is a common task in applications ranging from
surveillance to medicine to communication. Automatic classifica-
tion algorithms may be used to support human decision makers and
reduce their load. For example, a classification algorithm may be
used to make a diagnosis based on a blood test with little or no input
from a physician. In such decision support scenarios, it is of interest
that the algorithm abstain from making a classification on the most
uncertain signals rather than making an incorrect classification. Such
abstention is known as classification with a reject option [1, 2]. De-
pending on the application, the unclassified, or rejected, signals may
be ignored or may be further examined by various means, including
manual inspection or obtaining additional measurements or features
to reduce uncertainty, akin to sequential hypothesis testing [3].

Over the last decade, ensemble classifiers, including random
forests [4], have proven to be powerful, robust and scalable, and
have become first choice classification algorithms among many sig-
nal analysts and data mining practitioners. The main idea of ensem-
ble classification is to train many diverse, but perhaps weak, base
classifiers and have them vote to determine an overall classification.

Bounds on the generalization error—the probability of classi-
fication error on signals apart from those used to train the decision
rule—are often useful in understanding the properties and behav-
iors of classification algorithms. A highly interpretable generaliza-
tion bound for ensemble classification involving two properties of
the collection of base classifiers, average strength and mean corre-
lation, is developed in [4]. This generalization bound’s primary util-
ity is in the intuition it provides regarding the influence of ensemble
properties on performance, but it also has a strong correlation with
empirical classification error on new signals not used in training.

In this work, a risk bound for ensemble classification with a re-
ject option is developed that also depends on the quantities average
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strength and mean correlation. Here also, the bound provides intu-
ition about the factors that go into the classification performance of
the ensemble. The main free parameter in classification with a reject
option is the rejection threshold. In addition to the intuition pro-
vided by the risk bound that is developed, it is seen that the value of
the threshold that minimizes the bound is approximately equal to the
value that minimizes the empirical risk on real-world data sets. Thus
the bound may be used to guide the selection of the threshold. The
derivation of the reject option risk bound in this paper closely fol-
lows the derivation of generalization bounds for receiver operating
characteristics of ensemble classifiers presented in [5].

An overview of ensemble classification at the depth required for
the remainder of the paper is provided in Section 2. Implementation
of the reject option and the definition of risk to measure classification
performance are also discussed in that section. Making use of the
Cantelli inequality, the risk is bounded in Section 3. The efficacy
of the bound is shown in Section 4 through empirical comparison.
Section 5 concludes.

2. ENSEMBLE CLASSIFICATION
WITH A REJECT OPTION

Consider a classification problem in which class labels y € {—1,+1}
are to be predicted using signals x € X. The decision rule
9(-) + X — {—1,+1} is learned from labeled i.i.d. training data
and applied to new, unseen and unlabeled test signals from the same
distribution. In the specific case of ensemble classification, § is
composed of base classifiers §;(-) : X — {—1,4+1},i=1,...,m.
The overall decision is based on the average classification of the
base classifiers.

Let the average classification of the base classifiers be the score
¢ € [-1,+1]:

D) m

In the usual case, if the score is negative then the overall decision is
§ = —1, and if positive then § = +1, i.e. §(x) = sign(é(x)). In
the context of classification with a reject option, the overall decision
is the following:

7(x) = [ reject, —t<ox) <t 2)
+1, P(x) >t

where ¢ > 0 is a rejection threshold. Decisions are most uncer-
tain near the boundary between the two classes, which occurs at
¢(x) = 0. Rejections are declared in the most uncertain regions
of the signal space X', where ¢(x) is close to zero. In essence, the
rejection threshold provides a guard band or padding around the de-
cision regions for 41 and —1 with the amount of padding controlled
by t, as illustrated in Fig. 1.



Fig. 1. Illustration of decision regions in signal space. The region
4y = +1 is black, the region § = —1 is gray, the region § = reject is
white, and the boundary ¢ = 0 is the black line.

Fig. 2. Illustration of margin distribution f,(z) marked with rejec-
tion threshold ¢. The area of the black region is the error probability
Pg. The area of the gray region is the rejection probability Prg.

Define the margin to be z = y¢ € [—1,+1]. Due to the spe-
cial encoding y € {—1,+1}, the margin is negative for incorrect
classifications and positive for correct classifications. With a reject
option, the margin is in the range [—t, +t] for rejections. Thinking
of the margin as a random variable induced by the random variables
X, ¥, and the learned classifiers ¢;, the probability density function
of the margin is denoted f,(z). Thus, the probability of error

Pg = Pr[z < —{]
—t

= f2(z)dz 3)
-1
and the probability of rejection

Pr=Pr[-t<z<t{]

= fz(2)dz. 4
—t

The error probability P is the area of the black region and the re-
jection probability Pr is the area of the gray region in Fig. 2, an
illustration of a margin distribution.

As discussed in [2], a useful measure of performance is the reject
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option risk:

Lc,t = Pg +cPr
=Pr[z < —t] + cPr[-t < z < {] 5)

where the cost of error is one, the cost of correct classification is
zero, and the cost of rejection is 0 < ¢ < 1/2. The reject option risk
L.,; should be small for good performance. This risk is bounded in
the following section.

3. BOUND FOR REJECT OPTION RISK

A bound for the risk L. ; involving the average strength and mean
correlation of the ensemble is derived in this section. The average
strength s measures the quality of the individual base classifiers and
is the expected value of the margin, i.e. s = E[z]. The mean correla-
tion p measures the diversity of the base classifiers and is the average
pairwise correlation between base classifier outputs; it is shown in
[4] that

var(z) < p(1 — s°). 6)

It may be observed in Fig. 2 that
Loy =(1—c¢)Pg+cPriz <. )

The probability of error term is bounded first, followed by the
Pr[z < t] term; the two are then combined. The term Pr = Pr[z <
—t] is to be bounded using average strength and mean correlation.
The Cantelli (one-sided Chebyshev) inequality is used toward this
end [6]:

+ var(z)
Letting k = E[z] + ¢,
1
Prjz < —t] < 1 BRI Elz] > —t, )
+ var(z)
and 1
Pg < 1o o7 s > —t, (10)
p(1—s2)

due to (6) and the definition of s. It is a standard requirement in
ensemble classification that the base classifiers have accuracy greater
than random guessing, which translates to s > 0. Therefore s > —t
is assumed true and this constraint need not be further considered.

Now turning to the second half of the reject option risk expres-
sion (7), again by the Cantelli inequality,

1
I+ var(z)
and also 1
L+ 307

A bound for the reject option risk, the main result, is found by
combining (10) and (12):

1—c¢ c
Leas(z) < e TSP ()
R B sy

This bound is applicable when the rejection threshold is set below
the average strength of the ensemble. A threshold value greater than



the strength would mean that the classifier is rejecting signals that
are ‘easy’ to classify, and is not the regime in which the reject option
is typically employed. Results in Section 4 show that this bound,
although not tight in difference, is predictive of the risk behaviors
empirically exhibited by ensemble classification with a reject option.

With the goal of small reject option risk, the bound expression
(13) may be examined to determine good values for the threshold,
strength, and correlation. With fixed rejection cost, strength, and
correlation, it is straightforward to determine a closed-form expres-
sion for the optimal threshold value ¢ € [0, s) that minimizes the
reject option risk. It is a large polynomial expression. Thus, the
bound provides a way to set the rejection threshold, the main free
parameter in classification with a reject option.

Another analysis that may be considered is to determine guide-
lines for the average strength and mean correlation of the ensemble
with fixed rejection cost and threshold. In this analysis, the idea is
to move probability mass from the black area in Fig. 2 to the gray
area, or ideally into the white area. The derivative of the L. .(z)
bound with respect to s is always negative, so the guideline is to have
strength as high as possible. The derivative of the L. .(z) bound
with respect to p is always positive, so the guideline is to have corre-
lation as low as possible. The guidelines of large strength and small
correlation are the same as for plain ensemble classification without
reject option; further guidelines specific to the reject option may be
revealed by higher-order analysis. In practice, there are various ways
to manipulate the strength and correlation of an ensemble [5], but it
should be noted that the two are at odds with each other.

4. EMPIRICAL EVIDENCE

In this section, the similarity between the reject option risk bound
derived in the previous section and the empirical reject option risk
is examined on real-world data sets from the UCI Machine Learn-
ing Repository [7]. The ensemble classifier that is considered is the
random forest classifier [4]; the Matlab statistics toolbox implemen-
tation TreeBagger with default parameter settings is used.

The first data set examined is the spambase data set, in which
the task is to determine whether an email is an unsolicited, com-
mercial message, i.e. spam. Spam emails include product adver-
tisements, pornography, chain letters, and messages purporting get-
rich-quick schemes, whereas non-spam emails include personal and
work-related messages. In the email setting, it is useful for a spam
filter to have a reject option, allowing the email recipient the opportu-
nity to decide whether a particular message that is difficult to classify
is spam. The measurements upon which the spam filter makes its de-
termination are 54 percentages that report the fraction of a message
that matches a particular word or character, and three counts related
to runs of capital letters. The data set contains 4601 samples.

Eleven random forests with different random seeds, each com-
posed of fifty classification trees, are learned from the data set, and
the out-of-bag margin distribution is obtained. The empirical reject
option risk is calculated as a function of the rejection threshold and is
plotted in Fig. 3.! For the different cost values considered, ¢ = 0.15,
0.30, 0.45, the shape of the risk function is different. In particular,
the threshold that minimizes the risk is small, intermediate, and large
for the respective costs. Fig. 3 also plots the risk bound derived in
Section 3 for the different cost values. The risk bound functions
mirror the empirical risk functions in shape. Additionally, the min-
imizing threshold of the bound nearly matches that of the empirical

Al plots are median values based on the eleven random forests with
different random seeds.
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Fig. 3. Comparison of (a)—(c) empirical and (d)—(f) analytical bound
of reject option risk as a function of rejection threshold for three
different values of rejection cost on the spambase data set.

reject option risk.

To examine this further, the minimizing threshold of the risk
is plotted as a function of the cost in Fig. 4. This function, both
the empirical and bound versions, is seen to be nonincreasing: the
higher the cost of a rejection, the smaller the rejection region in sig-
nal space, cf. Fig. 1. The bound version jumps to s at a particular
small value of ¢ because the L. ; function becomes monotonically
decreasing in t at that value of c. It is especially enlightening that
the minimizing threshold of the bound is quite predictive of the em-
pirical minimizing threshold. Setting the rejection threshold is an
important task in practice. Due to the predictive quality of the bound
that has been derived in this paper, the bound may be used to set the
threshold for a given cost value.

0.8
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Fig. 4. Rejection threshold that minimizes risk as a function of rejec-
tion cost, empirically (red line) and on the analytical bound (black
line) for the spambase data set.
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Fig. 5. Comparison of (a)—(c) empirical and (d)—(f) analytical bound
of reject option risk as a function of rejection threshold for three
different values of rejection cost on the internet advertisements data
set.

The second data set examined is the internet advertisements data
set, also from the UCI repository. Here, the task is to determine
whether an image on a web page is an advertisement or not, based
on 1558 different dimensions of measurements. These dimensions
include the geometry of the image, and phrases in the uniform re-
source locator of the page and image, alternative text, anchor text
and surrounding words. The advertisements data set contains 3279
samples.

For this data set also, eleven random forest classifiers with dif-
ferent seeds are learned, here with thirty-five trees per forest. The
same plots as for the spambase data set are given for the internet ad-
vertisements data set in Fig. 5 and Fig. 6. The same features of the
empirical risk and risk bound are seen, the most important of which
is again that the bound may be used to set the rejection threshold.

5. CONCLUSION

Ensemble classification with a reject option has been analyzed in
this paper. A bound for the reject option risk involving the average
strength and mean correlation of the ensemble has been derived us-
ing the Cantelli inequality. The bound reveals the guidelines that, in
analogy form, diverse (low correlation) and informed (high strength)
committees of voters are good. Risk bounds in statistical learning
theory are nearly always only useful in providing such guidelines;
they are not objects to be meaningfully optimized [8]. However, the
bound developed herein is unlike typical statistical learning theory
bounds: the rejection threshold that minimizes the bound is a mean-
ingful approximation to the optimal empirical rejection threshold.
Thus, the contribution of the paper is beyond just theoretical inter-
est, there is practical significance as well.

The bound developed here makes use of first and second order
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Fig. 6. Rejection threshold that minimizes risk as a function of rejec-
tion cost, empirically (red line) and on the analytical bound (black
line) for the internet advertisements data set.

moments of the margin distribution along with the Cantelli inequal-
ity; future work may consider higher-order moments and inequalities
such as those described in [9], although higher-order moments do
not have the nice interpretability of average strength and mean cor-
relation. Also, the analysis here is limited to binary classification,
primarily due to notational convenience; it is straightforward to ex-
tend the analysis to multicategory classification using the definition
of margin for the multicategory case given in [4]. In multicategory
classification, an interesting extension of this work would be to con-
sider the opposite of the reject option, akin to list decoding [10], in
which more than one label may be assigned to a signal.
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