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ABSTRACT

We investigate and demonstrate the sparsity of electroen-

cephalography (EEG) signals in the spatial domain by incor-

porating grid spacing in the area of the head enclosing the

brain volume. We exploit this spatial sparsity and propose

a new approach for tracking neural activity that is based on

compressive particle filtering. Our approach results in reduc-

ing the number of EEG channels required to be stored and

processed for neural tracking using particle filtering. Simula-

tions using both synthetic and real EEG signals illustrate that

the proposed algorithm has tracking performance comparable

to existing methods while using only a reduced set of EEG

channels.

Index Terms— Compressive sensing, EEG, dipole model,

multiple particle filter.

1. INTRODUCTION
Advances in scanning technology during the last few

decades have extended our understanding of the human brain

pathology. Magnetoencephalography (MEG) and electroen-

cephalography (EEG) offer temporal resolutions below 100

ms, allowing studies on the dynamics of basic neural activ-

ities [1]. Although MEG/EEG measurements provide high

temporal resolutions, hundreds of sensors need to be placed

on the scalp in order to provide high spatial resolution and

localize neuronal activity. One of the biggest challenges with

MEG/EEG data collection and analysis is that huge amounts

of data need to be stored and processed; MEG/EEG data re-

duction or compression has thus become an important issue.

Compressive sensing (CS) is a method used to recover a

signal from a small number of projections onto a basis, pro-

vided that the signal has a sparse representation in another

basis, that is incoherent with the first basis [2]. Recently,

CS methods have been investigated for the efficient acquisi-

tion of EEG signals. In [3], it was shown that EEG signals

are sparse when represented using Gabor basis functions and

chirped Gabor basis functions, and this property is utilized

to recover multiple channel, multiple trial EEG data from a

small number of measurements. In [4], Bayesian CS (BCS)

techniques were developed by exploiting the sparsity of EEG
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signals in spatio-temporal dictionaries. In [5], an EEG sensor

design method was proposed to generate high fidelity EEG

measurements using a CS approach. In [6], the performance

of various CS implementations is compared and quantified for

scalp EEG signals.

In this paper, we propose an efficient spatial domain EEG

CS technique, which results in a significant reduction in the

amount of EEG data that needs to be stored and processed.

Sequential Bayesian estimation techniques, such as the par-

ticle filter (PF) [7], have been used to track neural activity

dipole sources. [8]. However, as the number of dipole sources

increases, the computation complexity of the PF tracking al-

gorithm grows proportionally. In order to avoid this high

computational complexity, we first analyze the EEG data

sparsity in the spatial domain using equivalent current dipole

source representations. We then compressively sense the mul-

tiple channel EEG signals using an independent and identi-

cally distributed Gaussian function basis. Finally, by using

the compressive particle filter algorithm [9], we apply the PF

on the spatial compressed EEG data to localize the neural ac-

tivities with reduced computational complexity.

2. COMPRESSIVE SENSING

CS can reduce the number of measurements required to re-

construct a signal since a small set of linear projections of a

sparse signal contains enough information for reconstruction.

Let z ∈ Rdz denote a vector with dz elements; then z is said

to be K-sparse if z can be represented by z=Ψθ, where the

columns of Ψ ∈ Rdz×dθ constitute a basis function and θ is a

vector with at most K non-zero elements and K << dθ [9].

CS theory states that it is highly probable that θ and z can

be exactly recovered from the measurements y =Φz, where

Φ ∈ Rdy×dz is a projection matrix and dy < dz [2]. It has

been shown that the signal can be recovered from its mea-

surements when the projection matrix Φ is incoherent with

the basis Ψ that the signal is sparse over. A typical choice for

the projection matrix, Φ, is a random matrix with independent

and identically distributed Gaussian or Bernoulli entries. The

vector z can be recovered from the measurement y by solving

the following optimization problem [2]

arg min
θ

||θ||1 subject to ΦΨθ = y, (1)

3461978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



where || · ||i denotes the �i norm. When dy << dz , CS theory

can be used to reduce the dimensionality of vector z.

3. SPATIAL SPARSITY OF EEG SIGNAL
At time k, we assume that a small patch of activated cortex

can be represented by an equivalent current dipole with three-

dimensional (3-D) location pk and 3-D moment mk = sk qk,

where qk is a 3-D orientation vector and sk is the current

amplitude of the dipole [1]. Using the dipole source model,

EEG signals acquired by M sensors are represented as

zk = Ak sk + nk. (2)

where zk = [z1k z2k . . . z
M
k ]T is the M channel EEG signal at

time k, sk = [s1k s2k . . . sNd

k ]T is the amplitude of Nd dipoles

at time k, nk is the measurement noise, and Ak is the M ×
Nd gain matrix. The jth column of this matrix is given by

ajk = F(pj
k)q

j
k, where the lead field F(p) is represented by a

M×3 matrix and is a nonlinear function of the dipole location

p [10].

In order to show the spatial sparsity of the EEG signal, we

constrained the dipoles to G grids in a 3-D Cartesian coordi-

nate enclosing the brain volume. For the fixed Cartesian coor-

dinate y, the grid is shown in Figure 1. Given this constraint,

the M -channel EEG signal can be approximated as,

zk = Ψθk + nk (3)

where Ψ= [F(r1) F(r2) . . . F(rG)] is an M × 3G matrix,

F(ri) is the M × 3 lead field of the ith grid located at ri,
θk is a 3G × 1 vector with elements [m1

k . . . mG
k ]

T , and

mi
k = [mi,x

k mi,y
k mi,z

k ] represents the moment of a dipole con-

centrated on the ith grid at time k. Since there are Nd dipoles,

only Nd grids have non-zero moments. As a result, at most

3 × Nd elements in θk are non-zero, where Nd � G. Thus,

according to CS theory, the EEG signal zk is 3 × Nd-sparse

in the spatial domain.

Ω

Fig. 1. Sparse current dipole signals.

We define the L-dimensional compressed measurement as

yk = Φzk + εk = ΦΨθk + εk (4)

where L � M , Φ is the L×M projection matrix uncorrelated

with Ψ, and ε is the projected noise. CS theory ensures that

the compressed measurement yk has all the information of zk
and θk. As a result, we can use yk as our new measurement

in tracking neural dipole sources.

4. SPATIAL COMPRESSED PARTICLE FILTERING
Using the new compressed measurement vector, we can re-

formulate the state-space model for the neural dipole source

tracking problem as

xk+1 = xk + uk, (5)

yk = Φh(xk) + vk, (6)

where xk is the state of a dipole at time k including its 3-D lo-

cation pk and 3-D moment mk, h(·) is the nonlinear measure-

ment function obtained from equation (2), uk is the modeling

error random process, and vk is a combination of measure-

ment noise and projection noise εk. Based on this model, we

use a particle filter (PF) to track the state x of the neural dipole

source. Here, we use the spatial compressed measurements y
as the PF input, and the steps of the proposed algorithm are

described next.

Initialization: The samples {x(i)0 }Ni=1 are drawn from the ini-

tial density p(x0), where N is the number of particles and

p(x0) is a uniform distribution all over the head. The weights

are assigned to be initially equal, w
(i)
0 = 1/N .

Prediction: For k = 1, . . . ,K, the particles x(i)k are drawn

from the probability density p(xk|x(i)
k−1). Then the prior den-

sity p(xk|y1:k−1) can be approximated by p(xk|y1:k−1) =
∑N

i=1 w
(i)
k−1δ(xk − x(i)

k ).

Update: The weights w
(i)
k are updated based on the new com-

pressed measurement yk using w
(i)
k ∝ w

(i)
k−1p(yk|x(i)k ). We

also normalize the weights w
(i)
k = w

(i)
k /

∑N
i=1 w

(i)
k .

Resampling: The particles are resampled based on their

weights to obtain {x(i)k , w
(i)
k }Ni=1. The posterior density

p(xk|y1:k) can be approximated by

p(xk|y1:k) =
N∑

i=1

w
(i)
k δ(xk − x(i)k ).

Thus, the measurement yk is the spatial compressed ver-

sion of the original measurement zk, yk =Φzk+vk. Typically,

the elements of the projection matrix are random variables

drawn from independent and identically distributed Gaussian

distributions or Bernoulli distributions to make sure that Φ is

uncorrelated with Ψ. After the spatial compressive sensing,

the dimension of the measurement has been reduced from M
to L, where L � M . As a result, the amount of EEG data that

is needed to be stored can be reduced from M ×K to L×K
bytes. The likelihood p(yk|xk) is now an L-dimensional

Gaussian density function instead of an M -dimensional den-

sity function. This results in a significant reduction in the

computational complexity of the signal processing operations

that are a function of the number of EEG channels.

This algorithm can be extended to multiple dipole

source tracking problems by using the multiple parti-

cle filtering framework [8]. In our simulation results,
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we use one PF for each dipole source. The jth sub-

PF uses the same prediction and resampling steps as

the ones just just described. However, the weight up-

date step is modified to w
(i)
j,k ∝ w

(i)
j,k−1 p(yk|x(i)j,k, x̃−j,k),

where x̃−j,k = [x̃T1,k . . . x̃T
j−1,k x̃Tj+1,k . . . x̃TNd,k

]T are

the predicted values of all the states, excluding x̃j,k and

x̃j,k =
∑N

i=1 w
(i)
j,k−1x(i)j,k.

5. RESULTS

We compared our proposed spatial CS particle filter (SCSPF)

with the multiple particle filter (MPF) [8] using simulated and

real EEG data. For our simulations, we draw each element

of the projection matrix Φ from a zero-mean, additive white

Gaussian random process with unit variance elements.

Simulated data results. The synthetic data was created by

inserting three current dipoles into a sphere head model and

calculating the resulting EEG signals using Equation (2) with

Gaussian noise. The three dipoles are localized at V 1 (1.11,

5.34, 4.98), V 5R (4.36, 3.68, 4.44) and V 5L (3.37, 4.85, 4.81)

from a previous study. For this simulation, we used 1,000

particles for each dipole. The particles are initially uniformly

distributed in the brain volume hemisphere with a radius of 85

mm. The dipole evolution model in (6) is a random walk with

Gaussian transition kernel pk+1|k(pk+1|pk)=N (pk, σp) and

pk+1|k(mk+1|mk)=N (mk, σm), with σp=1 cm and σm=2

nA, where p and m are the 3-D dipole location and moment

vector, respectively.

In Figure 2, we show the estimation results, averaged over

50 independent runs, in terms of root mean-squared error

(RMSE), for both the proposed SCSPF and the MPF [8].

The MPF used all 238 EEG measurements, and the result-

ing RMSE for estimating the dipole location and amplitude is

shown in red in Figures 2(a) and (b), respectively. The fig-

ures also show that the RMSE estimation performance of the

SCSPF is comparable to the MPF using only 50 compressed

channel signals; this shows is a significant reduction in the use

of measurements. Note that when the number of compressed

channels is greater than 50, there is no noticeable improve-

ment in the RMSE. Thus, we choose the size of the projec-

tion matrix Φ to be 50× 238. From Figure 2, we can see that

the location and amplitude RMSE for SCSPF using 50 com-

pressed channel signals are 2.42 mm (2.25 mm for MPF) and

1.43 nA (1.17 nA for MPF), respectively. Assuming that there

are 100 time steps in this simulations, the amount of EEG data

needed to be stored has been reduced from 238 × 100 ≈ 24

k bytes to 50× 100 = 5 k bytes. Table 1 shows a comparison

of the two competing methods in terms of computing opera-

tions. Note that SCPF has reduced number of additions and

multiplications.

Real EEG data results. Next we apply the proposed SCSPF

to real EEG data that is publicly available [11]. In this exper-

iment, the subject’s screen showed 5 empty boxes arranged

horizontally above the screen center. At the screen center,
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Fig. 2. RMSE estimation performance comparison.

Table 1. Computing operators for SCSPF and MPF.

Algorithm + × ÷ √
exp

MPF 323 341 1 2 1

SCPF 142 165 1 2 1

there was a plus sign which was used as the fixation point

throughout the experiment. When the task began, a white disc

would appear in any one of the boxes for 100 ms. The loca-

tion of the box is called the attended location. The subject was

instructed to press the response button whenever the disc ap-

peared at the attended location. Data were collected from 238

scalp, neck, face and eye locations using the Biosemi Active

Two system. Datai is referenced with respect to the electrode

located in the right mastoid.

First, we preprocess the real EEG data based on the meth-

ods in [12]. The preprocessing steps include bandpass fil-

tering, event extracting and independent component analysis.

Next we apply the SCSPF and MPF on the preprocessed EEG

data. Here, we choose the projection matrix Φ as an 50×238
matrix with elements drawn from standard Gaussian distri-

bution. We estimate the locations and amplitudes of three

dipoles and for each dipole we use 1,000 particles for both

the SCSPF and MPF algorithms. We also compare the esti-

mation results with the dipole fitting method in [12]. Since

the true locations and amplitudes of the dipoles are unknown

in the real data case, we set the dipole fitting results in [12] as

the ground truth. The estimation results are shown in Figure 3
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Fig. 3. Estimation of the amplitudes of three dipoles.

and Figure 4 and the RMSE is shown in Table 2. From Figure

3 and Figure 4, we can see that the amplitudes and locations

of the dipoles estimated by SCSPF and MPF match with the

results given in [12]. Table 2 indicates that the SCSPF can

give comparable RMSE performance with the MPF. However,

since for SCSPF we use only 50 compressed channel mea-

surements instead of the 238 original channel measurements,

the amount of EEG data needed to be stored and processed is

significantly reduced. For one hour of EEG data acquisition

with 1 kHz sampling rate, the amount of EEG data needed to

be stored has been reduced from 857 MB to 180 MB.
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Fig. 4. Estimation of the locations of three dipoles.

Table 2. RMSE comparison: SCSPF (50 channels) and MPF

Algorithm Location Amplitude

MPF 5.17 mm 2.63 nA

SCSPF 5.62 mm 2.85 nA

6. CONCLUSION
We first investigated the spatial domain sparsity of EEG sig-

nals, and then we proposed its application to compressive

sensing of EEG signals. We applied multiple particle filtering

on the compressed EEG data to track the locations and am-

plitudes of the neural activities. The RSME tracking results

of the proposed algorithm are comparable with those of con-

ventional methods. However, the number of required EEG

channels is now reduced from 238 to 50. Thus, the use of

compressive sensing significantly reduces the required stor-

age capacity and computational complexity involved in EEG

processing.
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