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Abstract—We propose a fixed-effort MIMO decoder for fre-
quency selective indoor channels that are characterized by strong
Line-of-Sight (LOS) components. Contrarily to the maximum
likelihood (ML) approach, where all possible hypotheses are
investigated by the metrics calculation, the proposed MIMO
detector performs the search over a reduced set of candidates.
This search set contains a reduced but representative set of
hypotheses around the linear solution obtained at the first
detection stage. The candidates are selected according to pre-
computed search probabilities. A decision feedback equalizer
(DFE) is applied in order to remove the effect of the inter
symbol interferences (ISI) caused by the channel dispersion.
The method provides a near ML performance using a fixed
computational effort determined by the hardware resources. The
proposed detector also shows a significant complexity reduction
compared to popular MIMO detectors such as the V-BLAST and
the sphere decoder. Moreover, the proposed detector provides a
soft output information for each transmitted bit, using the pre-
selected candidates from the reduced search set which presents
a promising aspect for the coded transmission.

Index Terms—MIMO detection, line-of-sight, frequency selec-
tive channel, RS and IRS detectors, soft output information

I. I NTRODUCTION

Multiple input multiple output (MIMO) transmission sys-
tems promise higher data rates and better reliability for a given
signal to noise ratio and a fixed bandwidth [1], [2]. The ML
detector is the optimum detector in terms of minimizing the
bit error rate (BER) for MIMO systems, but stays unfeasible
in practice because of its extremely high computational effort.
The sphere decoder (SD) has been proposed as an approach
to provide ML performance with reduced complexity. The SD
derived in [3]–[5] is based on a successive layer detection
using decreasing search radii which results in a reduced
number of candidates. However, the SD presents a variable
complexity depending on the noise level and the channel
conditions. The SD complexity converges to an exponential
complexity for a bad conditioned channel matrix and a low
signal-to-noise ratio (SNR). This makes its implementation
unfeasible in practice. The reduced search (RS) algorithm
has been proposed in [6] to reduce the number of candidates
per level. The RS approach is based on a linear detection
providing the starting solution followed by a RS ML. The
starting solution is an initial set that will be expanded by the
RS algorithm depending on pre-computed search probabilities
at each level. The method provides a near ML performance

at a fixed computational effort and shows a strongly reduced
complexity compared to the SD. However, contrarily to the
RS, where a simple set expansion strategy is separately used
in the real and imaginary dimensions of the constellation,
the improved reduced search algorithm (IRS) offers a joint
set expansion in the complex constellation according to pre-
computed search probabilities, resulting in a further complex-
ity reduction. Moreover, Both RS detectors provide a soft
output information for each transmitted bit applying simple
probability calculations. This strategy presents a promising
aspect for coded transmission.

Hence, the rest of the paper is structured as follows: In
section II, the MIMO system model is presented. In section
III, the proposed reduced search detectors (RS and IRS)
are described. Section IV is dedicated to the soft output
information delivered by the RS decoders. In section V, we
compare the performance of the RS algorithms to some other
MIMO detectors by applying them to the commonly used
simulated flat Rayleigh channel, as most of the results of other
detectors are available only for this type of channel. In section
VI, measurements are performed in a real indoor frequency
selective channel using a real4 × 4 MIMO communication
test bed so that we are closer to the practical circumstances.
The performance of the RS algorithms will again be analyzed
and compared to the performance of other, common detectors.
Finally, our work will be concluded in section VII.

II. SYSTEM MODEL

We consider a symmetric MIMO system consisting ofM
transmit (Tx) andM receive (Rx) antennas and a frequency
selective channel which will be described in discrete-time
representation. The complex channel coefficients include the
channel phase information. Assuming the channel to be time
invariant over a burst, the channel impulse response (CIR)
is of the formH[l] =

∑K−1
k=0 Hk δ[l − k], where the sum is

evaluated over theK different transmission paths consisting of
(K−1) reflected signal parts, and where the LOS signal com-
ponent is incorporated by the indexk = 0. The complex matrix
Hk ∈ C

M×M denotes thek-th MIMO transmission path. We
defines[l] = [s1[l], ..., sM [l]]T ∈ AM to be the transmitted
vector consisting ofM data symbols arbitrarily chosen from
the quadrature amplitude modulation (QAM) constellationA
with the same probability of occurrence for each symbol.



Rs = E[s[l]sH[l]] = diag(σ2
s1

, .., σ2
sM

) ∈ R
M×M denotes

the covariance matrix of the transmitted vector, whereσ2
sm

denotes the Tx power of them-th Tx antenna. The received
signal vectorx[l] can be expressed as:

x[l] =

K−1
∑

k=0

Hk s[l − k] + n[l] ∈ C
M , (1)

wheren[l] ∈ C
M denotes the additive white noise. We assume

the noise to be zero-mean complex Gaussian with covariance
matrix Rn = E[n[l]nH[l]] = diag(σ2

n1
, .., σ2

nM
) ∈ R

M×M ,
whereσ2

nm
denotes the noise power at them-th Rx antenna.

III. R EDUCED SEARCH ALGORITHMS

We commence with the case of flat fading channels. In this
case the CIRH[l] has only one transmission path. For ease
of notation, time index[l] is dropped in the following. The
reduced search detectors are based on a first linear detection
providing the starting solution followed by a RS ML. The
search sets are adjusted by the RS algorithms depending on
pre-computed search probabilities at each level. The method
provides a near ML performance while it uses a fixed com-
putational effort. The zero-forcing (ZF) equalizerG = H−1

as well as the minimum mean square error (MMSE) equalizer
G = σ2

sHH(σ2
sHHH + σ2

nIM )−1 could be applied for the
determination of the starting search set. Both equalizers offer
a relatively simple filter design. The resulting noise at the
equalizer outputη = Gn ∈ C

M has the following noise
power at leveli

σ2
ηi

=

M
∑

m=1

|gim|2σ2
nm

. (2)

The calculation of the noise power at the equalizer output
offers the possibility to determine the reduced search sets.
Consequently, a larger search set will be needed for the
symbols belonging to the least reliable data streams and a
smaller search set for the symbols belonging to the most
reliable data streams is expected.

A. Reduced Search Detector (RS)

The RS solution, already derived in [6], is obtained accord-
ing to

ŝRS = arg min
ŝ∈S

‖x − Hŝ‖2, (3)

whereS = S1× ..×SM is a subset ofAM denoting the set of
calculated hypotheses over all data streams whose cardinality
equals the total number of candidates. Contrarily to the SD,
where candidates in a hypersphere with a radiusR around the
received signal are investigated, the RS algorithm considers
quadratic search setsSi at each complex leveli since the
powers of real and imaginary noise parts belonging to thei-
th data stream are equal1. Fig. 1 (a) shows an example of
determined candidates located in the frame. The distribution
scheme wasnS = [n1, n2, n3]

T = [9, 4, 1]T, whereni denotes

1We assume that the constellation border is not reached.

the number of candidates at thei-th level. The different subsets
are derived around the linear solution which is marked with a
cross at each level.
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(b) IRS

Fig. 1. Example of derived search subsets for the different decoders. The
solution obtained by the linear equalizer is marked by a crossat each level.

B. Improved Reduced Search Detector (IRS)

Similar to the RS, the IRS algorithm is also based on
pre-computed search probabilities determining the searchset.
However, contrarily to the RS algorithm, where a relatively
simple set expansion strategy is applied resulting in a quadratic
search set, the proposed IRS exclusively selects all candidates
of a search set in the complex constellation according to the
search probabilities. Applying the ZF equalizer to the received
signalx, we get the signalyi corresponding to thei-th level

yi = si + ηi, (4)

whereηi =
∑M

m=1 gimnm denotes the correlated noise at the
equalizer output with the powerσ2

ηi
, already computed in (2).

In the following, we normalize equation (4) with1/σηi
, so

that the normalized noise has power 1 at all levels.
The total search setS is expanded with the next hypothetical

symbol s̃′i showing the next highest value of the conditional
probability density function at leveli

f (y′
i|s̃′i) =

1

π
exp

(

−|y′
i − s̃′i|2

)

=
1

π
exp

(

−|yi − s̃i|2
σ2

ηi

)

, (5)

where y′
i = 1

σηi

yi and s̃′i = 1
σηi

s̃i corresponds to the
symbol chosen from the normalized constellation. Since the
exponential function is a monotonically increasing function,

it will be sufficient to investigate the ratiosδi =
d
(q)
i

σηi

, where

d
(q)
i = |yi − s̃

(q)
i | denotes the distance between the linear

solution and theq-th hypothetical symbol at leveli. We assume
that the candidates̃s(1)

i , .., s̃
(Q)
i are already enumerated in an

increasing order according to their respective distancesd
(q)
i at



each leveli. The algorithm proceeds in this way until a stop
criterion, when the total number of candidatesNS =

∏M

i=1 ni

supported by the hardware resources is achieved. Table I
illustrates the IRS algorithm. Fig. 1 (b) shows an example of

(1) Initialization: c = 0, S = {s̃
(1)
1 , .., s̃

(1)
M

}
(2) for i = 1, .., M
(3) ki = 1

(4) select next candidatẽs(1+ki)
i at level i

(5) δi =
d
(1+ki)
i
σηi

(6) end
(7) while c = 0
(8) µ = arg min

i
[δ1, .., δM ]

(9) N =
M�

i=1
i6=µ

ki · (kµ + 1)

(10) if N < NS and kµ < Q

(11) Expansion ofS with s̃
(1+kµ)
µ

(12) kµ = kµ + 1
(13) if kµ < Q

(14) select next candidatẽs
(1+kµ)
µ at levelµ

(15) δµ =
d
(1+kµ)
µ

σηµ

(16) else
(17) δµ = ∞
(18) end
(19) else
(20) c = 1
(21) end
(22) end

TABLE I
IRS ALGORITHM : DETERMINATION OF THE CANDIDATES AT THE

DIFFERENT LEVELS.

determined candidates located in the circles at each level with
a total distribution schemenS = [2, 3, 1]T. Some distances
are also marked.

C. Frequency selective channel

The reduced search algorithms are now extended to the
case of a frequency selective indoor channel. In this paper,
we focus on measured indoor channels utilizing a real MIMO
transmission test bed. Figure 2 exemplarily shows a typical,
measured discrete-time MIMO channel represented by its4×4
channel impulse responses in a bandwidth of 4 MHz.

The performed measurements show that the number of the
transmission pathsK is strongly limited in such a bandwidth
and can, thus, be restricted to 2. Consequently, there are the
LOS MIMO transmission path with strong power and one
MIMO reflected signal part. The remaining samples of the
CIRs are at the noise level.

The extended RS algorithms for the measured channel
model are illustrated in Figure 3. For the first detection step we
again refer to a linear equalizer which takes into account only
the effect of the dominant LOS signal parts. This results in
a simple design of the linear equalizer which has the same
complexity as the linear equalizer used for the flat fading
channel. In the second step, the RS algorithm will be applied
for the data detection. In the third step, we use the DFE
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h41 h42 h43 h44

h11
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Fig. 2. Example of measured4 × 4 MIMO channel impulse responses.

-

s[l]
H[l] H−1

0 δ[l]
∑K−1

k=1 Hkδ[l − k]

ŝ[l]
n[l]

RS
y[l]

Fig. 3. Extended detection scheme using reduced search ML forfrequency
selective channels composed ofK transmission paths.

in order to remove the ISI effect caused by the channel
dispersion:

y[l] =

K−1
∑

k=0

Hks[l − k] + n[l] −
K−1
∑

k=1

Hkŝ[l − k], (6)

where ŝ[l] denotes the detected symbols delivered by the RS
detector. As the measured MIMO indoor channel has two taps,
equation (6) can be written as

y[l] = H0s[l] + H1s[l − 1] + n[l] − H1ŝ[l − 1]. (7)

An efficient removal of the ISI effect would be possible for
a very low BER at the RS output. In this case, we get a flat
channel model (y[l] = H0s[l] + n[l]) and the RS algorithms
work in similar way as it has already been indicated in the
previous subsections. Otherwise, an incorrect detection at the
RS output could result in an error propagation for the next
symbol detection. But this effect is limited due to the fact
that the most channel power resulting from the strong LOS
components is incorporated in the matrixH0. Therefore, a
correct detection at the RS output stays also possible, evenif
the previous symbols are not detected correctly. Consequently,
the extended detection scheme presents a promising approach
for strong LOS frequency selective indoor channels without
a significant increase of the computational effort comparedto
the flat fading case.

IV. SOFT OUTPUT INFORMATION

For coded transmission, the used detector has to provide
soft output information, i.e. a posteriori probability about each
transmitted bit. However, the estimation of the soft output



information can be of high complexity when using a sphere
detector, since the a posteriori probability of each detected
bit depends on the detected bits in the current as well as in
the previous levels according to the SD principle. So, some
approaches have been proposed in order to simplify the soft
output calculation, and therefore, to reduce its complexity [7].

Furthermore, the RS algorithms present a simple calculation
of the soft output information using the already determined
reduced search set. The log-likelihood ratio (LLR) correspond-
ing to thek-th transmitted bitbik

at thei-th level is calculated
according by

L(bik
|yi) = ln

P (bik
= 1|yi)

P (bik
= 0|yi)

, (8)

where yi denotes the unquantized linear solution at leveli
as defined in the previous section. Considering only the pre-
selected symbols in the reduced search setSi, the LLR is
approximated to

L(bik
|yi) ≈ ln

∑

s̃i∈Si

f(yi|s̃i(bik
= 1))

∑

s̃i∈Si

f(yi|s̃i(bik
= 0))

, (9)

wheref(yi|s̃i(bik
)) is the one-dimensional conditional prob-

ability density function, defined as follows:

f(yi|s̃i(bik
)) =

1√
πσηi

exp(−D{yi − s̃i(bik
)}2

σ2
ηi

). (10)

D denotes a real or imaginary operator depending on the
consideredk-th bit. We note that the distancesyi−s̃i(bik

) have
already been computed during the RS detection. Therefore,
the effort required by the LLR estimation stays very low.
Assuming the case that all candidates in the setSi have the
same value for a certain bitbik

, the setSi will be extended
with the next close candidates till we obtain a new candidate
showing a different value for the bitbik

.

V. PERFORMANCE ANALYSIS BASED ON SIMULATIONS

For comparison purposes, the following simulation assump-
tions will be considered. We consider a flat Rayleigh fading
channel, resulting in a channel matrixH ∈ C

M×M , con-
taining uncorrelated complex Gaussian fading gains with unit
variance. The channel matrix is additionally scaled by1/

√
M

as usual. A perfect channel knowledge at the Rx is assumed.
Fig. 4 illustrates some simulation results of the IRS detector
compared to the results of the SD, RS and V-BLAST. We refer
to a4×4 system using 64 QAM. The computational effortF
is given for each detector. The MMSE IRS (F = 4 × 103)
shows a loss of about 1 dB at BER10−3 compared to
the SD. With enhanced effort the MMSE IRS shows closer
performance to the SD. The MMSE IRS (F = 2×104) shows
about 0.3 dB loss at BER10−3 compared to the SD with a
tenth of the effort. We additionally observe that the MMSE
IRS offers better performance than the ZF IRS showing the
same complexity. Although the ZF provides an unbiased data
detection and delivers, therefore, precise probability density
functions as described in III-B, it suffers from an enhanced
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MMSE (F = 7 × 102)
MMSE V-BLAST (F = 2 × 103)
ZF IRS (F = 4 × 103)
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MMSE RS (F = 2 × 104)
MMSE IRS (F = 2 × 104)
SD (F = 2.2 × 105)

B
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10 log10(σ
2
s/σ2

n) in dB

Fig. 4. BER performance and computational effortF for a 4 × 4 system
using 64 QAM.

noise amplification compared to the MMSE. Thus, the use
of MMSE equalizers at the first detection stage should be
preferred. Otherwise, the ZF IRS achieves a gain of about
4 dB at BER10−3 with a double complexity compared to
the MMSE V-BLAST. Furthermore, the performances of the
MMSE IRS decoders compared to the performance of the
MMSE equalizer show the large gain which could be achieved
using the reduced search strategy.

VI. PERFORMANCE ANALYSIS BASED ON MEASUREMENTS

In this section, we show the performance of the extended
RS detectors in a real frequency selective indoor channel, so
that we are close to the real circumstances. The equipment
is explained in more details in [8]. Furthermore, the different
antenna arrangements achieving maximum and minimum LOS
capacities have been marked in Figure 5 by ”LOS orthogonal
channel” and ”LOS keyhole channels”, respectively. The LOS
orthogonal channel is obtained by a broadside antenna arrange-
ment of Tx and Rx where the antenna spacings have exactly
been optimized for a4 × 4 MIMO system according to [9].

Figure 5 shows two calculated capacity CDFs based on
measurements for the orthogonal and keyhole channels. A
capacity gap between the optimum LOS configuration and
an arrangement that leads to a pure LOS channel of almost
keyhole channel transfer matrix (CTM) condition is observed.
In comparison to the optimum the 90% outage capacity
decreases about 10%. Nevertheless, the capacity, which is
obtained in the keyhole LOS setup, is far from the real keyhole
capacity. This is the result of the impinging reflections that
increase the CTM condition number, and therefore, avoid a
pure keyhole channel.

Besides, the extended RS algorithms as well as some
commonly used MIMO detectors MMSE and MMSE V-
BLAST have been applied for every measurement resulting in
respective mutual information CDFs for the different antenna
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Fig. 5. 4 × 4 MIMO channel capacity (C) and mutual information (T ) for
different antenna setups and different MIMO detectors using 64-QAM. CIRs
are composed of 2 taps. Computational effortF is given for each detector.

arrangements. We observe a mutual information degradationof
MMSE and MMSE V-BLAST compared to the RS detectors,
especially for keyhole channels. Thus, the 90% outage IRS
mutual information (about 16.7 Bit/s/Hz) shows a gain of
about 34% compared to MMSE (12.5 Bit/s/Hz) and 11%
compared to MMSE V-BLAST (15 Bit/s/Hz). One reason for
the mutual information degradation is the fact that MMSE
and MMSE V-BLAST equalizers for some channel situations
do not properly exhibit the noise correlation produced by the
equalizer at the different data streams. This drawback is also
a main reason for the deterioration of many MIMO equalizers
in low-rank MIMO channels compared to their high-rank
counterparts, where we observe only a slight decrease of the
mutual information. We additionally note that the V-BLAST
detector suffers from a possible error propagation through
its successive interference cancellation. Otherwise, contrarily
to the MMSE V-BLAST, where the information about the
noise correlation will be provided in an unidirectional way
from the already detected data streams to detect the next data
streams, the RS algorithms present an approach, where the
noise correlation will be exploited in an efficient way between
all different data streams.

In the legend of Figure 5, the computational effortF is
given for the corresponding detector. We observe that the RS
detectors show a superior performance compared to the MMSE
V-BLAST with a tenth of the effort. We again note that the
used RS equalizers do not use the common Toeplitz matrix
for frequency selective channels with its large dimension.
Consequently, we get a remarkable complexity reduction for
the RS algorithms with a relatively high performance. Since
the RS algorithms offer a flexible trade-off between complexity
and performance, the performances of the RS detectors in
Figure 5 can be improved with an enhanced computational
effort according to the results presented in Figure 4.

VII. C ONCLUSION

A novel MIMO detector for frequency selective
indoor channels was presented. The detector is capable
of combining a near ML detection performance with
a very low computational effort. Furthermore, the RS
algorithms are optimized for practical implementation as
they enable a performance analysis as well as an effort
adjustment which is determined by the maximum effort and
limited by the available hardware resources. The method
outperforms different common proposals resulting in an
improved performance with less complexity. Moreover, the
RS algorithms provide a soft output information for each
transmitted bit applying simple probability calculations
which presents a promising aspect for coded transmission.

REFERENCES

[1] E. Telatar, “Capacity of multi-antenna gaussian channels,” 1995.
[2] G. Foschini and M. Gans, “On the limits of wireless comunications in

a fading environment when using multiple antennas,”Wireless Personal
Communication, vol. 6, pp. 311–335, 1998.

[3] C. P. Schnorr and M. Euchner, “Lattice basis reduction: improved
practical algorithms and solving subset sum problems,”Mathematical
Programming, vol. 66, pp. 181–191, September 1994.

[4] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bölcskei, “VLSI implementation of MIMO detection using the sphere
decoding algorithm,” IEEE J. Solid-State Circuits, vol. 40, pp. 1566–
1577, July 2005.

[5] M. Mendicute, L. G. Barbero, G. Landaburu, J. S. Thompson,J. Altuna,
and V. Atxa, “Real-time implementation of a sphere decoder-based
MIMO wireless system,” inEuropean Signal Processing Conference
(EUSIPCO ’06), 2006.

[6] M. Chouayakh, A. Knopp, and B. Lankl, “Low effort near maximum like-
lihood MIMO detection with optimum hardware resource exploitation,”
Electronics Letters, vol. 43, pp. 1104–1106, September 2007.

[7] P. Marsch, E.Zimmermann, and G.Fettweis, “Smart candidate adding: A
new low-complexity approach towards near-capacity MIMO detection,” in
13th European Signal Processing Conference (EUSIPCO’05), September
2005.

[8] M. Chouayakh, A. Knopp, C. Ahokpossi, and B. Lankl, “Low effort
MIMO detector for frequency selective indoor channels,” inEuropean
Wireless conference, Prague, Czech Republic, June 2008.

[9] F. Bøhagen, P. Orten, and G.E. Øien, “Construction and analysis of high-
rank line-of-sight MIMO channels,” inWireless Communications and
Networking Conference, March 2005, pp. 91–100.


