
Cost Models for Nearest Neighbor Query Processing

over Existentially Uncertain Spatial Data

Elias Frentzos1, Nikos Pelekis
2
, Nikos Giatrakos

3*, Yannis Theodoridis1

1 Department of Informatics, University of Piraeus, Piraeus, Greece

2 Department of Statistics & Insurance Science, University of Piraeus, Piraeus, Greece

{efrentzo, npelekis, ngiatrak, ytheod}@unipi.gr
3 Dept of Electronics & Computer Engineering, Technical University of Crete, Crete, Greece

ngiatrakos@softnet.tuc.gr

Abstract. A major challenge posed by real-world applications involving spatial

information deals with the uncertainty inherent in the data. One type of

uncertainty in spatial objects may come from their existence, which is

expressed by a probability accompanying the spatial value of an object

reflecting the confidence of the object’s existence. A challenging query type

over existentially uncertain data is the search of the Nearest Neighbor (NN), as

the likelihood of an object to be the NN of the query object does not only

depend on its distances from other objects, but also from their existence. In this

paper, we present exact and approximate statistical methodologies for

supporting cost models for Probabilistic Thresholding NN (PTNN) queries that

deal with arbitrarily distributed data points and existential uncertainty, with the

aim of appropriate novel histograms, sampling and statistical approximations.

Our cost model can be also modified in order to support Probabilistic Ranking

NN (PRNN) queries with the aid of sampling. The accuracy of our approaches

is exhibited through extensive experimentation on synthetic and real datasets.

Keywords: Spatial Databases, Existential Uncertain Data, Nearest Neighbor

Query Processing

1 Introduction

In the literature, two types of uncertainty have gained the interest of the research

community, namely the locational and the existential uncertainty. Locationally

uncertain are the objects that do exist but their location is uncertain. This kind of

uncertainty is described by a probability density function. On the other hand,

existentially uncertain objects are those that their uncertainty emanates from their

existence, and this is expressed by a probability Ex accompanying the spatial value of

an object x reflecting the confidence of x’s existence. As a motivating example,

consider the case where an image processing tool extracts some interesting formations

of pixels that may or may not correspond to a predefined type of objects due to low

image resolution. Another example is evident in semantically-enriched

* Work done during author’s PhD studies at the Dept. of Informatics, University of Piraeus

representations of trajectories of moving objects [8], where a point of interest may be

part of a semantic trajectory of a user if the latter has been predicted to perform an

activity at that place. Existential uncertainty is also natural in the case of fuzzy

classification [3], [13].

The related work on existentially uncertain data [3], [13] focuses on two

probabilistic versions of several spatial queries. A thresholding query returns the

objects that satisfy some spatial condition with probability more than a given

threshold t, while a ranking query returns the objects that satisfy a spatial condition in

order of their confidence. Dai et al. [3] proposed search algorithms for the above two

types of spatial range and NN queries, where the existentially uncertain data are

indexed by 2-dimensional R-trees [7] or appropriate augmented variants of them. In

[13] authors also present appropriate algorithms for Spatial Skyline [9], and Reverse

Nearest Neighbor [10] queries, based on the idea of incremental NN search.

In this paper, we focus on the probabilistic thresholding (PTNN) and probabilistic

ranking nearest neighbor (PRNN) queries on existentially uncertain data. The

motivation is that, this type of query presents a quite involved search complexity, as

the probability of an object to be the NN depends not only on the location, but also on

the existential probability of other objects. Moreover, compared to the other operators

presented in [13], they are more popular with broader applicability. In [4] we utilized

a statistical model in order to estimate the number f of NNs that are to be retrieved

from the database so as to be at least CI % confident (i.e. CI is a user-defined

confidence, e.g. 99%) that the PTNN search will end without the need to retrieve n > f

NNs. The motivation behind this approach is to provide efficient search algorithms,

with predetermined cost, and with custom defined certainty (as high as required) of

resolution. On the other hand, this is a case which can be only applied to uniform data

and existential uncertainty distribution.

We are aware that PTNN2D and PRNN2D are overwhelmed in terms of efficient

query processing by the other schemes proposed in [3], which employ augmented

versions of R-trees and 3D R-trees. On the other hand, experience has showed that it

is very difficult for commercial Spatial Database Management Systems (SDBMS) to

support novel proposals, especially when they require altering the data structures used

on their engines. Then again, PTNN2D and PRNN2D while not optimal, they can be

directly employed with conventional 2D R-trees already implemented in commercial

SDBMS. Moreover, the analysis provided in this paper can be easily modified in

order to provide similar results that support all schemes of [3].

Outlining the major issues addressed in this paper, our main contributions are:

 Following the assumption of uniformity regarding the existential uncertainty

distribution, we present an exact statistical-based analysis for the determination

of the discrete distribution probability density function (dpdf), that a PTNN query

terminates after having retrieved exactly n objects; exploiting this analysis, we

present a cost model for the forecasting of the number of disk page accesses

required to process a PTNN query, given that the dataset is indexed by R-trees

[7], and the dataset is uniformly distributed in the data space. We further exploit

well-known properties of distribution expected values in order to provide an

approximate model for PTNN and PRNN queries,

 We show how to utilize histograms in order to relax the assumption of uniformly

distributed data points and existential uncertainty and provide an efficient cost

model that predicts the number of disk page accesses required to process PTNN,

over arbitrarily distributed data and existential uncertainty. We also utilize

random sampling so as to achieve better forecasts, as well as, overpass the

problem that is faced regarding an analytical PRNN cost model calculation.

Specifically, we alternately apply the results of our statistical analysis and the

sampling method, over augmented versions of well-known histograms [1],

together with the approach of [11].

 Finally, we report the results of the comprehensive set of experiments,

demonstrating the correctness and accuracy of our analysis.

To the best of our knowledge, our work is the first on these topics. The rest of the

paper is structured as follows: Section 2 overviews the background work. Section 3

describes the statistical analysis of PTNN queries based on the assumption of

uniformly distributed data and existential uncertainty. In Section 4 we present the

details of an efficient cost model for PTNN and PRNN queries that supports arbitrary

distributions regarding the problem parameters, Section 5 evaluates the accuracy of

our model through an extensive experimental study over several datasets, while,

Section 6 provides the paper conclusions and some interesting research directions.

2 Background

In this section we introduce the knowledge required for presenting our cost model.

2.1 Probabilistic NN search over spatial data with existential uncertainty

Formally, a PTNN query takes as input a query object q and a probability threshold t,

while the data are represented as tuples of the form (x, Ex). As proposed by Dai et al.

[3], the 2-dimensional PTNN (PTNN2D) algorithm, illustrated in Figure 1, iteratively

retrieves spatially nearest objects in a Best-First (BF) mode [6], and terminates only

after the value of P
fist

 becomes smaller than the given threshold t. The PTNN2D

algorithm iteratively calculates the value of P
first

, which is the probability that no

object retrieved before the current object x is the actual NN, according to [3]:

1

1

1
n

first

x i

i

P E

 , (1)

where n-1 is the number of objects that are closer to the query object than the current

object x, i.e., the number of objects retrieved from the BF algorithm before x, and Ei

their existential uncertainty. Then, the probability that x is the actual NN, is [3]:

first

x x x
P E P (2)

The intuition behind the PTNN2D algorithm is that once P
fist

 < t, we are sure that the

subsequent nearest objects, even if they exist with 100% probability, they cannot be

the NN of q, so the algorithm can safely terminate. Note also that PTNN2D algorithm

utilizes R-tree indexes so as to incrementally retrieve the k-th NN; as such, the R-tree

can be replaced by other access method supporting incremental NN search.

 1.

 2.

 3.

 4.

 5.

 6.

Algorithm PTNN2D(q, 2D R-tree on S, t)

 P
first

=1;

 While P
first

 t and more objects in S do

 x:=next NN of q in S (use BF [7]);

 Px:= P
first

Ex;

 If Px t then output (x, Px);

 P
first

= P
first

(1-Ex);

Figure 1. Probabilistic NN on a 2D R-tree with thresholding

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

Algorithm PRNN2D(q, 2D R-tree on S, m)

 P
first

:=1;

 H = ; /*Heap of m objects with highest Px*/
 P

m
:=0; /* Px of m-th object in H*/

 While P
first

 Pm and more objects in S do
 x:=next NN of q in S (use BF [7]);

 Px:= P
first

 Ex;

 If Px P
m
 then

 Update H to include x;

 P
m
:= m-th probability in H;

 P
first

:= P
first

 (1-Ex);
Figure 2. Probabilistic NN on a 2D R-tree with ranking

Similarly, a ranking spatial query returns the objects, which qualify the spatial

predicates of the query, in order of their confidence. Ranking queries can be also

thresholded by a parameter m returning thus the m most confident objects. Therefore,

a probability ranking NN (PRNN) query takes as input a query object q and the

number of objects required with the highest probability, over data of the same form,

i.e., (x, Ex). Dai et al. [3], also propose the 2-dimensional PRNN (PRNN2D)

algorithm, illustrated in Figure 2, which iteratively retrieves spatially nearest objects x

in a Best-First (BF) mode iteratively calculating Px and P
first

 using Eq.1 and Eq.2

respectively. The difference here is that the output is a heap H containing the m most

probable NN objects. Therefore the threshold used to terminate is based on P
m
 which

is the Px of the m-th object in the heap H and the algorithm terminates only after the

value of P
fist

 becomes smaller than P
m
.

2.2 Cost models for NN search over conventional spatial data

Tao et al. [11] present an efficient cost model for the optimization of NN queries in

low and medium-dimensional spaces. They provide a closed formula for the

estimation of (a) the average nearest distance Dk from the query point q to its k-th NN

and (b) the number of tree nodes whose MBRs intersect the vicinity circle Θ(q, Dk)

with center q and radius Dk, which is equal with the average number of node accesses

NA(k) required by an R-tree to retrieve the k-th NN. Specifically, the analysis of [6]

shows that the average nearest distance Dk is estimated by:

12

1 1
d

k

V

kD
NC

 (3)

where d is the dimensionality, N is the cardinality and CV is calculated by:

1

/ 2 1
V

d

C

d

 (4)

These formulas work only with uniformly distributed data in the search space. On the

other hand, real-world data employ arbitrary distributions; as such Tao et al. [11],

provide an extension of the above presented model by using MinSkew histograms.

Specifically, the MinSkew technique proposed by Acharya et al. [1], is a binary space

partitioning (BSP) technique employing the spatial skew definition provided in [1].

Each MinSkew Histogram HS and can be seen as a set of spatial disjoint buckets Bi

that cover the whole data space:

 :i i iHS B B S B

and

 , , , ,, , ,i i L i U i L i UB x x y y . The main advantage of this technique is that the area

grouped together within the same bucket has small spatial skew, i.e., objects are close

to uniform distributed inside it; as a result, it is usually assumed that the data

distribution inside each bucket Bi is uniform.

Figure 3. Estimating the “radius” of the vicinity rectangle Lr [11]

 [11] provide an algorithm that works over an input histogram HS and a query point q.

The algorithm employs the notion of the vicinity rectangle that approximates the

vicinity circle so as to minimize the number of complex (vicinity) circle- (histogram)

rectangle intersection discoveries, and reduce them to less expensive rectangle –

rectangle inspections. The algorithm initially determines the distances that q needs to

travel along each dimension so as to reach the boundaries of each histogram bucket

(cf. Figure 3), and stores them in a heap. Then, utilizing the histogram, the algorithm

iterates by computing the expected number of points En found inside the vicinity

rectangle formed by the next distance in the heap; if En is smaller than k, i.e., the

number of requested nearest neighbors, the appropriate vicinity radius is calculated

(reduced) according to the formula:

1

d d d

old old

r

old

L k En L k En
L

En En

 (5)

where L is the “diameter” (i.e., side length) of the current vicinity rectangle, while Lold

and Enold are the respective diameter and expected number of points found inside the

vicinity rectangle in the previous iteration, respectively. In the case En is smaller than

k, the algorithm proceeds with the next distance in the heap until En becomes greater

than k. Finaly, Dk is obtained by Dk =Lr/Cv.

After obtaining Dk the cost model developed for uniform data is applied. Specifically,

the query cost in terms of node accesses NA(k) is provided by the following equation:

log 2

1

0

2 2

1

f

N
d

f

i i i

i

i i

L L sN
NA k

sf

 (6)

where N is the cardinality of the dataset, f is the average node fanout, si the extent of

a level-i node and Li calculated as a function of Dk and the respective si. We have also

to note that N is determined based on the local density provided by the histogram in

the area “near” the query point. The interested reader is cited to [11] for more details.

In our approach, we make use of the techniques proposed in [11], so as to estimate the

radius of the vicinity circle Dk required to be browsed in order to process PTNN and

PRNN queries. Specifically, both PTNN2D and PRNN2D browse the database

according to the distance of the query to the dataset objects until a probabilistic

criterion is met. Both algorithms perform a number of iterations, continuously

requesting in each iteration the next nearest object in an incremental way. The number

of iterations is actually equal to the number of nearest objects to the query that have to

be retrieved from the database. Consequently, when utilizing an R-tree, as PTNN2D

and PRNN2D suggests, and given that the analysis of [11] estimates the number of

node accesses NA(k) as a function of Dk and known R-tree parameters, our problem

can be reduced to the problem of providing a good estimation of Dk.

Table 1. Table of notations

Notation Description

x, Ex A data point and its existential probability

S A dataset of tuples (x, Ex)

q, t, m
The query object, threshold probability of a PTNN query and number of

requested objects of a PRNN query

Pfirst
The probability that no object retrieved before the current object x is the

actual NN

first

nP
The probability that no object retrieved before the n-th iteration is the

actual NN

Px The probability that an object x is the actual NN

Pexact(n)
The probability that the PTNN algorithm terminates after having retrieved

exactly n objects

H A heap used in the PRNN algorithm

Pm the Px of the m-th object in the heap H

EV(u) The expected (average) value of a given variable u

Dk The nearest distance from the query point q to its k-th NN

3 STATISTICAL ANALYSIS OF PTNN QUERIES

In this section, aiming at a statistical analysis of probabilistic thresholding NN

queries, we initially calculate the expected number of iterations EV(n) needed for the

PTNN2D algorithm to terminate, and then we make use of existing work on cost

models so as to determine the average number of node accesses NA(EV(n)) needed in

order to process such queries over conventional R-trees. In the sequel, due to the

difficulty of extending the exact solution to support such queries over arbitrary

distributed data, we present an approximate solution regarding for PTNN queries. We

close the section by discussing the extension of this model in the case of PRNN

queries. In this first approach we make two assumptions regarding the data

distribution:

 data uniformity assumption: points xi are uniformly distributed in the data space,

 uncertainty uniformity assumption: the existential uncertainty Ex of all objects in

S is uniformly distributed inside the unit interval [0,1],

Both assumptions are relaxed in the subsequent section where an efficient cost model

is presented. Table 1 summarizes the notation used in the rest of the paper.

3.1 Exact statistical analysis of PTNN queries

To start with, we provide a lemma from which a cost model for PTNN queries is

straightforwardly devised in the case of uniformly distributed data and existential

uncertainty. More specifically, the first step towards a cost model for the PTNN2D

algorithm 3, is to determine the dpdf that the algorithm terminates after exactly n

iterations, i.e., the distribution of the number of objects retrieved before P
first

 becomes

less than the given threshold t. Formally, we provide the following lemma:

Lemma 1: The dpdf that the PTNN2D algorithm terminates after exactly n iterations,

under the uncertainty uniformity assumption, is given by the following formula:

1 1
1 ln

1 !

n n

exact

t t
P n

n

 (7)

where t is the algorithm threshold.

Proof: Our goal is to determine the dpdf Pexact(n), such that, the algorithm terminates

after having retrieved exactly n objects. For this we distinguish between two cases,

namely n = 1 and n > 1. In the first case, the algorithm terminates with a single

iteration iff the value of
1

2 1

1

1 1
first

i

i

P E E

 calculated at the end of the first

iteration (i.e., line 7 in Figure 1) is less than the given threshold t. Thus, from the

uncertainty uniformity assumption, it holds that Pexact(1) = P(1E1 t) = P(E1 1t) =

t. Given that -1
0
 = (ln(t))

0
 = 0! = 1 we have proved Lemma 1 in the case where n = 1.

In the second case, i.e., n > 1, the algorithm terminates iff
1

first

nP
, which is calculated

at the end of the n
th

 iteration (i.e., line 7 in Figure 1), becomes less than t after exactly

n iterations. In other words, we must first determine the conditional probability that

P
first

 becomes less than t after n iterations, given also that it must not terminate before

reaching n iterations:

1 1

1 | 1 , 1
n m

cond i i

i i

P n P E t E t m n

 (8)

Then, the total probability that the algorithm terminates after having retrieved exactly

n objects can be obtained by multiplying Pcond with the probability that the algorithm

has not terminated until reaching n iterations:

1

1 , 1
m

exact cond i

i

P n P n P E t m n

 (9)

Moreover, since 0 E1 1 0 1 - E1 1, it also holds that

2 1

1

1 1

1 .. 1 1
n n

i i

i i

E E E

 . Therefore, given that
1

1

1
n

i

i

E t

 , it stands

that
1

1 , 2
m

i

i

E t m n

 ; then, (8) and (9) can be rewritten as follows:

1

1 1

1 | 1
n n

cond i i

i i

P n P E t E t

 (10)

1

1

1
n

exact cond i

i

P n P n P E t

 (11)

Since the values of Ex follow the uniform distribution, the same also stands for 1-Ex;

as such the product of the n uniformly distributed values of 1-Ex should follow the

uniform product distribution, i.e., the distribution of the product of n uniformly

distributed uncorrelated variables x1, x2,.. xn, with pdf given by [12]:

1 2

1

1

..

1
ln

1 !n

n

n

x x x
P u u

n

 (12)

where u is the product ix .

In our case, we first set as u the product
1

1

1
n

i

i

E

 , and then determine the amount

of objects X S, such as
1

1 1
n

i n

i

E E u t

 which leads to:

 1
n

E t u (13)

Given that (1En) is also uniformly distributed, it should hold that the amount of

objects fulfilling the above expression Vn is

nV t u (14)

Known the above, we can calculate the probability Pcond(n) by summing up (i.e.,

integrating) the amount of objects Vn for each value of u, weighted by the value of the

distribution of u, and divided by the respective sum (i.e., integral) of the distribution

of u. Moreover, since it is known that
1

1

1
n

i

i

u E t

 , the above integrals should

involve only the values of u between t and 1. Summarizing:

1

1

1

1

n
t

cond

n
t

t
P u du

uP n
P u du

 (15)

Moreover, the total probability that the algorithm has not been terminated until

reaching n iterations (i.e,
1

1

1
n

i

i

E t

), can be easily calculated, using the pdf of the

product of n-1 uniformly distributed variables:

1

1

1

1

1 ()
n

i n
t

i

P E t P u du

 (16)

Finally, by substituting (15) and (16) into (11) and performing the necessary

calculations, we have proved Lemma 1 in the case where n > 1

Lemma 1 provides us with the dpdf that the algorithm terminates after exactly n

iterations. The dpdf expressed by (7) is a closed formula, since it involves only the

logarithm of the threshold t and the factorial of n. Obviously, the density of the

probability obtained from (7) for several values of n, is dominated by the factorial of

n-1; as such, it is expected that as the number of iterations grows, the respective

probability density will tend to zero very fast. In the sequel we present a corollary

derived from Lemma 1, which helps us to determine the cost model for PTNN queries

over existentially uncertain data that follow the uncertainty uniformity assumption.

Corollary 1: The expected number of iterations in the execution of the PTNN2D

algorithm, under the uncertainty uniformity assumption, is:

 1 lnEV n t (17)

Proof: The expected number of iterations needed from the PTNN2D algorithm to

terminate is actually the mean value of (7) for each n N. As such, EV(n) can be

calculated by averaging the dpdf Pcond(n) over all possible values of n.

1 1

1

1 ln

1 !

i i

i

t t
EV n i

i

 (18)

Equation (18) cannot be straightforwardly evaluated since it involves infinity;

however, we may calculate its limit:

1 1 1 1

1 1

1 ln 1 ln
lim

1 ! 1 !

i i i i
n

n
i i

t t t t
i i

i i

 (19)

which after the necessary calculations turns into:

1 1

1

1 ln
1 ln

1 !

i i

i

t t
i t

i

 (20)

Finally, by substituting (20) into (18) we have proved corollary 1

Obviously, the expected number of iterations EV(n) needed from the PTNN2D in

order to terminate, is equal with the number of NNs needed to be retrieved from an

existentially uncertain spatial database queried with a query point and a given

threshold t. Thus, we may employ the analysis presented in [11], so as to estimate the

average radius Dk on which the EV(n)-th NN will be found, under the data uniformity

assumption. Apparently, this model can be applied in our case where the

dimensionality d is 2 and the value of Γ(d/2+1) is Γ(2/2+1)=1; then, by substituting

the expected number of n produced by (17) into the number of k NNs requested, (3)

can be rewritten as follows:

 1 ln2
1 1

k

t
D

N

 (21)

From this point on, the analysis of [6] that estimates the number of node accesses

NA(EV(n)) in the case of uniform data distribution (which is identical with our data

uniformity assumption) remains unaffected; the single modification to be made is to

calculate Dk using (21) instead of (3), and then apply Eq.(6) accordingly. Concluding,

the cost model for PTNN queries over existentially uncertain data that follow both the

uncertainty uniformity and the data uniformity assumptions is based on (21), which

estimates the distance from the query point that has to be browsed from the database

so as to answer such a query; then, the required node accesses NA(EV(n)) can be

straightforwardly estimated by replacing the Dk into the analysis of [11].

3.2 Approximate statistical analysis of PTNN queries

Unfortunately, the extension of the above-described theoretical model in the case of

arbitrary distributed data is not straightforward at all. Histograms widely used in order

to provide statistical estimations in DBMS, pose insuperable problems to this

extension due to their discrete nature. Specifically, given the simplest case where a 1-

dimensional histogram 1 1 2 1
0, , , ,.., ,1

m
HS E E E E

 is used to describe the

existential uncertainty distribution in a given point in space, the distribution of the

exact number of iterations following the methodology of Lemma 1 would be given as

a function defined in m
n
 parts. This is due to the fact that the resulted distribution

would be calculated as the product of n sets containing m spaces each. Obviously,

such as an approach is not practical. On the other hand, we may provide an

approximate solution which utilizes the notion of the expected value of the probability

of a random object retrieved in the n-th iteration to be included in the query results.

More formally we provide the following Lemma 2.

Lemma 2: The number of iterations n required for the expected value P
first

 of the

PTNN2D algorithm to become equal to the threshold t, is given by:

 1
1

x

first

n EV E
EV P t n Log t

 (22)

where EV(Ex) is the expected value of existential uncertainty Ex of a random x in S.

Proof: Our main objective is to express EV(P
first

) as a function of known values.

Towards this goal, we know that the expected (mean) value of a random variable

produced as the product of two other random variables, is equal with the product of

the expected value of the two variables. Formally, given two random variables u and v

the following stands:

 EV u v EV u EV v (23)

From the definition of P
first

 (1) and from (23) we have that the expected value

EV(P
first

) after n iterations is:

1

1
nfirst

n x
EV P EV E

 (24)

Now, in order for (24) to become equal to t we have:

1

1
1 1

x

n

x EV E
EV E t n Log t

which proves Lemma 2.

Figure 4. Estimating the number of iterations of PTNN2D over uniform data by exact (solid

line) and approximate solutions (doted line)

It is clear that Lemma 2 can be utilized in order to provide an approximate estimation

for the number of iterations needed by the PTNN2D algorithm in order to terminate. It

certainly does not provide the exact value of EV(n) as Corollary 1 does, however, it

provides strong evidence that the algorithm may terminate when n becomes greater

than the value provided. What is more, Lemma 2 does not utilize the uncertainty

uniformity assumption; as such it can be applied over data with arbitrary distributed

existential uncertainty, relaxing therefore our uncertainty uniformity assumption. Also

interestingly when employing lemma 2 under the uncertainty uniformity assumption,

where EV(Ex)=0.5, (22) results in 0.51n Log t . A comparison between this result

and (17) is given in Figure 4. It is clear that the approximate solution always

overestimates n, with its difference from the exact solution increasing when the value

of t becomes less than 0.2 (and the number of iterations increases above 3).

0.2 0.8 1

2

10

12

14

6

4

EV(Pfirst)

8

0.4 0.6
threshold

3.3 Discussion on PRNN queries

One may suggest that Lemma 1 and its Corollary 1 can be easily extended to cover

the case of PRNN queries, processed by the PRNN2D algorithm, since their main

difference is on their termination condition, i.e., the continuous evolving value of P
m

employed instead of the constant value of t. Towards this goal, we could utilize the

fact that the expected (mean) value of a random variable produced as the product of

two independent random variables, is equal with the product of the expected value of

the two variables. However, the calculation of a theoretical value for P
m
 is a very hard

task which involves order statistics [2]. Specifically, even in the – simplest - case of

m=2, the expected value of the m-th Px inside H, is determined by distinguishing

between two cases regarding the order of values in H, i.e., {P1, P2}, {P2, P1}:

 In the case where E1≥0.5, since
1 1firstP , it follows that P1≥0.5,

2 1(1) 0.5firstP E and P2 <0.5. Therefore the order of Pi inside H will be {P1,

P2}. Now, given from the uncertainty uniformity assumption that

EV(P1)=EV(E1)=0.5 and 2 2 2

firstEV P EV P E 2 2

firstEV P EV E

0.25 0.5 0.125 , H={0.5,0.125} and EV(P
m
)=0.125.

 In the case where E1<0.5, it follows that P1<0.5 and
2 1(1) 0.5firstP E ;

therefore for P2>P1 it should hold that 2 1 11E E E , and

EV(P
m
)=EV(P1)=0.25. However, in the case of 2 1 11E E E it follows that

P1>P2, and EV(P
m
)=EV(P2), a value that cannot be straightforwardly calculated.

It is clear that the calculation of EV(P
m
) for arbitrary values of m is a very demanding

task. However, the usefulness of such a calculation can be argued, since by

approximate sampling methods as those described in the next section, we may obtain

good estimates of the expected number of iterations.

4 A COST MODEL FOR PTNN AND PRNN QUERIES

In the exact analysis of section 3 we assumed that both data points, and their

existential uncertainty, are uniformly distributed in their space. In this section, we

relax both assumptions and apply our approach to arbitrarily distributed data with the

employment of augmented histograms. The presence of the histogram is to provide

(a) local estimations regarding the density of existentially uncertain spatial objects in

the neighborhood of the query point, and, (b) statistics that can be used in order to

estimate the number of iterations needed from the PTNN2D algorithm to terminate.

4.1 Augmented histograms

The proposal of Acharya et al. [1], may be easily extended in order to support our

scenario of existentially uncertain spatial objects, by augmenting it in a third

dimension describing the existential uncertainty. Formally, the proposed histogram is

 : 0,1
i i i

HS B B S B and , , , , , ,
, , , , ,

i i L i U i L i U i L i U
B x x y y E E ,

and the data distribution inside each 3D bucket Bi is considered as uniform. The

histogram is created using the methodology of [1] by simply treating the existential

uncertainty dimension as an additional spatial dimension.

4.2 A sampling-based approximation method

The above proposed histogram, besides its conventional use, i.e., to estimate the local

density of data, it can be used in order to produce a 1D histogram of the data points’

existential uncertainty distribution in the area “near” the query point. Subsequently,

random values of existential uncertainty can be produced following the local

distribution provided by the 1D histogram, and then, used to simulate the behavior of

the PTNN2D algorithm. The basic dilemma that is posed towards a good estimation

following such a technique is to provide an efficient termination condition for the

sampling process. This condition can be provided by computing the standard

deviation of the sampled mean value:

mean

N

 (25)

where σ is the sample standard deviation and N the sample size. Then, by using the

hypothesis that n follows the normal distribution, and a confidence interval CI=95%,

the expected number of iterations EV(n) is:

 1.96 1.96n nn EV n n
N N

 (26)

where N is the number of observations (number of PTNN2D simulation runs), σn the

(computed so far) standard deviation of n and 1.96 is the approximate value of the

97.5 percentile point of the normal distribution, used in the construction of

approximate 95% confidence interval.

Figure 5 illustrates the algorithm SamplePTNN2D which summarizes the proposed

methodology regarding the estimation of the number of iterations of the PTNN2D

algorithm using sampling. The algorithm utilizes a 1D histogram HS describing the

existential uncertainty distribution in the local query area, the algorithm’s threshold t,

and the precision p (e.g., 5%) of the expected value of n. The precision is used instead

of an absolute value of standard deviation in order to compute it as a percentage of the

calculated mean value. The algorithm begins by instantiating km, i.e. the calculated

mean of the number of iterations needed by the PTNN2D algorithm to terminate, and

kt, which is the standard deviation of the calculated mean. After that (lines 4-6), the

algorithm instantiates P
first

, N (i.e. the number of PTNN2D simulations) and n (i.e.,

the number of iterations of the PTNN2D algorithm in the current run). In lines 7-11

the PTNN2D algorithm is simulated, and the number of iterations n in its current run

is determined. The histogram HS is used in line 8 in order to produce random values

based on the local area’s existential uncertainty distribution. After simulation, the

algorithm calculates the new mean value of the number of iterations required in every

run, as well as the mean’s standard deviation (line 13). The algorithm eventually

terminates and returns the calculated mean value of iterations when there is 95%

probability (which is included in the area 1.96 kt) that the mean differs by at most p

regarding its accurate value.

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

Algorithm SamplePTNN2D(HS 1D Histogram, threshold t, precision p)

 km:=0; //calculated mean iterations

 kt:=+; // calculated stdev of mean iterations

 While pkm<1.96kt do

 N:=N+1; //num of runs

 P
first

:=1;

 n:=0; //run’s iterations

 While P
first

t do // simulate PTNN2D

 n:=n+1;

 Ex:=ProduceRandomValue(HS);

 P
first

:= P
first

(1-Ex);

 End While;

 km:=Mean(n);

 kt:=Stdev(n)/Sqrt(N);

 End While;

 Return km;

Figure 5. Sampling algorithm for estimating the number of iterations of PTNN2D

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Algorithm SamplePRNN2D(HS 1D Histogram,# objects m, precision p)

 km:=0; //calculated mean iterations

 kt:=+; // calculated stdev of mean iterations

 While pkm<1.96kt do

 P
first

:=1;

 N:=N+1; //num of runs

 H:=;

 P
m
:=+;

 n:=0; //run’s iterations

 While P
first

P
m
 do //simulate PRNN2D

 n:=n+1;

 Ex:=ProduceRandomValue(HS);

 Px:=P
first

Ex;

 If Px P
m
 then

 Update H to include x;

 P
m
:= m-th probability in H;

 P
first

:= P
first

(1-Ex);

 End While;

 km:=Mean(k);

 kt:=Stdev(k)/Sqrt(k);

 End While;

 Return km;

Figure 6. Sampling algorithm for estimating the number of iterations of PRNN2D

Interestingly, the method of sampling can be directly applied with limited only

modifications in the case of PRNN queries. The respective SamplePRNN2D algorithm

is illustrated in Figure 6. The algorithm utilizes the same ideas as SamplePTNN2D

with the only difference that PRNN2D is simulated (instead of PTNN2D) between

lines 9-17, with P
m
 calculated and eventually tested so as to be used as a termination

condition. This observation enables us to introduce a cost model for PRNN queries as

well, as described in the following section.

4.3 An effective cost model for PTNN and PRNN queries

In this section we present an effective cost model for PTNN queries that works over

arbitrary distributed spatial data with existential uncertainty. The proposed cost model

is calculated using the algorithm presented in Figure 7, which employs several ideas

presented in [12]. In particular, algorithm EstimateThresholdDk takes as input a

simple spatial histogram, an augmented histogram, a query point q and a threshold t,

and estimates the radius Dk of the vicinity circle that has to be browsed by the

PTNN2D algorithm. The radius Dk is then applied over Eq.(6) so as to estimate the

number of node accesses NA that are needed in order to answer the query. The

algorithm initially (lines 2-4) determines the critical vicinity rectangle “radiuses”, i.e.,

the rectangle’s half-side, on which the object’s density changes. These radiuses are

determined by simply calculating the distance that q needs to travel along each axis so

as to reach each bucket’s boundaries. After their calculation, these values are inserted

into a min-heap so as to be used in incremental order.

Algorithm EstimateThresholdDk(Histogram HS, Augmented Histogram AHS, point q, threshold t)

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

HP = new min-Heap

for each bucket B in HS;

 Determine the radius that is needed for a rectangle

 with center q to reach B and add it to HP

end for

EnOld=:0; lOld:=0;

While true do // algorithm eventually terminates at line 13

 l=:HP.pop;

 En=:HS.Density(q,l)*(4*l*l);//calculate # objects inside rec

 m=:AHS.MeanValue(q,l)

 k=:Log(t)/Log(1-m)+1

 If k<En then

 Compute Lr by equation (5)

 Return Lr/Sqrt(PI)

 Else

 lOld=l;EnOld=En;

 End if

End while

Figure 7. Algorithm EstimatedThresholdDk for computing Dk

Then, the algorithm iteratively retrieves candidate critical distances l on which the

vicinity rectangle’s density is changed (via the min heap), and calculates (line 8) the

expected number of objects En found inside it, by simply multiplying the local

density produced by HS by the area of the respective vicinity rectangle. It also

determines in line 9 via the augmented histogram, the mean value m of the existential

uncertainty of objects found inside the vicinity rectangle, using as input the query

point q as well as the radius l of the vicinity rectangle. The value m is eventually used

in line 10 to calculate the (approximated) number of nearest neighbors k that must be

retrieved in order for the PTNN2D algorithm to terminate. Then, in line 11, the values

of k and En are compared, in order to determine whether the number of required

nearest neighbors k is less than the objects contained inside the (so far calculated)

vicinity rectangle. If it is not so, the algorithm stores l in lOld and En in EnOld to be

used by Eq.5 in a subsequent iteration, and performs another iteration, so as to use a

greater critical radius l (which are stored in the minheap). Eventually, the algorithm

terminates by computing Lr via Eq.(5), and returning Dk (lines 12-13) when the

iteratively increasing radius of the vicinity rectangle, produces an approximate

number objects contained inside the respective vicinity rectangle, greater than k.

The previously presented algorithm 2 provides a good approximation of the number

of objects that have to be retrieved from the database in order for the PTNN2D to

terminate. However, this can be also achieved via sampling, as described in the

previous section. Specifically, lines 9-10 of the EstimatedThresholdDk can be

replaced with (a) the calculation of a 1-dimensional histogram, AHS, and (b)

algorithm SamplePTNN (cf. Figure 5) that estimated k based on a 1-dimensional

histogram of existential uncertainty. Similarly, by replacing lines 9-10 with the

calculation of the 1D histogram and the algorithm SampleRTNN used to estimate the

number of iterations of PRNN2D, algorithm EstimatedThresholdDk may be also used

as a cost model for PRNN search.

Summarizing, the proposed cost model the bases on the EstimatedThresholdDk

algorithm, can be used for estimating the radius of the vicinity circle, used for both

PTNN and PRNN queries.

5 Experimental Study

Our experimental study is based on real point datasets. In particular, as in [13], we

used the San Francisco roads’ dataset (SF) dataset. Due to the lack of a real spatial

dataset with objects having existential probabilities, we generated probabilities for the

objects, using the following methodology. As [13] suggest, we first generated K = 10

anchor points on the map in positions of high data density. These points model

locations around which there is large certainty for the existence of data. For each

point x of the dataset, we find the closest anchor and we assign an existential

probability inversely proportional to its distance from it. Thus, the distribution of

probabilities around the anchors is a Zipfian one. The probabilities are normalized

w.r.t. the maximum probability.

We conducted our experiments on a Windows XP workstation with AMD Athlon II

X4 640 3GHz processor CPU. All evaluated methods were implemented using the

.NET framework. Two statistical measures were used so as to demonstrate the

behavior of our model. The average radius of the vicinity circle D , the average

estimated radius of the vicinity circle
eD , and the average error in the estimation of

the vicinity circle DS . Formally, these measures are defined as:

1..

1
i

i n

D D
n

 ,
1..

1 e

e i

i n

D D
n

 , and,
1..

1 e

i i

i n

DS D D
n

where n is the number of executed queries, Di the actual distance of the vicinity circle

from the i-th query, and
e

i
D the estimated radius of the vicinity circle via the

respective cost model. We distinguish between, D and DS , in order to disclose the

details of the behavior of our model, as will be shown in the following experiments.

In order to test the accuracy of the proposed model, we performed 500 PTNN queries

in locations selected driven by the datadet density, under various threshold values,

and counted the actual number of iterations that the algorithm performed; we also

compared the values gathered from the experiment with the one calculated using our

model. The corresponding results are illustrated in Figure 8(a) and (b), regarding the

PTNN2D algorithm with estimates gathered via Lemma 2 and sampling, respectively.

It is clear that the values D and
e

i
D displayed in both bars (actual and estimated

vicinity circle radiuses) are almost identical, meaning that the estimation gathered by

our model is very accurate, with an error that never exceeds 12%, regarding the

average number of iterations for all 500 queries. Moreover, the mean deviation DS

(i.e., the average unsigned error of the estimation in each individual query), illustrated

by the error bars, is between 20% and 50% in all experimental settings, increasing

with the threshold. This is actually an expected result since the increase of threshold

results in decreasing the number of iterations of the PTNN2D algorithm, which leads

to the deviation growth. A comparison between the two alternative ways of

estimation, i.e., Lemma 2 and sampling, results that the latter performs slightly better.

Similar results are exposed regarding the PRNN2D algorithm, illustrated in Figure

8(c), where our estimations are once again accurate, with an error that never exceeds

15%, except of the case where small cardinalities of objects are requested, i.e.,

smaller than 10, where the error reaches 25%.

(a) (b) (c)

Figure 8. Average actual and estimated search radius of the PTNN2D algorithm scaling the

threshold using (a) mean probability, (b) Sampling, and (c) the PRNN2D algorithm scaling the

number of objects requested

6 Conclusions and Future Work

In this paper, we have worked with the problem of performing probabilistic

thresholding nearest neighbor and probabilistic ranking nearest neighbor queries

over existentially uncertain spatial point datasets [3],[13]. Following a statistical

approach, we estimate the average number of the nearest neighbors required for

processing PTNN queries as a function of the threshold t, and then, utilizing existing

approaches [6] we propose a cost model for such queries. We have also provided

approximate solutions for the same problem, which turn out to be applicable over

arbitrary distributed data. Our experimental study proves the effectiveness and

efficiency of the proposed techniques. There are numerous interesting research

directions arising from this work, including the application of our model in data

spaces of higher dimensionality, its extension in order to support reverse nearest

neighbor, and spatial skyline queries according to [13], as well as objects with time-

varying existential uncertainty.

7 Acknowledgements

Elias Frentzos was supported by the Greek States Scholarships foundation. Nikos

Pelekis and Yannis Theodoridis were supported by the European Union Seventh

Framework Programme (FP7/2007-2013) under grant agreement n°270833, ICT

project DATASIM (www.datasim-fp7.eu).

References

1. Acharya, S., Poosala, V., and Ramaswamy, S.: Selectivity Estimation in Spatial Databases.

In Proceedings of the ACM SIGMOD Int’l Conference on Management of Data

(SIGMOD’99) (1999) pp.13-24

2. Balakrishnan, N. and Rao, C. R. (Eds.): Order Statistics: Applications. Amsterdam,

Netherlands: Elsevier (1998)

3. Dai, X., Yiu, M.L., Mamoulis, N., Tao, Y., and Vaitis, M.: Probabilistic Spatial Queries on

Existentially Uncertain Data. In Proceedings of the Int’l Symp. Spatial and Temporal

Databases (SSTD’05) (2005) pp.254-272

4. Frentzos, E., Pelekis, N., and Theodoridis, Y.: Cost Models and Efficient Algorithms on

Existentially Uncertain Spatial Data. In Proceedings of the 12th Panhellenic Conference in

Informatics (PCI’08) Samos, Greece (2008)

5. Frentzos, E. Gratsias, K. and Theodoridis Y.: On the Effect of Location Uncertainty in

Spatial Querying. 21(3) IEEE Trans. Knowl. Data Eng. (2009) 366-383

6. Hjaltason, G., and Samet, H.: Distance Browsing in Spatial Databases, ACM Transactions

in Database Systems. vol. 24(2) (1999) pp. 265-318.

7. Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., and Theodoridis, Y.: Rtrees:

Theory and Applications. Springer (2005)

8. Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V.,

Damiani, M. L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., Theodoridis, Y., and Yan,

Z.: Semantic Trajectories Modeling and Analysis. ACM Computing Surveys, (2013)

9. Sharifzadeh M., and Shahabi, C.: The Spatial Skyline Queries. In Proceedings of the 32nd

International Conference on Very Large Data Bases (VLDB), Seoul, Korea (2006)

10. Stanoi, I., Agrawal, D., and Abbadi, A.: Reverse Nearest Neighbor Queries for Dynamic

Databases. In Proceedings of the SIGMOD Workshop on Research Issues in Data Mining

and Knowledge Discovery (2000)

11. Tao, Y., Zhang, J., Papadias, D., and Mamoulis, N.: An Efficient Cost Model for

Optimization of Nearest Neighbor Search in Low and Medium Dimensional Spaces.

Vol.16, no.10, IEEE Trans. Knowledge and Data Eng. (2004) pp.1169-1184.

12. Weisstein, Eric W.: Uniform Product Distribution. From MathWorld, A Wolfram Web

Resource.

13. Yiu, M., Mamoulis, N., Dai, X., Tao, Y., Vaitis, M.: Efficient Evaluation of Probabilistic

Advanced Spatial Queries on Existentially Uncertain Data”, Vol. 21(1) IEEE Trans.

Knowledge and Data Eng (2009)

http://www.datasim-fp7.eu/

