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Abstract

Biometric fingerprint scanners are positioned to provide improved security in
a great span of applications from government to private. However, one highly
publicized vulnerability is that it is possible to spoof a variety of fingerprint
scanners using artificial fingers made from Play-Doh, gelatin and silicone
molds. Therefore, it is necessary to offer protection for fingerprint systems
against these threats. In this paper, an anti-spoofing detection method is
proposed which is based on ridge signal and valley noise analysis, to quantify
perspiration patterns along ridges in live subjects and noise patterns along
valleys in spoofs. The signals representing gray level patterns along ridges
and valleys are explored in spatial, frequency and wavelet domains. Based on
these features, separation (live/spoof) is performed using standard pattern
classification tools including classification trees and neural networks. We test
this method on a larger dataset than previously considered which contains
644 live fingerprints (81 subjects with 2 fingers for an average of 4 sessions)
and 570 spoof fingerprints (made from Play-Doh, gelatin and silicone molds
in multiple sessions) collected from the Identix fingerprint scanner. Results
show that the performance can reach 99.1% correct classification overall. The
proposed anti-spoofing method is purely software based and integration of
this method can provide protection for fingerprint scanners against gelatin,
Play-Doh and silicone spoof fingers.
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1. Introduction

Fingerprints are graphical ridge-valley patterns on human fingers. Fin-
gerprint recognition is considered as the most widely used and efficient tech-
nique for biometric authentication, which utilizes physiological or behavioral
characteristics for personal identification or verification[1]. While fingerprint
systems may have an excellent performance and improve security, fingerprint
systems are found to be vulnerable to attacks at the sensor level, replay at-
tacks on the data communication stream, and attacks on the database [2].
For example, previous studies have shown that it is not difficult to make
molds of latent fingerprints left by legitimate users and to create fake fingers
made from Play-Doh, gelatin and silicone materials to fool a variety of fin-
gerprint scanners [3, 4, 5, 7]. From a security and accountability perspective,
fingerprint recognition systems should have the ability to detect when fake
finger samples are presented. Liveness detection (or vitality detection) is
proposed to defeat this kind of spoof attack. Liveness detection is an anti-
spoofing method ensuring that only the biometric from a live, authorized
person is submitted for enrollment, verification and identification [6].

In order to prevent fraudulent attacks by artificial fingers, several so-
lutions have been proposed. The first method uses extra hardware to ac-
quire life signs. Previously developed approaches measure fingertip tempera-
ture, pulse, pulse oximetry, blood pressure, electric resistance, odor, or ECG
[7, 8, 9, 10, 11, 12]. These methods require dedicated hardware integrated
with the fingerprint system. This is expensive and in some cases bulky and
inconvenient. For example, the electrocardiogram requires two points of con-
tact on opposite sides of the body. Furthermore, it may still be possible to
present an artificial fingerprint to the fingerprint sensor and utilize the real
fingerprint of the intruder for the hardware to detect liveness. Also, translu-
cent spoofs may fool pulse oximetry as it relies on infrared light absorption to
measure oxygen content of the blood. One commercially available fingerprint
sensor which may provide spoof detection is from Lumidigm [17]. They use a
multispectral sensor, from which multiple wavelengths of light and different
polarizations allow new data to be captured which is unavailable from a con-
ventional optical fingerprint reader. This method while commercially viable
requires purchase of a specific scanner not applicable to standard readers.
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The second method uses the information already captured by traditional
fingerprint systems to detect life signs, for example, skin deformation, pores,
power spectrum or perspiration pattern. Skin deformation techniques use the
information regarding how the fingertip’s skin deforms when pressed against
the scanner surface [13] [14] [15] [47] [49]. The studies showed that when a
real finger moves on a scanner surface, it produces a significant amount of
non-linear distortion. However, fake fingers are more rigid than skin and the
deformation is lower even if they are made of highly elastic materials. One
approach quantifies this by considering multiple frames of clockwise motion
of the finger [15]. The problem of this method is that the users need to
have special training or have to control pressure while rotating the fingers.
Second, the performance of this method still needs to be improved with an
equal error rate of 11.24% using 45 live subjects and 40 fake fingers. A second
method considers the deformation in a single image compared to a template
[14]. This study achieved 82% recognition for a small dataset (32 gummy
fingers). More research is needed to assess the viability of this approach.

Analysis of skin coarseness [16] is another approach for future second
generation high resolution scanners. Standard deviation of the noise residue
is used as an indicator to the texture coarseness. A fingertip image is first
denoised using a wavelet based approach. The noise residue (original image
minus denoised image) is then calculated. Authors show that the standard
deviation of fake finger tips is much higher than the live finger tips. This
method still needs to be tested on other types of scanners and spoof materials.
The method proposed here takes advantage of similar characteristics of the
noise along valleys.

Image power spectrum is also selected as an effective feature for vitality
detection [19]. The authors hypothesize that the difference between live and
spoof images is mainly due to the stamp fabrication process which causes
an alteration of frequency details between ridge and valleys. The proposed
Fourier transform feature can quantify the difference in terms of high fre-
quency information loss. This approach is tested for a single scanner and
silicone spoof material with 97.3% recognition. The performance of this
method still needs to be tested on other sensors and other spoof materials.

Also researchers investigate the characteristics of spoof and live fingers,
like perspiration pattern [46], band-selected Fourier Spectrum [50], valley
noise [25], gray-level profile and frequency patterns [48], integration of mul-
tiple static features [51], or curvelet texture difference [52].

Previously, our laboratory has demonstrated that pattern of perspiration
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on fingerprint image can be used as a measure of liveness detection for fin-
gerprint biometric systems. Unlike spoof and cadaver fingers, live fingers
demonstrate a distinctive spatial moisture pattern when in physical contact
with the capturing surface of the fingerprint scanner. The pattern in finger-
print images begins as ’patchy’ areas of moisture around the pores spreading
across the ridges over time. Image/signal processing and pattern recognition
algorithms have been developed to quantify this phenomenon using wavelet
and statistical approaches [20, 21, 22, 23].

A disadvantage of this method is that it requires two time-series images,
which might be not convenient for users. In our previous research, a method
to quantify this phenomenon has been developed for a single image. This
method is based on the gray levels along the ridges in live fingers which
have a distinctive difference in the frequency pattern due to the presence
of perspiration and pores, compared to the spoof and cadaver fingers [24].
The underlying process is to extract the ridge signal which represents the
gray level values along a ridge mask and use wavelet transform to decompose
this signal into multiscales. Statistical features extracted on each scale are
used by neural network or classification trees to discriminate between live
and non-live fingerprints. The capacitive DC (Precise) scanner demonstrates
between 90-100% (for live and non-live, respectively) correct classification
rate. The optical scanner (Secugen) shows 89-92% correct classification.

The motivation of this work is to further develop and improve perfor-
mance of live/spoof separation using a single image. In this approach we
extend the work of ridge signal [20, 24] and valley noise [25] by improving
the features selected and fusing the information to improve performance. We
test our new approach using a new larger dataset of live and spoof images
than previously tested. For live fingerprints, the dataset contains multiple
visits from the subjects (average 4 returns, range 1 to 13). The purpose is to
capture the variability of a single subject. For spoof fingerprints, the dataset
contains spoof fingers of varying materials (gelatin, silicone and Play-Doh)
with varying levels of moisture (captured over time as the spoof dries). We
utilize the term anti-spoofing as our method considers both the characteris-
tics of the live fingers (liveness) and characteristics of the spoof.

The organization of the paper is as follows: Section II describes the
database collected for this study. Section III introduces a new approach
to detect liveness by fusing ridge signal and valley noise analysis. Section IV
gives the experiment results of the new method on the new dataset, which
is also compared with ridge signal and valley noise analysis alone. Section V
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Figure 1: Histogram of number of return live subjects (left) and weeks between visits
(right)

discusses the advantages and limitations of the new method and future work.
Finally, Section VI gives a conclusion of this work.

2. Data Collection

Identix DFR2100 fingerprint scanner, used to collect data for this research
is an optical scanner with a resolution of 686 dpi and size of 720x720 (forensic
mode). The manufacturer provided a software developer kit (SDK). The
software was modified to collect a time series of sensor raw images. Three
time-series images (at 0, 1 and 2 seconds) are used for this study. To test
our algorithm, cross validation was applied on 0, 1 and 2 second images
separately. In addition, all of the time-series images were mixed and tested
together also using cross validation. Each liveness decision was based on a
single fingerprint image. For comparison, we also implemented the previous
ridge signal algorithms [20, 24]. For ridge signal algorithm [20], we only
selected the static feature from the first image. Protocols for data collection
from the subjects were approved by Clarkson University Institutional Review
Board (IRB).

Fingerprint images were collected from live, Play-Doh, gelatin and silicone
fingers. The live fingerprints were collected from 81 subjects, representing a
wide range of ages (18-50 years), ethnicities (Caucasian, Black, Asian), and
both sexes. Live subjects usually returned voluntarily at intervals of at least
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two weeks. The average return interval was 4.2 weeks and the standard de-
viation was 3.8. The maximum return interval was 44 weeks. Some subjects
came back more often (13 times) than others (1 time only), resulting in a to-
tal of 322 visits across 81 subjects. The purpose is to capture the variability
of a single subject. In our live data collection, it has the subjects with all
kinds of variabilities, like wet finger, dry finger, dirty finger, pressure change,
etc.

Fig. 1 summarizes the distribution of live subjects of a number of returns
and interval of return. Each time the subject’s right thumb (R1) and right
index (R2) fingerprints are collected. Table 1 summarizes the number of
subjects and total fingerprints collected using Identix scanner.

Categories Live Play-Doh Gelatin Silicone

Subjects 81 38 38 38

Sessions 1-13 5 5 5

Total 644 190 190 190

Table 1: Summary of live and spoof fingers collection

To generate spoof fingerprint images, artificial finger molds made from
Play-Doh, gelatin and silicone were created from 38 casts made from dental
impression materials. We have chosen to make casts from cooperative users.
When we prepared spoofs, we always tried to make the highest quality spoofs
to mimic live fingerprints, which look like live fingerprints. We collected
spoofs with different moisture levels to mimic wet and dry fingerprints.

The apparatus required to make the cast is as follows: Acquasil easy
mix putty smart wetting impression material of type 0 from Dentsply Caulk,
Extrude polyvinylsiloxane impression material of type 2, mixing tips large
teal, and extruder gun from Kerr corporation, and film-can. First, the subject
mixes type 0 base and catalyst evenly and puts the mix in a film-can to make
outer supportive shell. Then, the subject pushes finger in paste and hold it
that position for 2-3 minutes until the mix gets hardened. This creates a
base imprint for the finger cast. Next, the subject takes the finger out of the
paste and fills the mold with the type 2 extrude using extruder gun. Then
the subject puts back finger back onto the molding, in a similar manner as
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previously done and holds the finger in a still position for 3 minutes until it
becomes hardened. The cast is ready when the subject removes the finger.

To make gelatin finger molds, gelatin (Knox Gelatine) was mixed with
water and heated in the microwave until the solution was thick enough to
pour into the casts. Silicone finger molds are made by Sylgard 184 Silicone
Elastomer Kit, manufactured by DOW Corning Corporation [27]. The kit
includes two items: silicone elastomer base and curing agent which are mixed
at the ratio of 10:1. Play-Doh finger molds were created by simply press
Play-Doh into the cast. After pouring into finger casts, we wait at least
3 hours for gelatin solutions and at least 12 hours for silicone solutions to
harden before beginning collection on the fingerprint sensor. Silicone spoof
fingerprints were collected after 12 hours for 5 sessions with 1 hour intervals.
Gelatin spoof fingerprints were collected after 3 hours for 5 sessions with
1-hour intervals. Play-Doh spoof fingerprints were collected for 5 sessions
with 20-minute intervals. The purpose of the time between samples is to
achieve a dataset of spoofs with a variable amount of moisture. In addition,
to make the highest quality spoofs, Play-Doh fingers were placed in the air
for 5 minutes, as fresh Play-Doh fingerprints displayed a very wet pattern,
they are very easy to detect, and thus considered as spoof. The gelatin
fingers were placed at air for about 3 hours to make sure they did not show
a smudged pattern on the scanner. To make the highest quality of silicone
fingers, we tried different ratio to mix the materials in the kit. Higher ratio
silicone fingers are so sticky that they the scanner dirty and display a noise
pattern on the scanner, while lower ratio silicone fingers are too stiff. We
selected an optimal ratio to make a flexible silicone finger and get the best
image quality.

Fingerprint image quality is a valuable tool in determining a fingerprint
matcher’s ability to match a fingerprint against other fingerprints [28]. It
has been shown that as fingerprint image quality degrades so does matcher
performance. To investigate the image quality of our database, NFIQ [28], an
implementation of the NIST Fingerprint Image Quality algorithm, was used
as a standard measure to evaluate the fingerprint quality distribution for both
live and spoof images. It computes a feature vector using the quality image
map and minutiae quality statistics produced by the MINDTCT minutiae
detection algorithm [28]. The feature vector is then used as input to a Multi-
Layer Perceptron (MLP) neural network classifier, and the output activation
level of the neural network is used to determine the fingerprint’s image quality
value. There are five quality levels with 1 being the highest quality and 5
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Figure 2: NFIQ quality score distribution of live fingerprints (left) and spoof fingerprints
(right)

being the lowest quality. Fig. 2 is a comparison of image quality histogram
distribution for both live and spoof fingerprints. X-axis is the NFIQ quality
scores from high to low. Y-axis is the percentage distribution for different
quality scores. As can be seen, most live and spoof fingerprints have a quality
score of 4 or better, which is similar to the quality distribution of FVC2004
fingerprint database [29]. The NFIQ scores of spoof fingerprints are slightly
lower than live ones, which is not unexpected due to the difficulty of creating
spoofs. However, over 79.7% of spoof images are of quality 3 or better. In
addition, it should be noted that not all live images were of the highest
quality, reflecting variable conditions (wet, dry, high pressure, etc.).

3. Ridge signal and valley noise analysis

Fig. 3 shows two typical examples of images captured from live, Play-Doh,
gelatin and silicone fingers using Identix DFR2100 scanner. The fingerprint
pattern is comprised of ridges touching the sensor plane and valleys not
touching the sensor plane. For normal live fingers, it is very easy to get a clear
ridge-valley structure when touching the sensor plane with normal pressure.
As can be observed, the live and spoof fingerprints look different considering
both ridges and valleys. Reasons include the perspiration pattern of live
fingers and differences in the properties of the spoof materials compared to
human skin.
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(a)

(b)

(c)

(d)

Figure 3: Example of live and non-live fingerprints captured by Identix DFR2100 scanner:
(a) live fingerprint; (b) Play-Doh spoof sample; (c) Gelatin spoof sample; (d) Silicone
spoof sample. 9



First, live fingers have sweat, but spoof fingers do not. On the surface of
human skin, there are about 600 sweat glands per square inch and the sweat
(a dilute sodium chloride solution) diffuses from the sweat glands through
small pores [26]. Skin pores do not disappear, move, or spontaneously change
over time. Sweat has a very high dielectric constant and electrical conduc-
tivity compared to lipid-soluble substances absorbed by the outmost layer of
the skin. The perspiration starts from the pores, either completely covering
them or leaving the pore as a dry dot. Due to this reason, the live fingerprint
looks ”patchy” compared with spoof subjects. From the ridge perspective,
the gray level along ridges in live fingers has distinctive characteristics due
to the presence of perspiration and pores, compared to spoof fingers.

Second, the properties of spoof materials are different than human skin.
The intensity along the ridges is very uniform for spoof images because the
impostor must apply pressure to the spoof for a proper image. While it is
difficult to reproduce the variability along the ridges seen in live images even
with reduced pressure, spoofs as they dry may produce this variability where
the drying is not uniform over the spoof. We attempt to create this with our
dataset. Also there are many granules in the valleys due to the properties of
the spoof materials, which result in more noise along the valleys in fingerprint
images.

Based on these investigations, we apply image processing techniques to
quantify moisture patterns along ridges and noise along valleys to discrim-
inate between live and spoof fingers. The underlying process is to create
separate ridge and valley masks, single pixel lines tracking the ridge and
valley. From this mask, ridge and valley signals are gray level values along
the ridge and valley masks. Wavelet transform and Fourier transform are
used to analyze ridge and valley signal in wavelet and frequency domain, re-
spectively. Spatial, frequency and wavelet features are extracted to quantify
perspiration and noise difference in order to discriminate between live and
spoof fingerprints. Based on these features, standard pattern classifiers are
used to make the final decision whether to accept or reject the input fingers.

The basic steps are listed as follows:

• Ridge, valley mask and signal extraction

• Feature extraction

• Classification
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3.1. Ridge, valley mask and signal extraction

To improve the clarity of ridge and valley structures in fingerprint im-
ages, a number of techniques have been proposed to enhance gray-level im-
ages because the ridge and valley structures in a local neighborhood form a
sinusoidal-shaped wave with well-defined frequency and orientation [30, 31].
Here, a software module from Veridicom SDK was used to segment the fin-
gerprint and get the binary ridge-valley image, as seen in Fig. 4-b.

A standard thinning algorithm using morphological operations was used
to obtain one pixel thin ridges. Y-junctions and some short curves shorter
than a typical pore-to-pore distance are discarded using a simple non-overlapping
neighbor operation. Individual strings are connected to form a signal, which
represents the gray levels of contours passing through middle of the ridges.
Similar methods are used to extract the valley signal corresponding to the
actual gray level changes along the valleys. Fig. 4(b) shows the binary
ridge-valley fingerprint image, Fig. 4(c) and 4(d) show the extracted ridge
and valley masks appear superimposed on original fingerprint. Fig. 5 shows
ridge and valley signal samples from partial signals extracted from a typical
live and spoof fingerprints, respectively. The ridge signal from live finger-
prints appears more periodic than spoof and the signal intensity is different,
as can be seen from Fig. 5(a). From Fig. 5(b), we can see that the valley
signal from live fingerprints appears more stable than spoof fingerprints due
to the existence of more noise along the spoof valleys.

3.2. Feature extraction

After extracting ridge and valley signals, features are extracted to quan-
tify the difference between live and spoof fingerprints in spatial, frequency
and wavelet domain, respectively.

3.2.1. Spatial domain features

Mean and standard deviation of ridge and valley signals are extracted
spatially. For the ridge signal representing gray level intensities along ridge
mask, gelatin and silicone fingerprints usually have a higher value of mean
because they look darker than live fingerprints. However, the mean value
of live and Play-Doh fingerprints are usually similar. Because the spoof
materials also have artificial pores or other artifacts, the standard deviation
does not have a big difference between live and non-live fingerprints. For
the valley signal representing gray level intensities along valley mask, usually
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(a) (b)

(c) (d)

Figure 4: Fingerprint ridge-valley mask generation and signal extraction: (a) Original
fingerprint image; (b) Binary ridge-valley image; (c) Thinned ridges overlaid on fingerprint
image; (d) Thinned valleys overlaid on fingerprint image.
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Figure 5: Examples showing ridge signal and valley signal difference between live (solid
line) and spoof (dotted line) fingerprints: (a) Ridge signal; (b) Valley signal.
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the mean and standard deviation of spoof fingerprints are higher than live
fingerprints because the spoof fingerprints have much more noises.

3.2.2. Frequency domain feature

The ridge signal is also analyzed in the frequency domain. For the ridge
signal, the peaks denote the moist locations and the valleys denote the dryer
regions usually between two pores. For live fingerprints, the peak to peak
distance is typically periodical corresponding a pore to pore distance. The
variations in the spoof ridge signal do not have a specific periodicity because
they do not have evenly spaced pores. The frequency feature is the average
Fourier transform of the signal segments where the energy related to typical
pore spacing is used. Before Fourier transform, the mean of the signal is
removed to eliminate the spike around zero frequency. A 256-point FFT is
performed. The procedure can be mathematically calculated as

FE =

2∗256/pl
∑

k=256/pl

∑n
i=1

∣

∣

∣

∑256
p=1Ri(p)e

−j2π(k−1)(p−1)/256
∣

∣

∣

n
; (1)

where pl is the spatial period (around 25 pixels using this scanner under its
highest resolution condition), and Ri is ridge signal after DC removal.

3.2.3. Wavelet domain features

The wavelet transform provides a powerful tool for non-stationary signal
processing because it can analyze the signal at different scales. From an
algorithmic point of view, the 1-D multiresolution analysis leads to dyadic
pyramidal implementations using filter banks [32]. An orthogonal filter bank
is applied to compute the discrete-time wavelet transform when iterated on
the lower band. For wavelet multiresolution decomposition, each stage of
this analysis consists of a highpass and lowpass filter followed by scale two
downsampling. In this scheme, the scaling function and mother wavelet
function can be calculated by:

φ(n) = 2
∑

n

hnφ(2x− n) (2)

ψ(n) = 2
∑

n

gnφ(2x− n) (3)
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where hn and gn are conjugate mirror filters, as in,

h[L− 1 − n] = (−1)ng[n] (4)

where L is the length of filters.
The output of the first high-pass and low-pass filters provide the detail

D1 and the approximation A1, respectively. The first approximation, A1 is
then decomposed to the second level detail D2 and approximation A2, and so
on. Daubechies wavelet is selected as the mother wavelet [33] and the scale
selected is 5 because further decomposition detail does not contain much
useful frequency content.

To extract the feature vectors, mean and standard deviation of the wavelet
coefficients in each scale are used. For ridge signal, 6 features (mean only)
are extracted from 5 detail scales and the last approximation scale because
variance on each scale does not have demonstrated a large difference between
live and spoof ridge signals. For valley signal, 12 features (mean and standard
deviation) are extracted from 5 detail scales and the last approximation scale.
There are a total of 19 features in the spatial, frequency and wavelet domain.

Fig. 6 shows the comparison of four features between live, Play-Doh,
gelatin and silicone fingerprints over the whole dataset. On the X axis,
subjects 1-644 represent live fingers, subjects 645-834 represent Play-Doh
fingers, subjects 835-1024 represent gelatin fingers and subjects 1025-1214
represent silicone fingers.

As can be observed from Fig. 6-a, gelatin and silicone fingerprints gen-
erally have a higher intensity along the ridges than live fingerprints. Live
fingerprints have a higher Fourier energy than the three types of spoof fin-
gerprints due to the presence of perspiration points and pores along the
ridges, as shown in Fig. 6-b. Also, along the valleys, spoof fingerprints
have a higher intensity and higher variation than live fingers because of the
existence of noise, as shown in Fig. 6-c and Fig. 6-d. From the feature
comparison, we utilize these features for decision logic to make the liveness
classification.

3.2.4. System fusion

Each of our proposed ridge signal and valley noise approaches can be
used individually or together via system fusion. It is worthwhile to carry out
the comprehensive feasibility study of these different strategies since each
has different complexity and may behave differently under different real ap-
plication scenarios for the fingerprints with varying quality. Through this
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Figure 6: Feature comparison between live and spoof fingerprints; For subjects on X axis:
live subjects are 1-644; Play-Doh: 645-834; gelatin: 835-1024; silicone: 1025-121416



study we will gain expertise in liveness detection or anti-spoofing protection
for fingerprint scanner, which will allow us to suggest the best solution for
different real-world downstream applications and scenarios. We can either
do the system fusion at feature level, match score or decision level [45]. In
this case, we focus on feature level fusion. For feature level fusion, we com-
bine the features extracted from each approach, into a unique feature vector,
because the features extracted from each approach are independent between
them.

3.3. Classification

After statistical features are extracted, standard pattern classification
tools (neural network, nearest neighbour, classification tree, etc.) are used
to separate non-live subjects from the live subjects. The non-live category
includes the spoof data made from Play-Doh, gelatin and silicone fingers. The
software we used for classification is from WEKA (Waikato Environment for
Knowledge Analysis) software tool [34] that provides different classification
techniques for large data sets.

For neural network we chose a multilayer perceptrons (MLPs) with super-
vised feedforward neural networks trained with the standard back-propagation
algorithm. In this case, a two-layer feed-forward network is created where the
inputs are the extracted statistical features. The first hidden layer has 3 tan-
sig neurons, the second layer has one purelin neuron. The ’trainlm’ network
training function is to be used. For convenience of training, bipolar targets
(+1, -1) are chosen to denote live and non-live categories, respectively.

Nearest Neighbour classifier [35] is another supervised statistical pattern
recognition method. Training was performed with both positive and negative
cases. A new sample is classified by calculating the normalized Euclidean
distance to the nearest training case.

Classification trees derive a sequence of if-then-else rules using the train-
ing set in order to assign a class label to the input data. The user can see the
decision rules clearly to verify if the rules match their understanding about
the classification. Several learning and searching strategies are utilized to
train the models, including ADTree [36], J48 [37], Random Forests [38], and
Bagging Tree [39]. For example, Random Forests, a meta-learner comprised
of many individual trees, was designed to operate quickly over large datasets
and more importantly to be diverse by using random samples to build each
tree in the forest. The randomly selected training data is sampled to create
an in-bag portion to construct the tree, and a smaller out-of-bag portion
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to test the completed tree to evaluate its performance. This performance
measure is known as the out-of-bag error estimate.

Last, support vector machines (SVM) are also used to make comparisons.
John Platt’s sequential minimal optimization algorithm [40] is utilized for
training a support vector classifier.

Ten-fold cross-validation test is used to test the proposed approach. The
original dataset is partitioned almost evenly into 10 subsamples sets. Of the
10 subsamples, a single subsample set is retained as the validation data for
testing the model, and the remaining 9 subsamples are used as training data.
The cross-validation process is then repeated ten times. Results from 10 folds
then can be averaged to produce a single estimation.

4. Experiments and Results

4.1. Performance Evaluation

To evaluate our system, we utilize terms for evaluating biometric iden-
tification or verification systems. Liveness classification is the process of
determining whether the input finger is live or spoof.

Because of the threshold selection or decision logic, liveness classification
makes two type of errors, i.e., spoof false acceptance (SFA), where a spoof
finger is accepted as live and live false rejection (LFR), where a live finger
is rejected. Two other terms are also often used, true acceptance, where a
live finger is recognized as live and true rejection, where a spoof finger is
recognized as spoof. Normalized SFA and LFR are used, which are called
spoof false acceptance ratio (SFAR) and live false rejection ratio (LFRR),
respectively. They can be calculated as

SFAR =
SFA

NS
(5)

LFRR =
LFR

NL
(6)

where SFA and LFR are the number of SFA and LFR samples, respectively;
and NS and NL are the total number of spoof finger samples and live finger
samples, respectively. Equal error rate (EER) is when SFAR equals LFRR.
A lower EER value indicates a high accuracy of this system. To evaluate the
performance of our system, we use Receiver Operator Characteristic (ROC)
curve, which plots the change of true positive rate (1-LFRR) with SFAR for
varying thresholds.
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4.2. Results

Performance of live/spoof separation is detected considering ridge signal
features and valley noise features separately, and integration of both at fea-
ture level. In our approaches, both ridge signal algorithm and valley noise
algorithms use wavelet decomposition to extract features. These features are
inputs to classifiers: neural network and random forest tree. We compared
the ROC for both ridge signal and valley noise algorithms. Fig. 7 shows the
ROC curve for ridge signal analysis, valley noise analysis and integration of
both methods using neural network and random forest classification tree for
0 second images, respectively. Different classifiers have different ROC curves,
using NN, random tree, Bayes net or SVM , etc. Here we used the two best
classifiers using NN and random forest tree. The performances are very close,
that’s why the ROC curves using these two methods are similar. But after
fusion, the ROC from NN looks better than random forest tree.

Fig. 8 shows the comparison of EER values among all three methods
for 0 second images. The best classifier for ridge signal method is random
forest tree, with a EER of 8.62%. The best classifier for valley noise method
is multilayer perceptron network, with a EER of 5.27%. The best classifier
when fusing both of these two approaches is multilayer perceptron network,
with a EER of 2.55%. From Fig. 7 and Fig. 8, we can see that valley noise
analysis is much better than ridge signal analysis, which showed noise pattern
along valleys is more suitable for liveness detection than perspiration pattern
along ridges in this case. Furthermore, integration of both ridge signal and
valley noise methods performs better than both of these two approaches in-
dependently. Different to previous time series perspiration pattern detection
methods [20], this new approach needs only one image.

As shown in our previous work, fingerprint images change dynamically
over time due to perspiration [20] or pressure. Based on our experiments,
the time series images become stable after 2 seconds when the perspiration
are saturated. To investigate the generality of our methods over time series
images, we also consider the images at 1 and 2 seconds. Similar to cross-
validation methods for 0 second images, 1 and 2 second images also use
features fusing both ridge signal and valley noise analysis. Fig. 9 shows ROC
comparison using neural network and classification tree for 0, 1, 2 images,
respectively. For 0 second images, EER is 2.55% using the best network. For
1 second images, EER is 3.8% using the best network. For 2 second images,
EER is 3.21% using the best network.
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(a) ROC comparison using neural network
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(b) ROC comparison using random forest tree

Figure 7: ROC curve comparison between ridge signal, valley noise analysis and integration
of both for 0 second images
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Figure 8: EER comparison between ridge signal algorithm, valley noise algorithm and
fusion of them for 0 second images only
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Figure 9: ROC curve comparison for 0, 1, and 2 second images
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Figure 10: EER comparison by testing all images at 0, 1 and 2 second

In addition, all images at 0, 1 and 2 seconds are mixed and tested using
ten-fold cross validation. EER decreases from 2.55% for 0 second images
only to 1.18% for all images (0, 1, 2) using neural network. Similarly, EER
decreases from 4.43% to 0.9% using nearset neighbour classifier. Therefore,
training on images at 0, 1 and 2 second covers more variabilities for both live
and spoof fingerprints.

5. Discussion

Compared with previous research, the first contribution of this work is the
collection of a new live/spoof dataset. Previously, datasets typically contain
one sample for each live subject from a single session [20, 21, 24, 25]. In
this data, we have repeated samples from multiple live subjects over several
sessions (81 subjects with average 4 sessions). Also a large spoof dataset (570)
including spoof fingers made from Play-Doh, gelatin and silicone materials in
five different sessions are collected. Most of the liveness datasets contain 12-
36 fake fingers made of only a single material (gelatin, Play-Doh or silicone,
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etc) [20, 21, 14, 19], as summarized in [43]. Even though some researchers
collected multiple impressions [14, 15, 44], they did not specify the time
interval. We assume they collected the data in a short time interval. Other
studies had multiple spoof materials. However, they had smaller dataset,
for example, 10 gelatin and 24 plastic clay fake fingers for [16] and 10 casts
each of silicone, gelatin, latex and wood glue [15]. This method expands the
type of materials and investigates the characteristics of spoof fingers over
time. This database includes live and spoof fingerprints with various image
quality, as can be seen from Fig. 2. Live and spoof subjects are collected in
different sessions, as can be seen from Fig. 11. Time is an important factor
affecting the quality of spoof images because as the spoof dries the amount of
moisture changes impacting the fingerprint image. From Fig. 11, we can see
Play-Doh spoof images change dramatically over time, but silicone images
do not change over time. For some live subjects, the fingers are wet or dry
depending on the environmental or emotional factors.

The second contribution of this work is a novel anti-spoofing method by
fusing ridge signal and valley noise analysis processing only a single image.
From the ridge perspective, live fingers have a distinctive perspiration pat-
tern along the ridges, but the spoof fingers do not have. From the valley
perspective, spoof fingers have more noise than live fingers along the valleys
because spoof materials are easily transmuted and there are many granules
in the valleys due to the property of the spoof materials. Our fusion algo-
rithm achieves 97.45% correct classification on 0 second images and 99.1%
on all time-series images. The results show that ridge and valley features
evaluating perspiration phenomenon and noise pattern with decision trees,
neural network or other pattern classifiers are efficient for liveness classifica-
tion. The system can reduce spoofing vulnerability just by a simple software
update.

We analyzed the error distribution for the live and spoof dataset consider-
ing both type of spoof and quality. For example, for Bagging Tree classifier,
errors from Play-Doh, gelatin and silicone are 1.05%, 3.16% and 1.05%, re-
sepectively. The error ratio is the number of failures over total Play-Doh,
gelatin and slicone independently. For the spoofs, gelatin fingerprint are
more easily recognized as live compared with Play-Doh and silicone finger-
prints. Also for live subjects, typically errors occured in only one session
during many returns for a single individual and did not come from specific
subjects. It is hypothesized that in case of failure for live subjects, true live
subjects can wipe the finger and try again.
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(a)

(b)

(c)

(d)

Figure 11: Example of fingerprints on different sessions from same subject: (a) live sample;
(b) Play-Doh sample; (c) Gelatin sample; (d) Silicone sample.
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Also we analyzed error distribution based on different quality levels, as
listed in Table 2. Based on NFIQ standards, scores with 1, 2 and 3 are
relatively good quality images; scores with 4 and 5 are relatively poor quality
images. From Table 2, we can see live subjects with poor quality are more
easily recognized as spoof. Poor quality fingerprint images may be rejected
by the matcher stage also, so a slight increase in live/spoof error for live
fingers is less of a concern. Spoof images with good quality are more easily
recognized as live. This finding is reasonable because good quality spoofs
appear more live-like. However, the percentage of best quality spoof images
detected as live is still extremely low at 2.97%.

Quality Live Play-Doh Gelatin Silicone Spoof overall

scores % (total #) % (total #) % (total #) % (total #) % (total #)

1 1.72 (116) 0 (30) 4.76 (42) 3.45 (29) 2.97 (101)

2 2.65 (226) 0 (14) 3.57 (28) 0 (91) 0.75 (133)

3 2.31 (216) 1.33 (75) 2.47 (81) 1.61 (62) 1.83 (218)

4 1.67 (60) 1.79 (56) 0 (36) 0 (8) 1.0 (100)

5 3.85 (26) 0 (15) 0 (3) 0 (0) 0 (18)

Table 2: Error distribution for 0 second images using Bagging Tree

Of course, the fingerprint valley may not be clean if the sensor is very
dirty or the finger is very wet. This may cause a false rejection for live
subjects. While live subjects can prevent this happening by just cleaning the
sensor surface or by wiping their fingers on the clothes to successfully pass
the fingerprint liveness system.

This method is tested on the Identix optical scanner. A clear result from
our previous research is that the characteristics of live/spoof figures vary
across different technologies. We plan to explore this approach for other
scanner technologies. While algorithms may vary from technology to tech-
nology, we have shown that the general approach does not in previous papers,
as described in [20, 21, 22, 23, 24, 25]. The general approach is selection of
a set of features and supervised pattern recognition. Variation from technol-
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ogy to technology typically is related to the weighting and specific thresholds.
We have chosen an optical reader as it represents a large percentage of the
market. For the algorithm proposed herein, we expect that other technolo-
gies will show similar results because of part of this method has been proved
successfully in some other scanners [20, 21, 22, 23, 24, 25]. However due to
the difficulty and time consuming nature of creating and collecting the spoofs
images, this work is still in progress.

Furthermore, based on our experience, the intensity of spoof fingerprints
depends on the materials used. While this algorithm is effective for these
materials and methods, it is not guaranteed to be effective for all types of
spoof materials. For our research, we have selected the materials and methods
which create the most live-like spoof images. In further investigation we
would like to further explore the dryness of Play-Doh and thickness of gelatin
fingers. In our current database, we use gelatin molds which are thick because
the cast is concave, not flat. Therefore, the dryness variability is reduced.
Our future plan is to design another type of cast that makes thinner gelatin
fingers. Also more variability in quality of live fingers needs to be studied,
particularly environmental or climate changes. While it is impossible to
conceive of all possible spoof techniques, this work is a significant step forward
to reduce spoofing of well known spoof materials - gelatin, Play-Doh and
silicone [3, 4, 5].

This method minimizes the risk of spoofing. Since this method relies on
a single image captured from the fingerprint scanner, fingerprint recognition
and anti-spoofing protection can work simultaneously, i.e. at the same time
using the same image. If anti-spoofing is detected for a particular application,
several factors need to be considered. First, biometric performance will be
impacted by the liveness stage. For example, false rejects could come from
the matching or liveness stage. Therefore, the false reject from the system
is the union (AND) of biometric false rejects and liveness false rejects. If a
system has 0.1% biometric and 2% liveness FRR, the total system FRR has
a maximum of 2.1% FRR. Clearly driven by the liveness stage, this is the
tradeoff for adding a liveness componnet to the system - increased security
may result in decreased performance. It is unknown if repeated attempts will
result in an acceptance at liveness stage. More work is needed to evaluate
this. Second, it is conceivable if the spoofer is motivated, he/she would repeat
efforts until spoofing occurred. With a false acceptance of 2%, approximately
50 times would be needed. In a system where anti-spoofing is critical, many
repeated rejections from a single individual due to the liveness stage would
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result in a lock-out of the system for that individual.

6. Conclusion

A new method based on combining ridge signal and valley noise analysis
is proposed for anti-spoofing in fingerprint sensors. Results show that this
method is very efficient (EER of 0.9%) for an optical Identix scanner when
tested for a large dataset of live subjects with repeated visits and spoofs with
varying material and moisture levels. Different to previous methods using
two time-series images, the new method needs only one image. The method
is purely software based and application of this anti-spoofing method can
protect fingerprint scanners from spoofing attacks, like artificial Play-Doh,
gelatin and silicone fingers.
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